Rapid exchange stent delivery system and associated components

Information

  • Patent Grant
  • 8685078
  • Patent Number
    8,685,078
  • Date Filed
    Monday, April 29, 2013
    11 years ago
  • Date Issued
    Tuesday, April 1, 2014
    10 years ago
Abstract
A rapid exchange stent delivery catheter includes an inner tubular member having a proximal portion, a distal portion, a stent holding portion located adjacent the distal portion of the inner member, and a guide wire lumen extending from a proximal guide wire opening disposed distal of the proximal portion of the inner member to a distal guide wire opening disposed at a distal end of the inner member. The proximal guide wire opening has a first length. An outer tubular member is slidably disposed about the inner member. The outer member has a proximal portion, a distal portion, and a guide wire opening disposed distal of the proximal portion of the outer member. The guide wire opening of the outer member has a second length that is shorter than the first length and a guide wire ramp extends into, and is movable along the first length.
Description
FIELD

The present disclosure generally relates to stent delivery catheters, such as biliary stent delivery catheters. More specifically, the present disclosure relates to rapid exchange type stent delivery catheters for delivering a self-expanding stent to a bodily lumen, such as the biliary tract.


BACKGROUND

Endoscopic procedures for treating abnormal pathologies within the alimentary canal system and biliary tree (including the biliary, hepatic, and pancreatic ducts) are increasing in number. The endoscope provides access to the general area of a desired duct using direct visualization. However, the duct itself must be navigated using a catheter in conjunction with a guidewire under fluoroscopy. A wide variety of catheters are known for treatment of such targeted anatomical regions. Examples of biliary catheters are disclosed in U.S. Pat. No. 5,921,971 to Agro et al. and PCT International Publication No. 00/69498 to De Toledo et al., the disclosures of which are hereby incorporated by reference.


Agro et al. '971 discloses a catheter for use in biliary procedures, wherein the catheter includes a shaft having a proximal end and a distal end. A guidewire lumen extends through the shaft from a proximal guidewire port located proximal of the distal end of the shaft, to a distal guidewire port located at the distal end of the shaft. The shaft may also include a slot or channel extending from a proximal end of the shaft to the proximal guidewire port. Catheters incorporating such a guidewire opening and channel are often referred to as rapid exchange or single operator exchange type biliary catheters.


De Toledo et al. '498 discloses single operator drainage catheter delivery system including a guide member having a guidewire lumen extending through a distal portion thereof, with a proximal guidewire port located distal of the proximal end. A placement catheter is disposed over the guide member has a catheter lumen extending through a distal portion thereof, with a proximal guidewire port located distal of the proximal end. Locating the proximal guidewire ports as such allows the delivery system to be used by a single person with a shorter guidewire. A drainage catheter (a.k.a. a plastic stent) is disposed about the guide member distal of the placement catheter. The drainage catheter delivery system preferably includes a means for releasably connecting the placement catheter to the drainage catheter, wherein the releasable connecting means disconnects the drainage catheter upon displacement of the guide member. However, De Toledo et al. '498 does not disclose a rapid exchange biliary catheter system for the delivery of a metallic self-expanding stent, which requires a retractable sheath.


U.S. Pat. No. 5,484,444 to Braunschweiler et al., and U.S. Pat. No. 5,709,703 to Lukic et al. disclose a stent delivery device which has an elongated sheath with a self-expandable stent placed in contracted condition within the distal area of the sheath. An elongated core is arranged in the sheath for longitudinal motion relative to the sheath to facilitate stent delivery. However, Braunschweiler et al. '444 and Lukic et al. '703 do not provide a rapid exchange feature as in De Toledo et al. '498.


U.S. Pat. No. 5,743,874 to Fischell et al. discloses a catheter capable of performing balloon angioplasty followed by delivery of a self-expanding stent. The catheter includes an outer sheath which may be pulled back to deploy the self-expanding stent. In one embodiment, the catheter includes a guide wire entry port located just proximal of the stent to permit rapid exchange capability. To provide the guide wire entry port, Fischell et al. '874 provides a sloped plug disposed in the inner tube and an elongate side opening in the outer sheath. The elongate side opening in the outer sheath is necessary to permit retraction of the outer sheath for stent deployment. By providing such a long side opening, a major portion of the inner workings of the catheter are exposed to bodily fluids and interference from other devices, which may compromise performance of the stent delivery catheter. This undesirable feature, in addition to others not specifically mentioned herein, leaves a need for an improved rapid exchange stent delivery catheter.


SUMMARY

The present disclosure provides an improved rapid exchange catheter system for the delivery of a self-expanding stent to a bodily lumen (e.g., biliary tract, blood vessel, etc.), such as a metallic biliary stent commercially available from Boston Scientific Corporation under the trade name Wallstentâ„¢. In an exemplary embodiment, the rapid exchange stent delivery catheter includes an inner tubular member and an outer tubular member slidably disposed thereon. The inner tubular member has a guide wire lumen with a proximal rapid exchange type guide wire opening. The outer tubular member also has a rapid exchange type guide wire opening that can be shorter than the guide wire lumen of the inner tubular member in order to protect the inner workings of the catheter from bodily fluids and other devices.


The outer tubular member may include a guide wire access sleeve in which the guide wire opening is disposed. The guide wire access sleeve has a guide wire ramp extending into the guide wire lumen of the inner tubular member. The guide wire sleeve may be a separate component from the remainder of the outer tubular member to facilitate efficient manufacture.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a rapid exchange stent delivery catheter system in accordance with an exemplary embodiment of the present disclosure, shown in the delivery state;



FIG. 2 is a plan view of a distal portion of the rapid exchange stent delivery catheter system illustrated in FIG. 1, shown in the deployment state;



FIG. 3 is a plan view of a distal portion of the outer tubular member of the rapid exchange catheter illustrated in FIG. 1;



FIG. 4 is a plan view of an inner tubular member of the rapid exchange catheter illustrated in FIG. 1;



FIGS. 5A and 5B are cross-sectional views taken along lines 5A-5A and 5B-5B, respectively, in FIG. 4;



FIG. 6 is a plan view of a self-expanding metallic stent suitable for delivery by the rapid exchange catheter illustrated in FIG. 1;



FIG. 7A is an isometric view of a guide wire sleeve of the outer tubular member illustrated in FIG. 3; and



FIG. 7B is a longitudinal sectional view of the guide wire sleeve illustrated in FIG. 7A.





DETAILED DESCRIPTION

The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. Those skilled in the art will recognize that the dimensions and materials discussed herein are merely exemplary and are not intended to limit the scope of the present invention.


Refer now to FIGS. 1 and 2 which illustrate plan views of a rapid exchange stent delivery catheter system 10 in accordance with an embodiment of the present disclosure. The rapid exchange stent delivery catheter system 10 includes a rapid exchange catheter 100 which is advanced over a guide wire 30 (shown in phantom) to deliver and deploy a self-expanding stent 20 in a bodily lumen.


The rapid exchange stent delivery catheter system 10 is suitable for biliary applications and intravascular applications. In biliary applications, the rapid exchange stent delivery catheter system 10 is sized to fit within an endoscope (not shown) and to navigate to the desired site in the biliary tract. In vascular applications, the rapid exchange stent delivery catheter system 10 is sized to fit within an introducer sheath (not shown) and/or a guide catheter (not shown) to navigate to the desired vascular site.


The rapid exchange stent delivery catheter 100 includes an inner tubular member 120 slidably disposed in an outer tubular member 140. The outer tubular member 140 includes a lumen (not visible) extending therethrough to slidably accommodate the inner tubular member 120. The inner tubular member 120 includes a guide wire lumen 130 extending through a distal portion thereof to accommodate the guide wire 30.


To provide rapid exchange capability for the rapid exchange stent delivery catheter 100, the guide wire 30 exits through a guide wire opening 170 in the outer tubular member 140 as will be discussed in greater detail with reference to FIGS. 3, 7A and 7B. The guide wire 30 extends through a relatively short guide wire lumen and enters through a distal guide wire opening 129 in the inner tubular member 120, as will be discussed in greater detail with reference to FIGS. 4, 5A and 5B. In practice, the device 100 may be inserted over the guide wire 30 from the tip end first.


A proximal handle 122 is connected to a proximal portion 124 of the inner tubular member 120. Similarly, a distal handle 142 is connected to a proximal portion 144 of the outer tubular member 140. The distal handle 142 may be longitudinally displaced relative to the proximal handle 122 to selectively expose or cover the self-expanding stent 20, which is disposed about a distal portion of the inner tubular member 120. In FIG. 1, the distal handle 142 has been longitudinally displaced in the distal direction relative to proximal handle 122 such that the outer tubular member 140 covers the self-expanding stent 20. In FIG. 2, the distal handle 142 has been longitudinally displaced in the proximal direction relative to proximal handle 122 to retract the outer tubular member 140 relative to the inner tubular member 120 to expose and deploy the self-expanding stent 20.


With additional reference to FIG. 3, the outer tubular member 140 includes, from the proximal end to the distal end, a proximal portion 144, a main outer portion (not visible) a guide wire sleeve 160 and a distal outer portion 146. The proximal end of the proximal outer portion 144 is connected to the distal handle 142. The distal handle 142 may be injection molded over the proximal outer portion 144. The distal end of the proximal outer portion 144 is connected to the proximal end of the main outer portion (not visible). The distal end of the main outer portion (not visible) is connected to the proximal end of the guide wire sleeve 160, and the distal end of the guide wire sleeve 160 is connected to the proximal end of the distal outer portion 146. The various portions of the outer tubular member 140 may be connected by adhesive, by thermal means or by any other suitable means known to those skilled in the art.


The proximal outer portion 144 may be formed of PEBAX, having a length of approximately 8.0 inches (20.3 cm), an outside profile of approximately 0.120 inches (9F) (0.30 cm), and an inside diameter of approximately 0.083 inches (0.21 cm). The guide wire sleeve 160 is discussed in greater detail with reference to FIGS. 7A and 7B. The main outer portion (not visible) may be formed of PEBAX/wire braid/PTFE composite, having a length of approximately 55.0 inches (0.140 cm), an outside profile of approximately 6F (0.079 inches), and an inside diameter of approximately 0.057 inches (0.145 cm). The distal outer portion 146 may be formed of PEBAX/wire braid/PTFE composite, having a length of approximately 10.6 inches (27 cm), an outside profile of approximately 8F 0.105 inches, and an inside diameter of approximately 0.090 inches (0.229 cm).


A radiopaque marker band 142 may be disposed adjacent the distal end of the distal outer portion 146 to facilitate radiographic placement of the catheter 100 and to radiographically indicate the position of the outer tubular member 140 relative to the inner tubular member 120 to aid in deploying the self-expanding stent 20.


With additional reference to FIGS. 4, 5A and 5B, the inner tubular member 120 includes a distal inner portion 126 connected to the distal end of the proximal inner portion 124. The proximal inner portion 124 and the distal inner portion 126 are similar, except the proximal inner portion 124 can be reinforced with a SST hypotube. The inner portions 124/126 may be formed of PEEK, having a length of approximately 88.6 inches (225 cm), an outside profile of approximately 0.052 inches (0.13 cm), and an inside diameter of approximately 0.037 inches (0.094 cm). A jacket formed of LDPE, having a length of approximately 5.9 inches (15 cm), an outside profile of approximately 0.80 inches (0.020 cm), and an inside diameter of approximately 0.055 inches (0.14 cm) may be disposed about the inner member 120 to consume the clearance between the inner member 120 and the outer member 140 proximal of the stent 20 to prevent kinking The various portions of the inner tubular member 120 may be connected by adhesive, by thermal means or by any other suitable means known to those skilled in the art.


A distal head 132 is connected to the distal end of the distal inner portion 126 to limit distal displacement of the outer tubular member 140. A distal bond region 134 is disposed immediately proximal of the distal head 132. A holding sleeve 136 and a stent cup 138 prevents slippage of the stent 20. Radiopaque marker bands 44/46/48 are disposed on the distal inner portion 126 and are separated by a distance approximately equal to the length of the stent 20. The distal outer portion 146 of the outer tubular member 140 contains the self-expanding stent 20 during delivery.


The distal inner portion 126 includes a proximal guide wire opening 128 and a distal guide wire opening 129. A guide wire lumen 130 extends between the proximal guide wire opening 128 and the distal guide wire opening 129 to accommodate the guide wire 30 therein. The proximal guide wire opening 128 has a length which is greater than the length of the guide wire opening 170 of the guide wire sleeve 160. The length of the proximal guide wire opening 128 is sufficient to allow longitudinal displacement of the outer tubular member 140 relative to the inner tubular member 120 to permit full exposure and deployment of the self-expanding stent 20. The length of the proximal guide wire opening 128 is preferably slightly longer than the length of the constrained portion of the stent 20 to avoid wedging the guide wire 30 between the inner tubular member 120 and the outer tubular member 140 prior to full deployment of the stent 20.


The guide wire lumen 130 may be eccentrically positioned in the distal inner portion 126 as seen in FIGS. 5A and 5B. For example, the upper wall may have a thickness of approximately 0.003 inches and the lower wall may have a thickness of approximately 0.011 inches. The upper thinner wall portion may be removed (skived) to define the proximal guide wire opening 128. By removing only the thin-walled portion of the distal inner portion 126, the column strength of the inner tubular member 120 is not significantly compromised.


A solid mandrel (not shown) may be inserted into the proximal lumen (not visible) of the inner tubular member 120 proximal of the guide wire opening 128 for improved column strength. The solid mandrel may be formed of stainless steel having an outside diameter of approximately 0.030 inches with a tapered end. A stainless steel hypotube (not shown) having an outside diameter of approximately 0.079 inches may be disposed about the proximal inner portion 124 for added column strength and durability. The proximal handle 122 may be injection molded over the proximal end of the hypotube and the proximal end of the proximal inner portion 124.


A distal radiopaque marker 44 is disposed on the distal inner portion 126 to radiographically mark the distal end of the stent 20. A proximal radiopaque marker 48 is disposed on the distal inner portion 126 to radiographically mark the proximal end of the stent 20. A mid radiopaque marker 46 is disposed on the distal inner portion 126 distal of the holding sleeve 138 to radiographically facilitate deployment of the stent 20.


With reference to FIG. 6, the stent 20 may comprise any self-expanding stent suitable for biliary or intravascular applications. For example, in biliary applications, the self-expanding stent 20 may comprise a metallic stent commercially available from Boston Scientific Corporation under the trade name Wallstentâ„¢.


With reference to FIGS. 7A and 7B, the guide wire sleeve 160 includes a proximal portion 164, a distal portion 162 and a lumen 166 extending therethrough. The distal portion 162 is flared to fit over and be connected to the distal outer portion 146. The proximal portion 164 is sized to fit within and be connected to the main outer portion.


A guide wire opening 170 extends through the exterior wall of the guide wire sleeve 160. A ramp 172 extends from the exterior wall into the lumen 166. When assembled, the ramp 172 extends through the proximal guide wire opening 128 of the inner tubular member 120 and into the guide wire lumen 130. The ramp 172 is moveable within the proximal guide wire opening 128 to facilitate a smooth transition of the guide wire 30 from the guide wire lumen 130 to exterior of the catheter 100, regardless of the position of the outer tubular member 140 relative to the inner tubular member 120.


The guide wire sleeve 160 may have a length of approximately 1.0 inch, a distal outside diameter of approximately 0.122 inches, a proximal outside diameter of approximately 0.087 inches, a distal inside diameter of approximately 0.107 inches, and a proximal inside diameter of approximately 0.070 inches. The ramp 172 may be an integral extension of the exterior wall of the guide wire sleeve 160 and may have a length of approximately 0.090 inches and a width of approximately 0.50 inches. The ramp 172 may extend into the lumen 166 at an angle of approximately 30 degrees to a point approximately 0.14 inches away from the opposite wall.


The guide wire sleeve 160 may be an integral part of the outer tubular member 140 but is preferably a separately manufactured component. For example, the guide wire sleeve 160 may be formed of injection molded nylon or polypropylene. If the guide wire sleeve 160 is injection molded, manufacturing artifacts such as hole 168 may be filled or removed depending on the particular application. By manufacturing the guide wire sleeve 160 separately, more manufacturing flexibility and efficiency are achieved. For example, the guide wire sleeve 160 may be made of a material that is not melt sensitive or that is readily bonded to facilitate connection to other catheter components using adhesive or thermal means. In addition, the guide wire sleeve 160 may be inspected prior entering the production floor to eliminate non-conforming parts and increase efficiency. Further, the dimensions may be controlled better to provide greater consistency at bond sites. These and other advantages not specifically mentioned herein may be obtained by manufacturing the guide wire sleeve 160 as a separate component, but such is not essential to the present invention.


Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims
  • 1. A medical device, comprising: an inner member having a distal region and an inner guidewire opening having a first length;an implant disposed about the distal region of the inner member;an outer member slidably disposed about the inner member, the outer member including an outer guidewire opening having a second length different from the first length;a ramp member disposed adjacent to the outer guidewire opening and extending into the inner guidewire opening; andwherein the ramp member is movable relative to the inner guidewire opening.
  • 2. The medical device of claim 1, wherein a solid member is disposed within a proximal region of the inner member.
  • 3. The medical device of claim 2, wherein the solid member is positioned proximal of the inner guidewire opening.
  • 4. The medical device of claim 2, wherein the solid member has a tapered distal end.
  • 5. The medical device of claim 1, wherein the first length is longer than the second length.
  • 6. The medical device of claim 1, wherein the implant includes a self-expanding stent.
  • 7. The medical device of claim 1, wherein the implant includes a biliary stent.
  • 8. The medical device of claim 1, wherein the inner member includes a distal head.
  • 9. The medical device of claim 8, wherein a distal bonding region is disposed adjacent to the distal head, the distal bonding region being capable of being disposed within the outer member.
  • 10. The medical device of claim 1, wherein the inner member includes a stent cup.
  • 11. The medical device of claim 1, wherein the outer member includes a holding sleeve.
  • 12. The medical device of claim 11, wherein the ramp member is a portion of the holding sleeve.
  • 13. A medical device, comprising: an inner tubular member having a distal region;wherein the inner tubular member has a first guidewire opening formed therein;wherein the first guidewire opening has a first length;an implant disposed about the distal region of the inner tubular member;an outer tubular member slidably disposed about the inner tubular member;wherein the outer tubular member has a second guidewire opening formed therein;wherein the second guidewire opening has a second length different from the first length; anda movable ramp disposed along the outer tubular member and extending into the first guidewire opening.
  • 14. The medical device of claim 13, wherein a solid member is disposed within a proximal region of the inner tubular member and extends proximally from the first guidewire opening.
  • 15. The medical device of claim 13, wherein the first length is longer than the second length.
  • 16. The medical device of claim 13, wherein the implant includes a self-expanding stent.
  • 17. The medical device of claim 13, wherein the outer tubular member includes a holding sleeve.
  • 18. The medical device of claim 17, wherein the movable ramp is a portion of the holding sleeve.
  • 19. The medical device of claim 13, wherein the movable ramp is movable within the first guidewire opening.
  • 20. A medical device, comprising: an inner tubular member having a distal region and a proximal region;wherein the inner tubular member has a first guidewire opening formed therein;wherein the first guidewire opening has a first length;a solid member disposed within the proximal region of the inner tubular member and extending proximally from the first guidewire opening;a self-expanding stent disposed about the distal region of the inner tubular member;an outer tubular member slidably disposed about the inner tubular member;wherein the outer tubular member has a second guidewire opening formed therein;wherein the second guidewire opening has a second length shorter than the first length;a movable ramp disposed along the outer tubular member and extending into the first guidewire opening; andwherein the movable ramp is movable within the first guidewire opening.
CROSS REFERENCE

This application is a continuation of U.S. application Ser. No. 12/337,151, filed Dec. 17, 2008, now U.S. Pat. No. 8,444,685, which is a continuation of U.S. application Ser. No. 11/525,296, filed Sep. 22, 2006, now U.S. Pat. No. 7,468,053; which is a continuation of U.S. application Ser. No. 11/094,401, filed Mar. 30, 2005, now U.S. Pat. No. 7,115,109; which is a continuation of U.S. application Ser. No. 10/785,350, filed Feb. 24, 2004, now U.S. Pat. No. 6,890,317; which is a continuation of U.S. application Ser. No. 10/454,269, filed Jun. 4, 2003, now U.S. Pat. No. 6,723,071; which is a continuation of U.S. Application Ser. No. 09/808,626, filed Mar. 14, 2001, now U.S. Pat. No. 6,592,549; the entire disclosures of which are all incorporated herein by reference.

US Referenced Citations (77)
Number Name Date Kind
4316468 Klieman et al. Feb 1982 A
4552554 Gould et al. Nov 1985 A
4594074 Andersen et al. Jun 1986 A
4616650 Green et al. Oct 1986 A
4655771 Wallsten Apr 1987 A
4848343 Wallsten et al. Jul 1989 A
4990151 Wallsten Feb 1991 A
5026377 Burton et al. Jun 1991 A
5104395 Thornton et al. Apr 1992 A
5135535 Kramer Aug 1992 A
5156594 Keith Oct 1992 A
5217482 Keith Jun 1993 A
5315747 Solar May 1994 A
5324269 Miraki Jun 1994 A
5360401 Turnland et al. Nov 1994 A
5360416 Ausherman et al. Nov 1994 A
5364376 Horzewski et al. Nov 1994 A
5370655 Burns Dec 1994 A
5389087 Miraki Feb 1995 A
5456667 Ham et al. Oct 1995 A
5458605 Klemm Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5507768 Lau et al. Apr 1996 A
5533968 Muni et al. Jul 1996 A
5545134 Hilaire et al. Aug 1996 A
5547474 Kloeckl et al. Aug 1996 A
5643278 Wijay Jul 1997 A
5690644 Yurek et al. Nov 1997 A
5709733 Hachisuka et al. Jan 1998 A
5743874 Fischell et al. Apr 1998 A
5782855 Lau et al. Jul 1998 A
5843028 Weaver et al. Dec 1998 A
5891154 Loeffler Apr 1999 A
5921971 Agro et al. Jul 1999 A
5980533 Holman Nov 1999 A
6007522 Agro et al. Dec 1999 A
6059752 Segal May 2000 A
6077295 Limon et al. Jun 2000 A
6113607 Lau et al. Sep 2000 A
6146415 Fitz Nov 2000 A
6165195 Wilson et al. Dec 2000 A
6221090 Wilson Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6248092 Miraki et al. Jun 2001 B1
6261302 Voegele et al. Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6309379 Willard et al. Oct 2001 B1
6361544 Wilson et al. Mar 2002 B1
6380457 Yurek et al. Apr 2002 B1
6383213 Wilson et al. May 2002 B2
6387120 Wilson et al. May 2002 B2
6398799 Kramer Jun 2002 B2
6428567 Wilson et al. Aug 2002 B2
6488694 Lau et al. Dec 2002 B1
6527789 Lau et al. Mar 2003 B1
6582459 Lau et al. Jun 2003 B1
6592549 Gerdts et al. Jul 2003 B2
6599315 Wilson Jul 2003 B2
6723071 Gerdts et al. Apr 2004 B2
6764484 Richardson et al. Jul 2004 B2
6849077 Ricci Feb 2005 B2
6890317 Gerdts et al. May 2005 B2
7001358 Fitzmaurice et al. Feb 2006 B2
7115109 Gerdts et al. Oct 2006 B2
7468053 Gerdts et al. Dec 2008 B2
7811250 Scopton Oct 2010 B1
7815601 Jordan et al. Oct 2010 B2
7833197 Boutillette Nov 2010 B2
8444685 Gerdts et al. May 2013 B2
8556857 Boutillette Oct 2013 B2
20010007082 Dusbabek et al. Jul 2001 A1
20010037116 Wilson et al. Nov 2001 A1
20010037138 Wilson et al. Nov 2001 A1
20040133263 Dusbabek et al. Jul 2004 A1
20080009934 Schneider et al. Jan 2008 A1
20110028984 Jordan et al. Feb 2011 A1
Foreign Referenced Citations (6)
Number Date Country
0505686 Sep 1992 EP
747133 Feb 1995 JP
9415549 Jul 1994 WO
9949808 Oct 1999 WO
0069498 Nov 2000 WO
02007378 Sep 2002 WO
Related Publications (1)
Number Date Country
20130226308 A1 Aug 2013 US
Continuations (6)
Number Date Country
Parent 12337151 Dec 2008 US
Child 13872741 US
Parent 11525296 Sep 2006 US
Child 12337151 US
Parent 11094401 Mar 2005 US
Child 11525296 US
Parent 10785350 Feb 2004 US
Child 11094401 US
Parent 10454269 Jun 2003 US
Child 10785350 US
Parent 09808626 Mar 2001 US
Child 10454269 US