The present invention relates to a toy for shooting or launching projectiles in rapid succession. More specifically, it is a toy gun adapted to shoot a continuous stream of soft projectiles, powered by the compressed air created by a repeated pumping action. In the preferred embodiment, two identical launchers are arranged side-by-side to maximize that number of projectiles the may be launched without reloading.
Projectile launchers that shoot soft foam projectiles by delivering blasts of compressed air thereto have become very popular in recent years. Launchers that are capable of sequentially launching a plurality of projectiles without reloading have been found to have even greater levels of appeal. However, the prior art projectile launchers of this type have included complex, unreliable and expensive indexing arrangements for delivering blasts of compressed air to sequentially arranged projectiles. Further, prior art firing mechanisms have been less than “user friendly”, resulting in both a slowing of actual launching and fatigue by the user.
The present invention provides a new and extremely simple projectile launcher, having only a user-operated linear piston and one additional moving component, which is adapted for reliably and tirelessly launching a plurality of sequential projectiles in a continuous stream. Accordingly, the projectile launching apparatus according to the present invention is substantially simpler, cheaper to manufacture, easier to use, less tiring, more reliable, and thereby more effective than the heretofore-available air powered projectile launching devices.
More specifically, the projectile launching apparatus of the present invention comprises a launcher body having a magazine thereon which includes a plurality of forwardly directed launching chambers. Each of the launching chambers includes an air inlet, and each is adapted for receiving a projectile thereon so that the projectile is launchable from the launching chamber thereof by delivering a blast of compressed air thereto. The air inlets of the magazine are disposed in substantially uniformly spaced relation in a substantially circular array, and the launcher further includes a piston and cylinder assembly, which is linearly movable within the launcher body. The piston and cylinder assembly includes an air outlet, which directs air into an indexing manifold. Depending on the radial position of the indexing manifold, air passing there-through is directed by the manifold towards a particular launching chamber. A blast of air is created with each forward motion of the piston by the user.
The blast of air has two purposes. The primary purpose is to provide air power for launching the projectile in one of the chambers. The secondary purpose is to provide air power for rotationally indexing the manifold so that the manifold is arranged after each stroke to provide air power to the next adjacent launching chamber with the next stroke.
Prior art launchers, such, employ various mechanisms for compressing air for powering the projectile launching. Mechanisms such as that taught in U.S. Pat. No. 5,535,729 require the user to pull a lever in a non-linear and rearward motion to launch a projectile. Aside from the complications of this elaborate mechanism, it is found to cause inaccuracy in aiming and shooting the projectiles. The piston and cylinder assembly of the present invention has an axis of translation that is co-axial with the axis of the launching magazine. The force applied by the user to actuate the piston is directly along the line of intended fire. Aside from providing a more simple and reliable mechanism for both the manufacturer and user, this arrangement has been found to enhance aiming and to improve the accuracy of projectiles being fired. Further, because the piston's motion is a short linear stroke, it is possible for a user to quickly and easily operate the piston and cylinder assembly in order to rapidly launch a plurality of sequential projectiles from the magazine without adversely effecting aim and accuracy.
Accordingly, it is a primary object of the present invention to provide an effective new launcher mechanism for easily and accurately launching a plurality of projectiles from a magazine of a projectile launcher without reloading the launcher.
Another object of the present invention is to provide a projectile launcher having a stationary projectile magazine which is adapted for receiving a plurality of projectiles thereon and for powering those projectiles via a blast of air from a piston and cylinder mechanism arranged for linear motion along the intended line of fire. More preferably, the piston and cylinder motion is coaxial with the average line of fire.
Other objects, features and advantages of the invention shall become apparent in view of the following description and drawings of the preferred embodiment thereof.
Referring now to the drawings, two embodiments of the projectile launcher according to the present invention is illustrated in
Launching mechanism 106 has eight equally-spaced launching chambers 108 within magazine 109 for receiving eight projectiles 110, and a manifold assembly 112 for directing air from the piston and cylinder assembly 104 to the launching chambers 108, one at a time and in sequential order upon each successive extension/compression cycle of the piston 118.
The piston 118 includes a handle 120 at its distal end. The piston is adapted to be moved longitudinally within the cylinder 122 from an extended state (as depicted by the extended position of right-side handle 120R of
With the handle first in its compressed state, and all launching chambers 108 loaded with projectiles 110, the user grasps the handle 120 and pulls it rearward into its extending state. The piston 118 is movably sealed against the cylinder's inner wall 124 by o-ring 126, so this backstroke causes air to be drawn into the cylinder 122 through intake hole 128. During the extending back stoke, rotatable diverter 130 is pulled back away from hole 128, allowing an airflow path from the outside into the cylinder. Rear ratchet teeth 134 of the diverter engage mating ratchet teeth 136 of cylinder cap 140 during the backstroke to cause a clockwise rotation of the diverter of 22.5 angular degrees. This is best seen by reference to
A forward thrust of the handle 120 forces diverter 130 forward to block hole 128 and force the compressing air from the cylinder 122 though diverter hole 142 of diverter 130. Front ratchet teeth 144 of the diverter engage ratchet teeth 146 of chamber cap 150 during the forward thrust to cause a further clockwise rotation of the diverter of another 22.5 angular degrees. Air forced from the cylinder 122 through the diverter hole 142 is directed by the adjacent air channel 154 though that channel's mating projectile tube 156 and to that tube's launch chamber 108 to force the projectile 110 from that chamber.
Looking at
As a result of the 45 angular degree rotation of the diverter 130 from before to after the backstroke fore-stroke cycle, it can be understood that rotational diverter 130 causes air on each successive fore-stroke to be forced to a successive launch chamber. Additionally, by successively extending and compressing handle 120, it can be understood that a continuous stream of projectiles can be fired from successive chambers. The dual side-by-side launcher of
It should also be of note that, aside from the longitudinally translatable piston, diverter 130 is the sole moving component in this mechanism, representing a significant manufacturing, economic, and reliability advancement over the prior.
It should be of further note that the exerted force by the user during the compressing or “firing” stroke is directly along the intended line of fire of the projectile, which is found to improve firing accuracy.
While the above describes a specific embodiment of the invention, it will be appreciated by those skilled in the art that various modifications and rearrangements may be made without departing from the spirit and scope of the underlying invention and that the same is not limited to these particular embodiments except insofar as indicated by the scope of the appended claims.