This disclosure relates to thermal analysis of a substance, and particularly relates to techniques for measuring.
The figures depict various embodiments of the described methods and system and are for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the methods and systems illustrated herein may be employed without departing from the principles of the methods and systems described herein.
A method is presented for a rapid high-temperature thermal analysis of a substance using a rapid laser thermal reactor (RHTR). Substances that can be analyzed are solids and liquids, including various multiphase and multicomponent inhomogeneous substances. The value of this technique is that there is currently no technology available that can match the RHTR's performance specifications. Unlike conventional thermal analysis techniques, which are designed to measure a selected thermal or chemical property in a nominally constant temperature environment, the RHTR measures an integrated thermal response, representing the effects of multiple thermal and chemical properties. The RHTR makes these measurements in a dynamic environment that is characteristic of real-world conditions where temperatures are changing rapidly.
The unique features of the R-ITR that surpass those of conventional thermal analysis methods are: rapid temperature sensing, programmable and rapid heating rates, quick data measurement and analysis, simple design, robustness, controllable enclosed environment, high accuracy, and the ability to analyze from milligrams up to a few grams sample quantities. For brevity, RHTR is used with respect to the invention's rapid high-temperature thermal reactor, but is not so limited just to the reactor itself. RHTR as used herein may encompass the reactor, the thermal reactor system that includes the reactor and other components that comprises the system, and/or to methods used with, in conjunction with, and in relation to the reactor.
The RHTR system comprises reactor 10 mounted within a chamber 11. While chamber 11 is shown as a square or oblong shape in
Referring to
The infrared laser beam heats the reactor from opposing sides 16, 17 using beam splitters that transmit and reflect equally the incident light, and concomitant optics, to achieve a uniform temperature in the measurement volume.
Laser 12 is the source of the laser beams. Laser 12, in one embodiment, is an infrared, 250 W continuous-wave Nd:YAG laser, operating at a wavelength of 1.064 μm. The multi-mode laser provides a nearly uniform intensity distribution instead of the single-mode Gaussian transverse intensity distribution, and thus the effects of the laser beam intensity distribution are ignored.
A data acquisition system 13 receives as inputs measurement data from reactor 10 and chamber 11. Data acquisition system 13 records and processes this information for the specified thermophysical information of interest. Data acquisition system 13 includes a processor, such as a computer or a microprocessor, and in one embodiment a monitor and/or a printer and the like, for conducting the necessary processing of data including that outputted from the reactor and the chamber, and providing a suitable interface for viewing the data, such as plotting graphs so to produce readable outputs in whatever format is desired. Additional information on the sample's chemistry can be obtained from extractive sampling of the reaction gases, and introduction of these gases into a gas chromatography/mass spectroscopy (GC/MS) system 14. In
The RHTR device in
While
The two reflected laser beams each pass through a port window on opposing sides of the chamber and impact on opposing sides of the reactor so to uniformly heat the reactor. The chamber's port windows are made of a high quality glass known in the art that appears practically transparent to the laser beams, i.e. approaches 100% transparency for delivering the laser power to the metal side area (high conductivity) of the reactor. A typical power level for each laser beam is 50 W (watts), or 100 watts total, for heating the reactor.
Other components of the RHTR device of
Reactor positioning device 37 for moving the reactor and the substrate to an exact desired position inside chamber 11 is shown as being connected to a substrate to support a single sample, for the embodiments of
Top opening 34 of the sphere is used through-which to place the sample and direct a third heating laser beam. Bottom opening 35 of the sphere is for the routing of thermocouples 33a and 33b there-through. Thermocouples 33a-b have already been described above with a brief reference to
A sample of the material under test is placed inside, at the center, of reactor 30 on a disk-shaped substrate 31 that rests on thin-wire extensions 32 from one thermocouple 33a. In other words, thermocouple 33a both supports substrate 31 and senses the temperature of substrate 31 and outputs that temperature data for processing. The material from which the substrate is made can vary e.g., copper, gold plated, aluminum, or nickel, so long as the material chosen to excludes any chemical interaction with the sample. In one embodiment, substrate 31 has a diameter of approximately 5 mm and a thickness of 0.14 mm. The diameter can vary depending on the size of the reactor, with the range from 2 mm to about 8 mm with allowances outside of that range. Similarly, the thickness of the substrate can vary from about 0.05 to about 0.25 mm with variances outside of that range.
The sample is heated by first and second laser beams 37, 39 impinging upon the sample from opposing sides of reactor 30. Actually both the sample and the substrate are heated because the sample rests on the substrate and the temperature sensed by thermocouple 33a is the temperature of substrate 31. The sample's temperature is the same as the substrate's temperature. A third laser beam 41 is focused onto the sample through top opening 34.
Other components in
The RHTR can operate in one of two modes to measure heat loss of a sample: a Direct Heating mode and a Heating Rate mode. The Direct Heating mode of thermal analysis, also referred to as the “direct-heating approach,” involves direct laser heating of the sample from a third diverted beam through opening 34 in the top of reactor 30 (see
Both approaches decouple experimentally the effects of a chemical heat release, and gas conductive (or convective) and radiative heat losses. The two approaches are equivalent and complement each other and improve the RHTR method's accuracy. Also some of the sample types, such as liquid fuels, can benefit from the ‘heating-rate approach’ versus the ‘direct-heating approach’. The second (heating rate approach) is also advantageous when determining thermophysical properties of solids such as absorptivity.
Substances that can be analyzed include solids, liquids, and various multiphase and multicomponent inhomogeneous substances. The sample is heated via radiative transport from the inside surface of the reactor sphere. Digital control of the laser intensity by means of the laser arc lamp current allows for programming of the desired steady state temperature and heating rate with a computer-controlled data acquisition and control system. This allows for rapid heating of the sample and investigation of processes such as high temperature decomposition and reaction chemistry. The high thermal conductivity of the copper sphere reactor, and the radiation heat transfer between the interior sphere surface and the sample within the sphere, results in a uniform sample temperature.
For example, the thermal conductivity and specific heat of copper are 4.01 W·cm−1·K−1 and 0.384 J·g−1·K−1, respectively. The uniformity in temperature of heating a millimeter-sized sample placed within the center of the sphere (over an area of approximately 78.5 mm2) is of the order of 1 K. (degrees Kelvin). This uniformity in sample temperature depends on the relative dimensions of the sample and reactor sphere, laser beam width, and reactor thermal conductivity. Also, since the temperature varies over the reactor surface, the distribution must be the same for different laser fluences to provide a uniform temperature distribution over the sample.
The uniform temperature distribution is achieved by using lens to focus the laser beams onto the same cross-sectional area of the reactor surface for different laser fluences. Heating rates on the order of several hundred degrees K/s can be achieved depending on the maximum achievable laser power and the sensitivity of the temperature sensor. The apparatus can analyze sample quantities from a few milligrams up to a few grams. The surrounding environment can handle a variety of gas compositions (e.g., oxidizing, humid, inert, mixtures), and gas gauge pressures (ranging between 10 Pa and 505 kPa).
The main mechanism of heat transfer in the reactor, at higher temperatures, is thermal radiation (see Table 1). Heat transfer due to gas conduction makes up a small portion of the total. Convective heat transfer is avoided by two means: using a low gas pressure (104 Pa instead of 105 Pa) and using a small reactor.
The theoretical model used to determine the heating value and reaction kinetics, as well as other thermophysical properties, is based on a representation of the heating process associated with the experimental arrangement described above for a given temperature and wavelength. The following thermal energy balance governs the heating process:
C
p
mdT/dt=P(Tr)−F(T,To)+msq(T) (A)
where the rate of change of internal energy is given by the term Cp m dT/dt on the left side of Eq. A; P(Tr) is the rate at which heat is transferred from the reactor at temperature Tr to the sample and substrate; and F(T, To) is the rate of heat loss from the sample; T is the sample/substrate temperature; Cp is the sample/substrate specific heat; m is the sample/substrate total initial mass; t is time and msq(T) is the heat release due to a chemical reaction.
The change in mass during thermal heating and chemical reaction is considered and accounted for in the determination of the energy release by weighing the sample initially and after heating. The heat transfer term F(T, To) depends on the sample shape and represents the sample heat losses due to conduction through the gaseous medium, conduction through the temperature sensor wires, and radiation (the main mode of heat transfer). Convection is assumed to be negligible inside the reactor due to its small size and the low gas pressure (Table 1). The parameter To is the sample temperature at steady state (see
The different regimes of the heating curve (see
Where: To, T are initial and changing temperatures in K; β(T,λ) is absorption coefficient which depends from temperature and spectrum (i.e., wavelength); Iλ is laser intensity for a given wavelength; Cp is heat capacity of the sample; m is mass of the sample; F(T,To) is a total heat transfer term which includes gas conductive and radiative mechanisms.
This heat loss parameter can be determined by heating by laser radiation separately at a constant reactor temperature, and then τ is measured directly as the relaxation/decay time of the sample's temperature. Temperature measurements and corresponding formulas are referenced in
T−T
o=(Tmax−To)exp(−t/τ) (4)
where Tmax is the maximum (steady-state) temperature due to heating of the sample directly through the top opening in the reactor at time to. At time t, this additional heating is turned off and the temperature of the sample with a substrate is relaxed to its previous equilibrium (steady-state) level To. For an accurate determination of a heat loss parameter (i.e., inverse relaxation time), additional heating should meet the following requirement: Tmax−To<<To. Tau (τ) is the temperature-dependent relaxation time to equilibrium, which may be defined in any infinitesimal time interval as:
τ(T)=t/ln [(Tmax−To)/(T−To)] (5)
Turning now to
The graph of
The temperature at which the sample reaches its first steady state is To; the temperature at which the sample reaches its second steady state is Tmax. The additional rise in sample temperature to reach the second steady state is represented by Tmax−To, and Tmax−To<<To. In other words, the slight rise in sample temperature due to the third beam heating to reach the second steady state condition is much less that the sample's rise in temperature to reach the first steady state condition.
In step 503, the reactor is heated with a laser power from two sides of the reactor to a temperature To. Even though the two opposing side heating is one alternative embodiment, this step is not so limited. The reactor can be heated in any manner until it reaches a steady state temperature of To. Next, the user simultaneously detects and registers the sample and reactor plots of temperature vs. time, i.e. the two thermograms, as in step 505. In one embodiment, this is done simultaneously, meaning that the thermograms are plotted as the graph data is generated.
In the next step 507, when the temperature reaches steady state temperature To, the sample is additionally heated by a third beam of the laser through an opening at the top of the reactor. This step is not so limited to what opening or what laser is used. The third beam could be generated by splitting an output beam from a laser using a splitter; or a separate laser could be used to generate the third beam. These are just two examples. Also the sample can be heated anew by any means, through any opening or apparatus associated with the reactor. It is a preferred arrangement however, that the third beam is either split off from an original laser beam or outputted from a separate laser and is focused downwardly onto the sample.
In step 509, the user selects the power of the third beam to be smaller than the laser power used to heat the reactor and sample to the first steady state temperature To. To illustrate, a typical laser power for heating the reactor may be 100 W (watts) with the laser power directed to the sample to reach the second steady state temperature may be 1 W—see Tmax in
In step 511, the system detects and registers the additional temperature increase of the sample until it reaches a second steady state condition, i.e. where the temperature levels off and stops increasing with the passage of time. This additional temperature increase is indicated as Tmax−To in
In the next step 513, the heat loss parameter and To are calculated based on equations 5 and 6, which are:
The method is then repeated for a different reactor temperature To and the heat loss parameter is again calculated, by going back to step 503 and repeating it and its following steps again.
This method provides additional measurement for the heat loss parameter independent of probing lasers and improves the accuracy through a combination with the first direct method and also allows using samples which are only liquids, e.g., fuels. Assume the reactor temperature Tr, is constant, the sample temperature is T, and it is differing from its ultimate equilibrium value, To. The process of sample temperature evolution is given by the equation:
Tau (τ) may be defined in any infinitesimal time interval as:
τ(T)=CpmdT/dF(T,To) (7)
On the basis of two measurements/runs of the temperatures of the reactor and the substrate with a sample, and with reference to
where T1 and T2 are sample temperatures for two different heating rates (1 and 2) resulting in these temperatures, and (dT1)/dt, (dT2)/dt, are their derivatives. The method is represented by equations (8) and (9) and is referred to as the “heating-rate approach”.
The user first heats the reactor twice, that is, runs a Run1 and a Run2 with two different laser powers. This will produce graphs similar to those shown in
The method is then repeated for a different reactor temperature Tr and the heat loss parameter is again calculated, by going back to step 709 and repeating it and its following steps again.
The methods are independent and can improve a confidence level of the measurement. For example, if the level of uncertainty, u1 for the first approach is about 15% and for the second approach u2 is also about 15% then the total uncertainty can be determined as =u1×u2=0.15×0.15=0.02 thus improving the combined confidence level of the measurement to 98%. As is seen from
A new method of measuring and determining a heat transfer parameter has been devised by combining two independent methods or approaches and this is found to achieve a higher accuracy of measurement than either approach alone.
The first approach is direct-heating, based on increasing the equilibrium temperature and determining the heat transfer parameter based on, the temperature relaxation back to equilibrium level (steady state, see
The two approaches determine the same heat transfer parameter from a higher (due to direct heating) temperature region than the equilibrium temperature region, and from a lower (due to time-lagging) temperature region. See
It is understood that a laser parameter can be expressed in terms of a laser's wavelength or frequency. Since a laser emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation, the equation that relates wavelength and frequency for electromagnetic waves as in a laser is: v=c where X is the wavelength, v is the frequency and c is the speed of light. In discussions that follow, this laser parameter is mainly expressed in terms of wavelength.
Continued research has discovered advantages in using a number of different laser wavelengths as probing beams. Absorption and heat release of materials occur at different frequencies, similar to resonant frequencies of the material. Therefore using a laser at one frequency may miss the complete picture of thermal analysis for any given material, be it a solid or fluid. Combining multiple lasers or using multiple lasers both independently and together to measure absorption coefficient at a specific wavelength gives a more complete analysis. The integrated values of multiple wavelengths, based on combined wavelengths, represents closer to real-word conditions and hence gives a better picture of a material's thermal behavior.
Lasers are characterized according to their wavelength in a vacuum. A “single wavelength” laser produces radiation with a laser beam at a certain frequency. The laser beam can have more than one polarization and can be a continuous beam or a pulsed beam. The pulsed beam can have a variable pulse width and variable duty cycle that are predetermined in any RHTR use. A laser can comprise one or multiple wavelengths output, or alternatively, multiple lasers can be used to produce RHTR heating beams of multiple wavelengths. One can modulate the laser beam at a frequency to achieve a desired result, such as for an adjustment of the laser's average power or for filtering and obtaining a noise reduction in the processing procedures performed on the compiled data.
A laser's electromagnetic radiation (EMR) refers to the waves (or their quanta, photons) of the electromagnetic field that a laser beam causes to propagate carrying energy in the form of light photons having certain characteristics, such as being a laser beam of a certain wavelength. In the infrared range, one effect of EMR on materials is the heating caused from the combined energy transfer of many photons.
Consequently in one embodiment, a RHTR uses one or more lasers to produce one or more laser beam of multiple wavelengths and possible having at least one of: different polarizations; one, or a mixture, of a continuous and pulsed laser in the one or more laser beams; the different laser wavelengths being emitted simultaneously, or consecutive, or in a whatever predetermined sequence in heating the reactor and sample and/or in directly heating the sample.
Referring to
The system uses a 3-to-1 beam fiber optic beam coupling system to have multiple laser inputs with one output for the third beam application for heating the sample from the top opening of the reactor. This measures the sample's absorptivity for different laser wavelengths and powers. This method has enabled RHTR to fine-tune power vs wavelength distribution/ratio to eliminate negative effects of absorption ‘enhancement’ and/or ‘shadowing’ phenomena, thus creating a method which predicts a more accurate light absorption of aerosols in particular, as well as their impact on climate change. Use of the multi-probe system, although explained with reference to environmental aerosols, is not so limited, and can be used with any type of thermal analysis of a material or substance (the two words used interchangeably herein).
With reference now to
Two thermocouples are positioned inside the reactor for sensing and providing data output as to temperature inside the reactor. This is similar to the schematic diagram of the RHTR reactor shown in
A top opening 913 in the reactor receives a fiber optic cable for directing a third laser beam onto, and to heat, the substance being tested. In one embodiment, three lasers 915, 917, 919, each with a respective and different wavelength of λ1, λ2, λ3, are used as the third beam. While three lasers are described in this embodiment, any number of lasers can be used with any respective wavelengths λ. These lasers are also referred to as three laser heads meaning the output port of the laser which is its “laser head.” The laser itself contains an optical setup and laser resonator for forming the outputted laser beam at the laser head, A laser control 921 controls each laser, such as its power output, its wavelength, its timing and any other laser parameters.
A fiber-optical beam delivery system 923 receives each laser beam as inputs and delivers an output laser beam in a predefined format. The three beams can be combined so that a single combined laser beam comprising three different wavelengths is delivered onto the sample in the reactor. Alternatively, any one of the three beams can be delivered independently, and any of the three beams can be combined with another to deliver a single combined laser beam comprising two different wavelengths. In a preferred embodiment, fiber optic cable is used to route each laser beam from its respective laser head to the input at top opening 913 of reactor 903. However other types of routing systems can be used, such as a reflective mirror arrangement, for directing the laser beam to its target.
This approach of combining multiple laser heads, although described with respect to the third laser beam directed from the top of the reactor to the sample, can be applied as well to the opposing sides, two laser beams 909, 911. Beams 909, 911, can therefore be formed from a single laser head, or from a combination of two or more laser heads, as just described with respect to the third beam delivered into the reactor.
Direct Laser Delivery without Mirrors
Although the beam delivery system of using mirrors to reflect the laser beams at multiple points worked to improve thermal analysis techniques, it does have the drawbacks of being time-consuming to set up and delicate to orient due to the precision required in the mirror positioning, the imperfect mirror surfaces and it being subjected to movement from surroundings, vibrations and the like. In other words, in setting up the mirrored laser delivery system, it is akin to setting up a long row of dominos. One small misplacement or unintentional movement along the way and the chain that forms the delivery system can be adversely affected.
To overcome these drawbacks, a direct delivery has been developed that uses fiber optic cable throughout to have a laser delivery system without the use of mirrors, or any reflectivity of any kind. The ability to eliminate the reflective surfaces is significant because surface imperfections of mirrors and the reflection itself, causes a loss of energy in the laser of from 3% to 5% typically. For example, a mirror may be rated as 96% reflective, depending on the smoothness of its surface and possibly other factors. Multiple reflection surfaces in the delivery chain will multiply this 3-5% energy loss accordingly. Regarding laser loss from mirror reflection, see e.g., Marcuse, D. (1989), “Reflection loss of laser mode from tilted end mirror,” in Journal of Lightwave Technology, vol. 7, no. 2, pp. 336-339, February 1989, herein incorporated by reference in its entirety.
Referring again to
The effects of a laser's EMR across the infrared spectrum upon chemical compounds and biological specimens depend both upon the radiation's power and its frequency. The importance of the heating laser's wavelength in TR measurements has not in the prior art been given the attention it deserves. A material's frequency of absorbed photons is called its resonance frequency. Biological samples have resonant frequencies, and in the development of explosive detection especially, various detecting methods have been classified, one being a resonance frequency shift measurement. Determining a material's resonance frequency allows the user to detect a triggering event that might be missed if the measurement were made at a different wavelength well beyond the material's resonant frequency.
By scanning a predefined wavelength range, maximum and minimum absorption signals, for example, can be detected for materials covering a range of wavelengths. A scanning laser can measure specific patterns given off by hot gases over the infrared spectral band. A wavelength (frequency) response curve can thus be generated with a scanning laser.
This feature is an analytical tool for TR for probing the information of chemical composites by measuring characteristics of a sample, and particularly detecting both high temperature and specific frequency triggering events, by use of a scanning laser that applies a laser beam comprising a continuous scanning function over a predetermined range of frequencies, or spectral band. The laser thus scans the material for one or more of the material's resonance frequencies. This makes it possible to determine the frequency response of a material based on its composition.
The frequency response produces resonance indicators, that is, indicators of a triggering event at a certain frequency for that certain composite material. A database can then be compiled storing this information for a large host of material composites. Another beneficial feature is that the results obtained make it possible to optimize the resonant behavior of a particular compound, or to form a compound having a desired thermal response behavior, with a triggering frequency as a factor, be it to detect or to fabricate an explosive reaction, as just one example.
A multi-sample measurement system design with rotating platform and baseline sample is presented in
The design allows for a mobile TR that can rapidly conduct TR on multiple samples without undue time spent in having to remove one sample from the reactor and replace it with a different sample. This is a driving need especially in mobile “field” applications. An accompanying need was for a miniaturized RHTR device that can be integrated on an airplane or an unmanned aerial vehicle (UAV) platform and will meet space, weight, and power requirements.
Industries, government agencies such as the National Aeronautics and Space Administration (NASA) and other entities interested in thermal analysis of environmental factors refer to what are called Climate Change Mathematical Models. In relating this to the environment, these models use absorption properties of aerosols to assess the aerosols' impact on climate.
Platform 103 is rotatable so to position any one of the plurality of recesses, together supporting a plurality of samples, at a predetermined location. Platform can be held in place mechanically by a notch in the rotating structure or other convenient mechanism. Details for such a rotating platform or device that can be set at one of the multiple rotated positions are well known, and for this reasons those details for the rotation are not given here. Platform 103 can be rotated in either the clockwise or counter-clockwise direction as a matter of design choice, with the arrows indicating it has a counter-clockwise rotation in the drawing. Movement of platform 103 can be done manually or by mechanical or electronic control, using also well-known structures that also are not further described here.
A laser beam delivery system is in communication with rotating sampling system 101. In one embodiment, a laser beam 109 of three different wavelengths 111, λ1 λ2 and λ3, is used as the heating source and is inputted through a channel 113 for focusing laser beam 109 onto a sample being tested held in recess 115. An air flow input 117 is connected into a side of channel 113 to enable an air flow into the path with the channeled laser beam 109. The air establishes the environment in which the sample measurements are taken. Instead of air, any other gas or fluid could be injected into the environmental enclosure in which the rotating sampling system is located.
The path now of air flow 117 and laser beam 109 is focused downward so the laser beam as merged with the air flow is directed to the top of the sample in recess 115 for heating the sample. The heating is controlled by a control system (not shown) connected to a laser system from which laser beam 109 is emitted.
In this embodiment, the rotating sampling system contains samples of filters with an aerosol collection on each filter from collection during a flight of a manned or unmanned vehicle on which the filter was exposed to capture aerosols in the atmosphere. The aerosols undergo a thermal analysis in a rapid manner by use of the rotating platform. This makes it unnecessary to go inside the reactor after each test to replace and set up again the TR system. Instead, after measurements are conducted on a first aerosol sample, platform 103 is rotated and a new TR analysis is commenced on a second aerosol sample. This continues until all the samples in rotating platform 103 have been tested, depending on the number of recesses on platform 103.
The entire system can be appropriately enclosed by an environmental enclosure 119. Environment enclosure 109 makes this compact unit into a reactor. The enclosure would have appropriate openings for the laser beam/air or gas intake and for the thermocouple 107's output. The small, compact size with the rotating multi-sample measurement system make this unit ideal for on-site TA measurements, such as while in an airplane at the same time that one or more filters are collecting atmospheric aerosols.
In the embodiments of
Rotating Reactor with Selected Material for Uniform Heating
It has been shown that by using inventive features of the RHTA methods, rapid and accurate analysis of thermal behavior of materials can be obtained by subjecting samples to rapid, high temperature measurements. However, a limitation encountered during the research and experimentation in developing the RHTR systems was the material of the reactor. The basic requirement for a material for building the reactor with is a high thermal conductivity, to achieve uniform heating, and a high melting point given that at least two laser beams are impinging directly onto the material. Yet, there is a tradeoff between high thermal conductivity and low melting points.
Copper, for example, is a good conductor of heat but it has a melting point of only about 1,000 deg. On the other hand, aluminum oxide, Al2O3, in the class of ceramics, while not being as good a conductor and not a uniform distributor of heat, does has a melting point of 3,762° F. (2,072° C.). It is desirable to make use of the high melting point of Al2O3 and in pursuing efforts to seek a solution; the inventor discovered that heat can be distributed throughout the Al2O3 by adding a rotation of the reactor during the heating process. This is consistent with a theoretical approach to this situation.
Working with different reactive samples and corrosive environments requires more resistant reactor materials which can be heated uniformly. Below is the technical approach and methodology to achieve the objective. A simplified heat diffusion equation (see F. P. Incropera, D. P. DeWitt, Fundamentals of Heat Transfer, 1981) is:
Material thermal diffusivity K (not to be confused with “K” Kelvin degrees) is defined as K=k/(ρ Cp), where k is material thermal conductivity (W/(m·K)), ρ is density (kg/m3), and Cp is specific heat capacity (J/(kg·K)). Term (ρ Cp) is considered the volumetric heat capacity (J/(m3·K)). Thermal diffusivity is the thermophysical property that defines the speed of heat propagation by conduction during changes of temperature.
Thermal diffusivity is the ratio of the time derivative of temperature and temperature gradient and it quantifies the rate at which temperature distribution becomes uniform (“smoothed out”). Thermal diffusivity is also the measure of thermal inertia. In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity. Thus the thermal diffusivity is a more accurate measure for characterizing non-isothermal regimes because it is related to the thermal conductivity, specific heat capacity and density.
The inventor in his estimates uses the thermal diffusivity vs. thermal conduction as a measure of how fast the heat propagates in a material. In specific cases (see Table 2 and
Table 2 presents a selection of different reactor materials that balance RHTR test competing requirements. Benefits of these materials are: rapid heating, uniform and higher temperatures, resistance to attacks by all common reagents and they can be tested in both oxidizing and reducing atmospheres. For instance Al2O3 (alumina) can be a choice with a rotating reactor. It absorbs 1.06 μm of a laser beam and is usable in both oxidizing and reducing atmospheres up-to 2000° C.
A typical rotation frequency is 1 Hz, or in a range of from 0.5-3 Hertz, to gain the necessary degree of heat conduction throughout a reactor constructed of an Al2O3 ceramic.
As a result of repeated TA processes, the RHTR reactor's outer surface becomes covered with a copper oxide that, detrimentally, absorbs the laser beam. In the course of using the RHTR and its methods, it was observed that after a series of thermal analysis runs, at times the baseline had changed. The baseline is the thermogram of the reactor with only the substrate, and no sample, inside. Upon further investigation of this changing baseline, and after conducting more laboratory tests, the inventor eventually discovered that the results with fuels indicated that the modification of the baseline is attributed to the copper oxide residue that builds up on the reactor sphere's outer and inner surfaces and on the surface of the substrate after completion of a number of thermal measurements runs. Of course a changed baseline, i.e. an inaccurate and inconsistent baseline, negatively affects the entire data compilation process. Thus, a significant improvement for greater precision and accuracy of the measurements is the realization that the sphere must be restored (re-oxidized) in air using the laser prior to any sample or baseline measurement.
The novel process of re-oxidizing applies to both the reactor's (1) inner surface, and (2) outer surface. However, because a major focus of concern is about laser absorption by copper oxide, an emphasis in the re-oxidizing is on the outer surface.
As to observable colors, copper oxide CuO is dark gray, with higher laser absorption. Cupric oxide Cu2O is reddish, with lower laser absorption. The reddish color occurs due to the interaction the reactor has with some corrosive materials e.g. ammonium nitrate, so it is necessary for accuracy to re-oxidize any reddish surface back to copper oxide i.e., CuO with the dark gray color.
With reference to
When the sphere's outer surface is not re-oxidized back to CuO (so to have a dark grey appearance), this adversely affects (e.g., changes the laser power absorption by the reactor surface) any measurement carried out. If the oxide layer changes to Cu2O (with a reddish appearance), then the thermal behavior of the sphere changes in a similar manner to reducing the laser power. Formation of CuO occurs between 673 K and 973 K with Cu2O appearing at higher temperatures and often in the presence of a corrosive material, such as ammonium nitrate. Thus, accuracy of the determination of the sample's thermal behavior (e.g., exothermic, endothermic) may be affected by its dependence on the temperature difference between the sample and the baseline thermograms. One must therefore ensure that the sphere is pre-oxidized before each measurement to remove any residue on the sphere and substrate surfaces, as well as reform the CuO layer on the outer sphere surface. This was the case in these experiments, for which the sphere surface was reheated to 773 K and re-oxidized at ambient conditions.
Activity in the thermal analysis of materials as discussed herein is increasingly out of the laboratory and on-site or on-location. Examples are in conducting measurements on atmospheric aerosols captured by aircraft, on biological species at biotech facilities that do not have the thermo analysis equipment setup, and at offices or government agencies where potentially explosive materials are brought in. Handicapping this need for a mobile TA system, among other things, has been the use of mirrors in heating delivery systems, where mirrors are delicate and are subject to detrimental vibration and impurities on the reflecting surfaces, all of which goes to require that such mirrored systems be set up for permanent use in a laboratory.
Now however, with inventive features presented herein for the RHTR system, a mobile RHTR has been developed for carrying in a suitcase with quick setup, installation and use, and disassembly at a mobile location, such as in a moving vehicle, or in an office or other facility where measurements on samples are to be made, other than in a TA laboratory. The size of the reactor, as in
This novel development of portability of a thermal analysis reactor system represents a major breakthrough in the industry and offers a more expansive use of thermal analysis to meet emerging needs in government and industry for a rapid, accurate, and yes mobile, thermal analysis reactor system.
A waste material is used in this comparison test. In the real world, when waste is accumulated, an organic material or perhaps sodium nitrate is put on top of the waste to mitigate certain corrosive effects. The waste material used in this exemplary test is actually associated with a nuclear waste. For safety and other factors, the test should not be done on the nuclear side, so we used just the chemical stimulant to look for the energy that might be contained therein. Over years of storage, a certain composition evolves in the material. In this example, under a composition analysis after years of storage, the waste under examination was found to consist of 24 different compounds, including organics, solvents, sodium nitrate, sodium nitrite, additives, and inorganics. These are as listed in Table 3.
The importance of knowing the energy contained in a material at a given temperature is of critical importance. One example of the sort of problem being where is the concern of would happen if lighting were to strike an underground storage tank. This concern applies as well to other situations, such as involving above-ground tanks and strikes other than from lighting. In the event of any such interaction, a run-away explosive type of process might occur because the substances have an organic material or an oxidizers or the like; hence, there is concern that something can explode and release nuclear materials in the surrounding environment. The crux of this scenario is that the explosion would occur due to, or with, a very rapid increase in temperature. Yet this is not detectable by conventional methods such as DSC because they are not designed for rapid and extreme temperature changes. Just the opposite, most conventional thermoanalysis is based on a constant or small change of temperature, unlike occurrences that happen in the real world.
Prior to conducting the test, the reactor sphere was restored (re-oxidized) in air using the laser prior to any sample or baseline measurement. This re-oxidization, as discussed above, insured more accurate measurements by removing any residue on the sphere and substrate surfaces, and by reforming the CuO layer on the outer sphere surface. Measurements were then taken to generate thermograms as described earlier. Results were compared between the simulant untreated waste and a sample of the waste pre-dried in a vacuum oven at room temperature for two days. The RHTR measurements were carried out at different heating rates and steady state sample temperatures.
The object was to find out how much energy exists in this mixture of the 24 different compounds. The DSC results indicated no exothermal energy release. This is shown in
Measurements were carried out in the RHTR system at a laser heating rate between 30 deg. K/s and 40 deg. K/s, as shown by graph line 1305 in
Contrary to the DSC method that showed no exothermal energy release, the RHTR method produced results show an exothermic release of energy (heat release) of 3 megajoules per kilogram (MJ/kg). Significantly, the RHTR study uncovered that competing endothermic (decomposition) and exothermic (explosive) processes were present; (More detail with plotted graphs on this is presented in
Results from
Results from
The equilibrium point or steady state is seen to be a little different for the two samples, with the untreated waste's equilibrium at about 940 deg. K and the treated waste's equilibrium a little less at about 880 deg. K.
Thus by the RHTR being pre-oxidized at the start (pre-oxidized and re-oxidized used interchangeably herein) and by using a rapid temperature rise from the optic cable delivery system with a single or multi-wavelength laser system, the change in temperature moves faster. Measurements from the graphs of
In
Criminals and terrorist groups use HMEs because of the widespread availability of the required chemicals. Reliance on easy accessibility of the precursor compounds means HME mixtures differ widely in their chemical composition and formulation/synthesis procedures. This variability presents a formidable challenge for forensic processing and analysis. Currently, the forensic examination of the pre-/post-blast physical evidence lacks specificity for HME identification.
RHTR provides in-situ quantitative measurement of various relevant thermophysical and chemical properties with greater speed and accuracy, including the sample's temporally resolved thermograms. As indicated, DSC and other conventional thermal analysis techniques (e.g., differential thermal analysis, DTA) are appropriate for temperature levels up to 800 K and heating rates up to 0.1 K/s. For improvised explosive mixtures applications, due to the low heating rates of conventional methods, chemical processes detrimental to the sample might occur before the desired temperature level is achieved. The recorded data are therefore not representative of the thermal behavior of the sample at actual process conditions, skewing the analysis. Also, conventional methods do not directly account for the heat transfer (thermal loss) from tested samples, significantly affecting the accuracy of the data. Conventional techniques have been found to mask thermal characteristics that occur at higher-temperatures, and non-equilibrium situations (i.e., an explosion), because of material decomposition. Instead, high heating rates must be used to reach the required temperatures before detrimental material decomposition and potential chemical reactions can occur.
RHTR measurements were carried out with the most commonly used homemade explosive (HME) materials, i.e., ammonium nitrate/nitromethane and ammonium nitrate/No. 2 diesel fuel oil, for different compositions, initial masses, and steady-state temperatures, along with the effects associated with HME aging.
In
Conclusions from
Table 4 presents calculated changes in enthalpy for some known ammonium nitrate chemical reactions during thermal decomposition. The RHTR measured value for ammonium nitrate thermal decomposition is 2.1 kJ·g-1.
It has been shown that the RHTR heating rate is about 200 times faster than the DSC and differential thermal analysis (DTA) approaches (see
The data thus establishes RHTR to be a valuable diagnostic tool for characterizing the thermal and chemical behavior of HME materials. Results are summarized as follows:
1. The thermograms for the mixed ANNM were different than the individual components, indicating a sensitivity of the RHTR technique to varying HME composition. The signatures also varied for different operating conditions (steady-state temperature, sample mass and fuel/mixture mass fraction). Choosing the temperature-time derivative of the thermal-signature curves is useful in augmenting changes in ANNM thermogram features.
2. One can better define mixture preparation conditions (i.e., over what period of time must HME mixtures be prepared) by investigating the liquid vaporization effects on sample mass, which is important information for HME forensics analysis.
3. RHTR measurements with ANFO also demonstrated sensitivity of the technique to fuel hydrocarbon volatility. Considering the preferential vaporization (i.e., evaporation of the more-volatile lighter hydrocarbon fractions at a faster rate than the heavier fractions due to their higher vapor pressure) of ANFO hydrocarbon fractions, sample aging reduces the probability of ignition/reaction, thus reducing HME explosive capability. By monitoring changes in fuel mass due to evaporation, one can better define the mixture preparation conditions (i.e., over what period of time must HME mixtures be prepared). Such information is important for HME forensics analysis.
The Climate Change Mathematical Models used by government agencies and industries use absorption properties of aerosols to assess their (i.e., the aerosols') impact on climate. Absorptivity measurements in the infrared range with the RHTR at ambient (laboratory) conditions were carried out on particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign.
The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the RHTR approach, and compare results with other commercially available instrumentation (e.g., Particle Soot/Absorption Photometer (PSAP)). Advantages of the RHTR approach include 1) measurement of material absorption directly, 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing).
For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient.
For this investigation, RHTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The RHTR absorbance compared well with results from both the PSAP (Table 5). The theoretical analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and intensified with decreased filter particle loading.
‡The results reported from the PSAP are the corrected values.
The RHTR was used to characterize Standard Reference Material (SRM) diesel and biodiesel fuels, as well as a prototype biodiesel fuel, Various issues were associated with carrying out these measurements under different operating conditions (i.e., temperature, pressure, heating rate, and sample mass). The technique provides measurement of various relevant thermochemical characteristics; for this investigation the focus was on the sample endothermic/exothermic behavior, specific heat release rate and total specific heat release.
Results indicated that the modification of the baseline is attributed to residue remaining after completion of reactions and a change in the oxide layer of the reactor sphere outer surface. Thus, the sphere must be pre-oxidized in air using the laser prior to any sample or baseline measurement. This investigation provides a preliminary evaluation of SRM biodiesel fuels, with the results being consistent with distillation curve work reported in the literature. A laser-heating technique was used to investigate the thermochemical behavior of two soybean-based biodiesel fuels and an ultra-low-sulfur diesel fuel. The results indicated that the RHTR thermograms were different for the fuels investigated, as well as their exothermic behavior. The thermal behavior and energy release of each fuel was dependent on the preferential vaporization of the volatile fuel fractions (see
A change in the baseline (after reaction of the sample) was attributed to deposition of condensable vapor and coating of unreacted residue on the reactor and substrate surfaces, and a change in the oxide layer on the reactor sphere outer surface, which affected measurement uncertainty. Nevertheless, the results remained consistent with distillation curve work reported in the literature. This study demonstrates that the RHTR can provide useful information regarding biodiesel fuel thermochemical behavior at different temperatures.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/495,553, filed Sep. 19, 2016, herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62495553 | Sep 2016 | US |