This is a National Phase Application in the United States of International Patent Application No. PCT/JP02/08268 filed Aug. 14, 2002, which claims priority on Japanese Patent Application No. 246950/2001, filed Aug. 16, 2001. The entire disclosures of the above patent applications are hereby incorporated by reference.
1. Technical Field of the Invention
The present invention relates to a rapid prototyping method and apparatus using V-CAD data, which can store entity data combining a shape and a physical property with a small storage capacity.
2. Description of the Related Art
The rapid prototyping is also referred to as a photo-solidification modeling method or stereolithography, and generally creates a three-dimensional object by solidifying a photo-curing resin with light.
The above-described rapid prototyping is characterized in that a three-dimensional object can be created from the CAD data without using a mold, and used in many fields such as production of a master model for precision casting or the like, manufacture of a map or a stereo object and others.
However, the above-described conventional rapid prototyping has a problem that not only steps on the surface of a finished three-dimensional object become large when a slice pitch of the model is roughened but production requires more than several days. Further, on the contrary, when the slice pitch is set small and the solidified layer per one process is thinned in order to increase the precision of the object to be created, not only a program for the rapid prototyping is complicated but introducing of the uncured liquid becomes difficult due to surface tension, and the recoating time becomes long or a remaining surface of recoat is generated.
On the other hand, the inventors of the present invention and others invented and filed a “method of storing entity data” by which entity data combining a shape and a physical property with a small storage capacity (Japanese Patent Application No. 025023/2001, not laid-open).
This method of storing entity data divides external data consisting of boundary data of an object into rectangular parallelepiped internal cells and boundary cells having boundary planes orthogonal to each other in accordance with octree (oct-tree) division, and stores various physical properties for the respective cells. By this method, a shape, a structure, physical information and history of an object can be managed in an integrated fashion, data concerning a series of processes such as design, processing, assembling, test, evaluation and others can be managed with the same data, and CAD and simulation can be integrated. It is to be noted that the entity data combining the shape and the physical property is referred to as “V-CAD data”.
The present invention has been contrived in order to solve the above-described problems by using this method. That is, it is an object of the present invention to provide a rapid prototyping method and apparatus which can simplify a program for rapid prototyping and greatly reduce a model production time.
According to the present invention, there is provided a rapid prototyping method using V-CAD data, comprising the steps of: preparing V-CAD data by dividing external data (12) consisting of boundary data of an object (1) into rectangular parallelepiped cells (13) having boundary planes orthogonal to each other in accordance with octree division and separating the respective divided cells into internal cells (13a) positioned on the inner side of the object and boundary cells (13b) including a boundary face; and changing a modeling unit quantity of a prototyping material (7) in accordance with sizes of the internal cell (13a) and the boundary cell (13b) of a modeling portion.
According to a preferred embodiment of the present invention, the prototyping material (7) is a resin, lumber powder, low-fusing-point powder, metal power, ceramics power, or a mixture of a binder and one of these materials. Furthermore, the modeling unit quantity of the prototyping material (7) is set in such a manner that the modeling unit quantity is smaller than a capacity of a corresponding cell and does not protrude from the boundary plane of the cell.
Moreover, according to the present invention, there is provided a rapid prototyping apparatus using V-CAD data, comprising: a storage device (22) which stores V-CAD data obtained by dividing external data (12) consisting of boundary data of an object (1) into rectangular parallelepiped cells (13) having boundary planes orthogonal to each other in accordance with octree division and separating the respective divided cells into internal cells (13a) positioned on the inner side of the object and boundary cells (13b) including a boundary face; a data generation program (24) which generates a program for manufacturing the object from the V-CAD data by rapid prototyping; a material supply device (26) which supplies a prototyping material (5) while changing its modeling unit quantity in accordance with sizes of the internal cell (13a) and the boundary cell (13b) of a modeling portion; and an NC control device (28) which controls the material supply device based on the data generation program.
According to the method and apparatus of the present invention mentioned above, since the V-CAD data is stored, which is obtained by dividing the external data (12) of the object (1) into rectangular parallelepiped cells (13) having boundary planes orthogonal to each other in accordance with octree division and separating the respective divided cells into the internal cells (13a) positioned on the inner side of the object and the boundary cells (13b) including the boundary face, the external data (12) can be stored by using a small storage capacity as a hierarchy of the cells.
In addition, since the program for manufacturing the object by rapid prototyping is generated based on the V-CAD data, the program can be simplified. Additionally, since the modeling unit quantity of the prototyping material (7) is changed in accordance with sizes of the cells (13a and 13b) of the object (modeling portion), the material is laminated so as not to protrude from the boundary planes of the cells with a relatively large agglomerate of the material which substantially corresponds to a capacity of each cell being determined as a modeling unit. Therefore, the number of all cells is small, and the number of laminations is thus small, thereby greatly reducing the model production time.
Other objects and advantageous features of the present invention will be apparent from the following description in conjunction with the accompanying drawings.
A preferred embodiment according to the present invention will now be described hereinafter with reference to the accompanying drawings.
The storage device 22 stores the V-CAD data 14. This V-CAD data 14 is obtained by dividing external data 12 consisting of boundary data of an object 1 into rectangular parallelepiped cells 13 having boundary planes orthogonal to each other in accordance with octree division and separating the respective divided cells into internal cells 13a positioned on the inner side of the object and boundary cells 13b including a boundary face.
The data generation program 24 generates a program used to manufacture an object from the V-CAD data 14 by rapid prototyping.
The material supply device 26 changes a modeling unit quantity of the prototyping material 7 per cell in accordance with sizes of the internal cell 13a and the boundary cell 13b of a modeling portion and supplies this material thereby allowing the thickness of the prototyping material to vary per cell. The prototyping material 7 is a conventional photo-curing resin, resin or lumber powder including a binder, a low-fusing-point metal (for example, a soldering material), metal powder including a binder, ceramics powder including a binder or the like, and a predetermined modeling unit quantity of the prototyping material is supplied and solidified.
The predetermined modeling unit quantity of the prototyping material 7 is set to a plurality of types in accordance with capacities of the cells in the V-CAD data 14. This modeling unit quantity is set to be smaller than the capacity of the cell in such a manner that the material substantially fills a corresponding cell and does not protrude from the boundary plane of the cell when laminated as shown in
Additionally, it is preferable that a shape of the prototyping material 7 to be supplied is a sphere or a cube so as to facilitate formation of a desired cubic shape by lamination, and that deformation after supply is small.
The NC control device 28 performs, e.g., triaxial control of X, Y and Z over the material supply device 26 based on the data generation program, laminates the prototyping material 7 and manufactures the object 1 by rapid prototyping.
One space area divided by the space division based on octree is referred to as a cell 13. The cell is a rectangular parallelepiped having boundary planes orthogonal to each other. The areas occupying in the space are represented by a hierarchical structure based on the cells, the division number or a resolution. As a result, the object in the entire space is represented as superimposition of the cells having the different sizes.
That is, at the octree division step (B), the boundary and the inside physical property are converted into the following entity data 14 (V-CAD data) from the external data 12. The boundary data approximates exactly (for example, in case of a flat plane, it can be exactly reconfigured at three points included therein) or in a specified limit deviation tolerance (a position, a tangent line, a normal line and a curvature, and threshold values specified for the connectivity of them with the neighboring spaces).
A special case of an interpolation curve is a Marching Cube. In the present invention, subdivision is necessarily performed until expression at cut points on an edge line becomes possible and until the normal line or a main curvature and the continuity are satisfied. Furthermore, the surface of the second (quadratic) or lower order is exactly expressed, and a free-form surface is approximated by the surface in the cell based on the flat surface or the surface of the second order, thereby saving only a geometric inherent quantity.
That is, in the present invention, the modified octree is used in order to express the boundary cell 13b, cells which are completely included inside are constituted by the internal cells 13a (rectangular parallelepiped) having the maximum size, and cells including boundary information from the external data 12 are constituted as the boundary cells 13b. Each boundary cell 13b can be exactly or approximately replaced with cut points 15 (indicated by while circle in the drawing) on 12 edges lines in the three-dimensional expression or four edge lines in the two-dimensional expression.
The boundary cell 13b is subjected to octree division until the sufficient cut points 15 can be obtained, with which boundary shape elements constituting the boundaries included in the external data 12 can be reconfigured (exactly with respect to analytic surfaces such as a flat surface or a quadric surface, and approximately with respect to boundary shape elements which can be expressed by a free-form surface or a discrete point group).
For example, the space is hierarchically divided into eight parts until two points on one line segment become cut points 15 on the edge line of the cell in case of one line segment, until three points become the cut points in case of a flat surface, until three points become cut points in case of a quadratic curve, until four points become cut points in case of a quadratic surface, and until necessary and sufficient points and the edge line of the cell can be found in a defined range in cases where the expression of the external data is known with respect to each of a polynomial surface and a rational expression surface.
That is, division is carried out until a position to be subjected to subdivision satisfies a specified resolution at a boundary (surface) part or until a rate of change of a value of an analysis result (a stress, a distortion, a pressure, a flow velocity or the like) becomes lower than a specified threshold value.
Further, as to salient points 16 (indicated by black circles in the drawing) of the cell 13b including a plurality of the boundary shape elements, the boundary therein can be indirectly expressed as an intersecting line of the boundary expressed by the cut point 15 held by an adjacent boundary cell (which has the cut points sufficient for reconfiguration and is divided until the boundary elements completely come across), and hence subdivision is not carried out more than needs.
Therefore, the V-CAD data 14 becomes, as information concerning the shapes stored inside the cell, an index indicating a position of the cell, the division number or a resolution indicating a degree of detail in the hierarchy, a pointer indicating an adjacent cell, the number of cut points, coordinate values of the cut points and so on. Further, depending on use application, the V-CAD data 14 can become a normal line, a curvature or the like.
Furthermore, as the V-CAD, node information or values of the result are held in the form of Euler in the lowermost layer. How to determine a threshold value (limit deviation tolerance) concerning the continuity of each of a position of the boundary, a normal line, a tangent line and the curvature is defined in such a manner that the minimum resolution in subdivision becomes as large as possible.
In the method according to the present invention, the modeling unit quantity of the prototyping material 7 is changed in accordance with sizes of the internal cell 13a and the boundary cell 13b of the modeling portion and set in such a manner that the prototyping material 7 does not protrude from the boundary plane of a corresponding cell.
According to the method and the apparatus of the present invention mentioned above, since the V-CAD is stored, which is obtained by dividing the external data 12 of the object 1 into rectangular parallelepiped cells 13 having boundary planes orthogonal to each other in accordance with the octree division and separating the respective divided cells into the internal cells 13a positioned on the inner side of the object and the boundary cells 13b including the boundary face, the external data 12 can be stored with a small storage capacity as a hierarchy of the cells.
Furthermore, since the program used to manufacture the object by rapid prototyping is generated based on the V-CAD data, the program can be simplified. Moreover, since the modeling unit quantity of the prototyping material 7 is changed in accordance with sizes of the cells 13a and 13b of the object (modeling portion) and this material is laminated so as not to protrude from the boundary planes of the cells with a relatively large agglomerate of the material which substantially corresponds to a capacity of each cell being determined as a modeling unit, the number of all the cells is small and the number of laminations is thus small, thereby greatly reducing the model production time.
As described above, the rapid prototyping method and apparatus using the V-CAD data according to the present invention have the excellent advantages such as simplification of the program for rapid prototyping and great reduction in the model production time.
It is to be noted that the material to adhere for modeling may be caused to adhere in, e.g., the ink jet manner in order to avoid protrusion from the cell. Moreover, by selecting a material which is solidified in a relatively short time, it can be built up without flowing out after adhesion.
It is to be noted that the present invention has been described with reference to the several preferred embodiments but it can be understood that scope of the claims included in the present invention is not restricted to these embodiments. On the contrary, the scope of the claims of the present invention includes all improvements, modifications and equivalents included in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-246950 | Aug 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/08268 | 8/14/2002 | WO | 00 | 8/24/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/016031 | 2/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4092201 | Wommelsdorf | May 1978 | A |
4665492 | Masters | May 1987 | A |
4694404 | Meagher | Sep 1987 | A |
4710876 | Cline et al. | Dec 1987 | A |
4719585 | Cline et al. | Jan 1988 | A |
4729098 | Cline et al. | Mar 1988 | A |
5095419 | Seiki et al. | Mar 1992 | A |
5166876 | Cline et al. | Nov 1992 | A |
5197013 | Dundorf | Mar 1993 | A |
5303141 | Batchelder et al. | Apr 1994 | A |
5345490 | Finnigan et al. | Sep 1994 | A |
5510066 | Fink et al. | Apr 1996 | A |
5517602 | Natarajan | May 1996 | A |
5594652 | Penn et al. | Jan 1997 | A |
5748865 | Yamamoto et al. | May 1998 | A |
5796617 | St. Ville | Aug 1998 | A |
5807448 | Nakazawa | Sep 1998 | A |
6075538 | Shu et al. | Jun 2000 | A |
6136252 | Bedal et al. | Oct 2000 | A |
6208545 | Leedy | Mar 2001 | B1 |
6214279 | Yang et al. | Apr 2001 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6445390 | Aftosmis et al. | Sep 2002 | B1 |
6471800 | Jang et al. | Oct 2002 | B2 |
6504742 | Tran et al. | Jan 2003 | B1 |
6606528 | Hagmeier et al. | Aug 2003 | B1 |
6618607 | Song | Sep 2003 | B2 |
6627835 | Chung et al. | Sep 2003 | B1 |
6639597 | Zwicker et al. | Oct 2003 | B1 |
6643560 | Shimomura | Nov 2003 | B2 |
6968075 | Chang | Nov 2005 | B1 |
6982710 | Salomie | Jan 2006 | B2 |
7088363 | Kase et al. | Aug 2006 | B2 |
7110852 | Ohmori et al. | Sep 2006 | B2 |
20020004713 | Wakabayashi et al. | Jan 2002 | A1 |
20020055692 | Tanaka et al. | May 2002 | A1 |
20020113331 | Zhang et al. | Aug 2002 | A1 |
20030001836 | Ernst et al. | Jan 2003 | A1 |
20040267400 | Ohmori et al. | Dec 2004 | A1 |
20060228248 | Larsson | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
0 938 949 | Sep 1999 | EP |
1 229 463 | Aug 2002 | EP |
02-236677 | Sep 1990 | JP |
03-021432 | Jan 1991 | JP |
04-075850 | Mar 1992 | JP |
06-315849 | Nov 1994 | JP |
06-348862 | Dec 1994 | JP |
07-057089 | Mar 1995 | JP |
07-334541 | Dec 1995 | JP |
10-063873 | Mar 1998 | JP |
11-096400 | Apr 1999 | JP |
2000-182081 | Jun 2000 | JP |
2000-194881 | Jul 2000 | JP |
2000-340476 | Dec 2000 | JP |
2001-022961 | Jan 2001 | JP |
2001-025023 | Jan 2001 | JP |
2001-225393 | Aug 2001 | JP |
2001-370040 | Dec 2001 | JP |
2002-024306 | Jan 2002 | JP |
2002-230054 | Aug 2002 | JP |
0223408 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050015173 A1 | Jan 2005 | US |