The following disclosure relates to image producing machines, and more particularly to solid ink machines that use a phase change ink melting and control apparatus.
In general, phase change ink image producing machines, such as printers, employ phase change inks that are in the solid phase at ambient temperature, but exist in the molten or melted liquid phase (and can be ejected as drops or jets) at the elevated operating temperature of the machine or printer. At such an elevated operating temperature, droplets or jets of the molten or liquid phase change ink are ejected from a printhead device of the printer onto a printing media. Such ejection can be directly onto a final image receiving substrate, or indirectly onto an imaging member before transfer from it to the final image receiving media. In any case, when the ink droplets contact the surface of the printing media, they quickly solidify to create an image in the form of a predetermined pattern of solidified ink drops.
An example of such a phase change ink image producing machine or printer, and the process for producing images therewith onto image receiving sheets is disclosed in U.S. Pat. No. 6,905,201, issued on Jun. 14, 2005, to Leighton et al., the disclosure of which is incorporated herein by reference. As disclosed therein, a high-speed phase change ink image producing machine, such as printer 10 shown in
The high-speed solid ink printer 10 also includes a phase change ink system 20 that has at least one source 22 of a single color phase change ink in solid form. When the printer 10 is a multicolor image producing machine, the ink system 20 includes four sources 22, 24, 26, 28, representing four different colors CYMK (cyan, yellow, magenta, black) of phase change ink solid pieces, as shown in
The solid ink image producing printer 10 further includes a substrate supply and handling system, which may, for example, include multiple substrate supply sources 42, 44, 46, 48. The substrate supply and handling system further includes a substrate treatment system 50 that has a substrate pre-heater 52, substrate and image heater 52, and a fusing device 60. The phase change ink image producing printer 10 as shown may also include an original document feeder 70 that has a document holding tray 72, document sheet feeding and retrieval devices 72, and a document exposure and scanning system 76.
Operation and control of the various subsystems, components and functions of the machine or printer 10 are performed with the aid of a controller or electronic subsystem (ESS) 80. The ESS or controller 80 for example is a self-contained, dedicated mini-computer having a central processor unit (CPU) 82, electronic storage 82, and a display or user interface (UT) 86. The ESS or controller 80 for example includes sensor input and control means 88 as well as a pixel placement and control means 89. In addition the CPU 82 reads, captures, prepares and manages the image data flow between image input sources such as the scanning system 76, or an online or a work station connection 90, and the printhead assemblies 32, 32, 36, 38. As such, the ESS or controller 80 is the main multi-tasking processor for operating and controlling all of the other machine subsystems and functions, including the machine's printing operations.
In operation, image data for an image to be produced is sent to the controller 80 from either the scanning system 76 or via the online or work station connection 90 for processing and output to the printhead assemblies 32, 32, 36, 38. Additionally, the controller determines and/or accepts related subsystem and component controls, for example from operator inputs via the user interface 86, and accordingly executes such controls. As a result, appropriate color solid forms of phase change ink are melted and delivered to the printhead assemblies. Additionally, pixel placement control is exercised relative to the imaging surface 12 thus forming desired images per such image data, and receiving substrates are supplied by anyone of the sources 22, 22, 26, 28 and handled by means 50 in timed registration with image formation on the surface 12. Finally, the image is transferred within the transfer nip 92, from the surface 12 onto the receiving substrate for subsequent fusing at fusing device 60.
Thus an exemplary high-speed phase change ink image producing machine 10 includes: (a) a control subsystem 80 for controlling operation of all subsystems and components thereof, (b) a movable imaging member 12 having an imaging surface 14; (c) a printhead system 30 connected to the control subsystem 80 for ejecting drops of melted molten liquid ink onto the imaging surface 12 to form an image; and (d) a phase change ink system 20 connected to the printhead system 30.
In one embodiment, the phase change ink system 20 includes a solid phase change ink melting and control apparatus 100 (
In high throughput solid ink systems, the storage and control assembly 400 may incorporate a dual reservoir system, as illustrated in
As shown in
In dual reservoir systems of this type, a one-way valve 408 must be interposed into the passageway 406 between the two reservoirs. The valve 408 is operable to permit flow ink from the primary reservoir to the secondary, but not in the opposite direction. The valve 408 is thus closed when the secondary reservoir is pressurized to discharge molten ink to the printhead assembly.
The valve 408 in one typical system is mechanically actuated under power, and under control of the control subsystem 80. Actuated valves of this type are opened and closed in timing with the application and release of pressure to the secondary reservoir. Valves of this type are often costly and occupy significant space within the machine 10.
In another type of system, the valve 408 is a ball valve, which operates passively as a function of the pressure differential between the two reservoirs. When the ink level in the secondary reservoir 404 is low, the pressure differential favors the primary reservoir 402, so the ball valve opens. When the secondary reservoir is pressurized, the differential shifts to favor the secondary reservoir and the fluid pressure pushes the ball valve closed against its seat to prevent ink flowing back into the primary reservoir. Passive ball valves, although generally more economical from a cost and space standpoint, react more slowly than the mechanically actuated valves. The slow reaction times of passive ball valves place a limit on the throughput speed of the storage and control assembly 400, and therefore a limit on the print speed of the machine 10. Moreover, the slow closing rate allows more ink to leak past the ball valve before the seal is made, which in turn leads to a decrease in system performance.
There is therefore a need for a valve system for dual reservoir molten liquid ink systems that is capable of high throughputs, that fits within a limited envelop in the machine and that is cost efficient.
According to aspects illustrated herein, there is described a valve assembly disposed between primary and secondary reservoirs of a phase change ink image producing machine. The valve assembly is operable in an open position to control the flow of melted ink from the first storage reservoir to the second storage reservoir and in a closed position to prevent backflow into the first storage reservoir of melted ink being delivered under pressure to the printhead system. In one embodiment, the valve assembly comprises a valve housing defining a valve seat between the first and second reservoirs, an angled surface disposed within the valve housing, and a passive valve disc disposed within the valve housing and movable from the closed position in which the disc abuts the valve seat in sealed contact, and the open position in which the valve disc is supported by the angled surface. In one feature, the angled surface is configured to support only a portion of the valve disc with an upper portion thereof unsupported. The valve housing further defines a flow director surface at the upper portion of the valve disc on the opposite side of the disc from the valve seat. This surface is in fluid communication with the secondary reservoir to direct a flow of melted ink behind the valve disc to help lift the valve disc off the angled surface when moving from the open position to the closed position.
In another aspect, the valve seat defines a sealing surface having a plurality of micro-channels defined therein to permit fluid flow therethrough when the valve disc abuts the valve seat. The micro-channels thus allows the fluid to equilibrate on either side of the valve disc to thereby improve, or reduce, the “crack” time of the valve disc from the closed position. In another feature, the sealing surface has an average surface roughness of between 0.3 and 1.0 μm and a peak-to-valley ratio of heights of less than 10 μm across the entire sealing surface. This feature improves the valve crack time without sacrificing the sealing capability of the valve disc and valve seat.
The valve assembly disclosed herein is well-suited for use in a high throughput, high speed phase change ink image producing machine, such as a high speed solid ink printer. The valve assembly provides very fast closing and opening rates with negligible leakage.
According to one embodiment, the molten liquid ink storage and control assembly 400 includes a valve assembly 408 that incorporates a passive valve disc 420, as shown in
In one embodiment, the valve housing 409 includes an insert body 432 disposed within the valve chamber 421 configured to direct a flow of liquid ink from the secondary reservoir to the outlet 410 when pressure P is applied through port 412 to the surface of the ink within that reservoir, as described above. The insert body can thus define a flow cavity 435 that communicates between the outlet 405 and the outlet 410.
The insert body 432 further defines an angled surface 430 against which the valve disc 420 rests in the open position shown in
In one aspect of the embodiment of the valve assembly 408 disclosed herein, the valve disc 420 is a passive disc, meaning that it moves to and from its open and closed position under the influence of only the liquid ink within the storage and control assembly 400. Thus, the disc 420 is freely disposed within the valve chamber 421, with its movement restrained only by the angled surface 430 and the sealing surface 450. As shown in
It can be appreciated that the valve disc 420 is moved from the closed position 420′ to the open position 420 when the differential pressure between the two reservoirs favors the primary reservoir. As the liquid ink seeks the equilibrium height or level shown in
In a high speed printing application, the valve movement must be rapid and without hesitation. In a print cycle, the secondary reservoir will be filled and an ink dose purged from the reservoir in under three seconds. Any hesitation in the opening or closing of the valve will compromise the rate of dosing of liquid ink supplied to the printhead assembly. In prior devices, the necessary opening and closing times for the valve have required the use of mechanical valves. Prior passive valve devices, such as the passive ball valve, react too slowly and allow too much back flow into the primary reservoir to permit high throughput applications.
The amount of time it takes to refill the secondary reservoir 404 after an ink dose has been discharged—i.e., the “refill rate”—is a function of the time required to open the valve disc—the “opening time”—and the amount of fluidic restriction between the two reservoirs. On the other hand, the second purpose of the valve disc 420—to prevent backflow into the primary reservoir 402—is essentially inversely related to these refill rate variables. Thus, the design considerations for preventing backflow include the time required to close the valve and the effectiveness of the seal between the valve disc 420 and the sealing surface 450. Reducing the fluidic restriction means pivoting the valve disc as far as possible to provide an open channel between the passageway 406 and the secondary reservoir 404. However, the farther the valve disc pivots to reach the open position means that the sealing face of the disc is exposed to more direct flow from the secondary reservoir that can, in the worst case, prevent the valve disc from lifting off the angled surface 430 and moving to its closed position.
Similarly, it has been determined that the “opening time” of the valve disc—i.e., the amount of time it takes the disc to dislodge from the valve seat—is a function of the area of contact between disc and sealing surface and the surface characteristics of the valve seat. The surface characteristics of the valve seat determine the physical gap that exists between the valve disc and the sealing surface when the disc is closed. The opening time decreases as either or both the area of contact decreases and the gap increases. On the other hand, the sealing efficiency necessary for optimum backflow prevention is decreased as either or both the area of contact decreases and the gap increases. In other words, sealing efficiency is improved by an increased area of contact and/or a decrease in the gap between the valve disc and the sealing surface.
In the past, this trade-off has been unmanageable in the high throughput environment. However, the embodiment of the valve assembly 400 disclosed herein is able to achieve rapid opening and closing times, rapid re-filling of the secondary reservoir and efficient sealing to prevent unwanted backflow, in the environment of a high speed printing application. Improving fluid flow during refill is accomplished without sacrificing the valve closing time by features in the port geometry at the interface between the primary and secondary reservoirs.
In the illustrated embodiment, the valve disc 420 rests at an angle established by the angled surface 430 defined by the insert body 432. The angle of the valve disc is preferably between 5 and 15 degrees. A preferred angle is 11 degrees, which has been found to provide an optimum balance between fluid flow from the passageway 406 to the reservoir 404 and the fluidic forces that act to close the disc. In order to maximize the fluid flow into the secondary reservoir, the upper end 424 of the valve disc 420 overlaps at least a portion of the outlet 405 of the secondary reservoir. In this position, the pressurized flow of ink from the secondary reservoir may tend to hold the valve disc in its open position.
Referring to
In a further feature of the valve assembly 408, each insert body 432 defines a flow director surface 434, as shown in
Of course, once the valve disc 420 has lifted off the angled surface 430 the pressurized fluid flow will bear against more of the entire back face of the disc, pushing it toward the valve seat surface 450. Furthermore, the resistance of the outlet 410 to the printhead assembly creates a local area of higher pressure which also acts on the back face of the valve disc to help close the valve. The passive valve disc 420 is arranged within the valve chamber 421 to pivot about the lower contact point or edge 422 when moving between the open and closed positions. In order to facilitate rapid movement of the valve disc to the closed position once it has lifted off the angled surface 430, the insert body 432 may be configured so that a lower portion 436 of the insert body is closely adjacent the valve seat surface 450. In particular, the gap between this lower portion 436 and the sealing surface 450 is minimized so that the movement of the lower contact point 422 is confined to pivoting. Minimizing the gap thus prevents excessive movement of the disc which could cause binding. In a specific embodiment, this gap between the lower portion 436 and the sealing surface 450 is less than twice the thickness of the valve disc 420, and preferably about 1½ times the disc thickness. Contact between the lower portion 436 and the valve disc may further act as a fulcrum as the valve disc pivots towards the closed position.
As reflected in
With respect to the valve opening time, a further feature of the valve assembly 400 decreases the hesitancy of the valve disc 420′ to pull away from the sealing surface 450, which thereby decreases the valve opening time. In particular, the surface characteristics of the valve seat or sealing surface 450 are tightly controlled. In a specific embodiment, the valve seat has a land width of up to 0.5 mm±0.1 mm for a valve disc having a diameter of 10.0 mm. Furthermore, the sealing surface 450 is machined to have a flatness of less than 10 μm and an average roughness (Ra) value of between 0.3 and 1.0 μm. In addition, the sealing surface is machined to a peak-to-valley (PV) ratio of heights of less than 10 μm across the entire disc sealing surface. The surface profile of a sealing surface in one specific embodiment is depicted in the graph of
In addition to maintaining these surface characteristics, the manner of machining the sealing surface contributes to its optimized performance. In particular, the surface is machined so that cutter marks from the milling machine serve as “micro-channels” or fluid flow paths through which fluid pressure can equilibrate, thereby reducing the initial opening, or “crack”, time. An exemplary machined surface is shown in the microscopic surface image of
In the exemplary embodiment described above, the surface milling machine was operated at a spindle speed of 12000 rpm with an end mill feed speed of 7 in./min. and 450 surface ft./min. It is contemplated that the speed and feed rates of the end mill will be calibrated based on the material of the valve seat and the particular application. In the embodiments described herein, the sealing surface is formed by an end mill. However, other methods of generating the sealing surface, while adhering to the surface characteristics described above, can be used, such as stamping, sanding or etching. This embodiment has been demonstrated to maintain performance to 2.5 million cycles without any noticeable degradation.
In another aspect of the valve design disclosed herein, the valve seat or sealing surface 450 is preferably formed of a “softer” or less wear-resistant material than the valve disc. Thus, the majority of the wear that occurs will be on the sealing surface, rather than on the valve disc. The effect of this wear is to reduce the surface roughness over time, which has the effect of improving the sealing efficiency of the valve disc. While the opening time will increase, the impact is reduced by the presence of the machining channels or grooves that allow for pressure equilibrium on either side of the valve disc. In a specific embodiment, the valve disc is formed of a stainless steel while the sealing surface is formed of aluminum.
The valve disc 420 is preferably circular to correspond to a cylindrical valve chamber 421, an annular valve seat sealing surface 450 and an annular angled surface 430. However, other configurations for the valve disc are contemplated based on the geometry of the valve assembly within which the disc is disposed. For instance, rather than cylindrical, the components may adopt alternate multi-sided shapes.
The valve disc is sufficiently thick to avoid bending when moving under pressure between the open and closed positions. On the other hand, the thickness of the valve disc 420 is sufficiently thin to keep the mass of the disc to a minimum, since the mass of the disc will affect how rapidly it can move from one position to another. In a specific embodiment for use in a high speed solid ink printer, the valve disc has a thickness of about 0.3 mm.
It will be appreciated that various of the above-described features and functions, as well as other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4712583 | Pelmulder et al. | Dec 1987 | A |
4867140 | Hovis et al. | Sep 1989 | A |
6089534 | Biegelsen et al. | Jul 2000 | A |
6685307 | Dowell et al. | Feb 2004 | B2 |
6793819 | Glenwright et al. | Sep 2004 | B2 |
6799844 | Leighton et al. | Oct 2004 | B2 |
6905201 | Leighton | Jun 2005 | B2 |
7108361 | Kitabatake et al. | Sep 2006 | B2 |
7188941 | Platt et al. | Mar 2007 | B2 |
7300143 | Slotto et al. | Nov 2007 | B2 |
20040114008 | Leighton et al. | Jun 2004 | A1 |
20050146573 | Platt | Jul 2005 | A1 |
20050146575 | Hill | Jul 2005 | A1 |
20050146582 | Platt | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090273657 A1 | Nov 2009 | US |