This application is the National Stage of, and therefore claims the benefit of, International Application No. PCT/US 2017/056897 filed on Oct. 17, 2017, entitled “RAPID RESPONSE WELL CONTROL ASSEMBLY,” which was published in English under International Publication Number WO 2019/078819 on Apr. 25, 2019. The above application is commonly assigned with this National Stage application and is incorporated herein by reference in its entirety.
As the worldwide demand for hydrocarbon fuel has increased, there has been increasing activity in offshore oil exploration and production. Reserves of oil known to exist in the offshore areas have steadily increased and an increasing percentage of world production is from these offshore areas. The offshore environment has presented numerous new challenges to the oil drilling industry that have been overcome steadily to allow efficient drilling and production in these areas. Not only has the offshore environment made production more difficult to accomplish, but also it has also generally increased the risk of environmental damage in the event of a well blowout or other uncontrolled loss of hydrocarbons into the sea. As a result, known safety equipment, such as blowout preventers, which have been used successfully in onshore operations, have been used in offshore operations also. In spite of safety precautions, however, blowouts of offshore oil wells are known to occur and will occur in the future.
A blowout is an uncontrolled flow of formation fluids from the wellbore. These blowouts are dangerous and costly, and can cause loss of life, pollution, damage to drilling equipment, and loss of well production. To prevent blowouts, blowout prevention (BOP) equipment is required. BOP equipment typically includes a series of stacked equipment capable of safely isolating and controlling the formation pressures and fluids at the drilling site, which is typically known as a BOP stack. BOP functions include opening and closing hydraulically operated pipe rams, annular-seals, shear rams designed to cut the pipe, a series of remotely-operated valves to allow control the flow of drilling fluids, and well re-entry equipment. In addition, process and condition monitoring devices complete the BOP system.
In the field of offshore well control, it may be necessary to control a blowing well by containing and/or diverting gas and/or other fluids emanating uncontrollably from a subsurface source. Any damage to a wellhead can vary greatly, but the primary concern is to stop the flow of hydrocarbons by installing a BOP to shut-in the well or to divert the flow to a containment vessel. Often there is an interval of time, often running to weeks between the blowout incident and the deployment of a subsea BOP, owing to logistical difficulties due to its weight and size. This delay can be very costly in that is can increase damage to the environment or the well.
This disclosure, in its various embodiments, provides a hybrid rapid response capping system that comprises the combinational use of a ram BOP and a gate valve-based capping stack that can be used to contain and/or divert the flow of gas and/or fluids from a subsea well that is undergoing an uncontrolled influx. This hybrid device provides a capping system that is of lighter weight and overall size than known capping systems. These properties allow the hybrid capping system to be quickly and easily transported to remote drilling sites, thereby saving valuable response time and costs associated with a blowout condition.
In the field of well integrity, should a well control incident cause hydrocarbons to reach the surface and threaten the environment, it is essential to mitigate the effects as quickly as possible. With the potential for thousands of barrels of oil a day to leak from a blowing well, capping the well becomes a major priority and the ability to do so is highly important. Thus, the capability to cap the well quickly with embodiments of the hybrid rapid capping stack system, as described herein, provides an important, initial measure as a first response to a blowout condition. The purpose of the hybrid rapid response capping system is to deploy quickly the unique combinational device to control and mitigate the quantity of expelled gas or fluids in the most rapid means possible. To do this, the hybrid rapid response capping system is temporarily placed over the blowing well, until such time that a conventional BOP system is available and can be installed. To facilitate the removal of the hybrid rapid capping device, and thereby replace it with a traditional BOP, such as an annular BOP, control of the well must be maintained at all times because to remove the capping system before the well is under control could cause the well to be unsafe. Therefore, the ram BOP portion of the hybrid rapid response capping system, which serves as the requisite mechanical barrier for well control, is left in place on the well when the valve gate-based capping stack system is removed. Furthermore, the ram BOP provides the interface between the subsequent conventional BOP and the well. The ram BOP portion of the hybrid well capping stack system can be configured with pipe rams, blind rams, or blind shear rams as required.
In the implementation of the hybrid well capping stack system, the well can either be closed-in or flowed in a controlled manner back to a surface processing facility via suitable conduit(s) and then onto a collection vessel. Once the hybrid rapid capping stack system is in place and activated and the well is under control, there is sufficient time to send a hydraulic activation signal from the surface control panel to the subsea control valve. After the well is controlled, the gate valve-based capping stack system can be removed and a standard BOP installed in its place.
When the well is under control, the gate valve-based portion of the hybrid rapid can be removed with the ram portion of the system remaining to keep the well in a closed in condition. Afterward, a commonly used BOP, such as an annular BOP, can be attached to the ram BOP to ensure that two barriers are still in place, as per regulatory requirements.
Additionally, the well control device acts as the interface between the wellhead and the hybrid rapid capping system, or the LMRP and the rapid capping system, and incorporates a remotely operated emergency disconnect via a standard oilfield subsea connection.
The embodiment of
In an embodiment of this disclosure, the hybrid well capping stack system 105 may include standard mandrel connectors 215 and 220, such as a H4 or HC connector, or a slip-fit connector that forms a pressure tight system that fits over the outside diameter of the mandrel or exposed wellbore casing. The H4 or HC connectors may be designed to be hydraulically activated to latch onto a mandrel profile of the first ram BOP 205 or the gate valve-based capping stack 210. Connector 215, which in one embodiment is a male connector, is couplable to an upper mandrel (not shown) of the first ram BOP 205, and connector 220, which in one embodiment may be a female connector, is couplable to a lower mandrel (not shown) of the first ram BOP 205. The terms “couplable” or “coupled,” as used herein and in the claims, mean that the recited components may be directly couplable or coupled, or the recited components may be indirectly coupable or coupled together by intervening components within the hybrid capping stack system structure. It should be understood that whether direct or indirect, the coupling of the components results in a structure that is capable of withstand very high pressures often associated with a subsea blowout condition.
In one embodiment, the frame 415 supports a control panel 450 that can be used to control operation of the first ram BOP 205 and the gate valve-based capping stack 210 of the hybrid well capping stack system 105. The control panel 450 is operatively coupled to the controller 130 and may include actuators 435a, 440a, 445a that control the operation of the gate valves 435, 440 and 445, respectively. The control panel 450 can be instructed or operated to actuate the engagement assembly to engage and disengage the upper connection of the hybrid well capping stack system 105. In various embodiments, operation of the hybrid well capping stack system 105 can be controlled by an electrical control signal that is sent from the surface through, for example, a control cable, by an acoustic control signal that is sent from the surface based on a modulated/encoded acoustic signal, by underwater transmission using an underwater transducer, or by a ROV intervention that can be controlled by the controller 130 or manually manipulated to mechanically control the gate valves. Alternatively, it may be controlled by rapid hydraulic pressure delivered to the hybrid well capping stack system 105 by way of “hot stab” receptacles, or by a deadman switch/auto shear fail-safe activation of the hybrid well capping stack system 105 during an emergency, in the event that the power and hydraulic lines have been severed. The hybrid well capping stack system 105 may also be operatively associated with accumulator and pump systems that supply the hydraulic fluid volume and pressure required to activate the ram(s) or by any other method of closing the ram(s).
As seen in
The gate valve-based capping stack 210 further includes one or more known chokes that can be used in conjunction with the gate valves to control a flow of fluid from the wellbore and properly shut-in the wellbore. For example, in the embodiment illustrated in
In another embodiment, this disclosure provides a method of controlling a fluid flow of a wellbore, as shown in
As noted above, in certain embodiments, the first and second gate valves 435 and 440 may have chokes 465, 470 coupled to them to aid to shut the well in in a more controlled manner. In such embodiments, the method further comprises reducing the fluid flow through the gate valve-based capping stack 210 with a choke valves 465, 470 coupled to each of the gate valves 435, 440 of the first and second flowlines 420, 425, prior to sequentially closing the first and second flowlines 420, 425. In certain embodiments, sequentially closing the gate valves of the first, second, and third flowlines, 435, 440 an 445, and closing the first ram BOP 205 includes transmitting control data from a controller to the first ram BOP 205 and the gate valve-based capping stack 210. The control data may be manually transmitted or it may be transmitted by a computer system, associated with the controller 130 located on the drilling platform, as described below.
In other embodiments, the controller 130 located on the drilling platform includes an interface panel 450 coupled to the gate valve-based capping stack 210 that is located between the first ram BOP 205 and the gate valve-based capping stack 210. In such embodiments, the interface panel has a remotely operated vehicle (ROV) interface that includes a chemical injection interface 525 and a ROV electrical interface 530, which the ROV can use to control the well.
Once the first ram BOP 205 and any other rams that are present in the hybrid well capping stack system are closed, and all the gate valves of the gate valve-based capping stack are closed, in the order described above, the well should be in a controlled condition. In such instances, the method further includes removing the gate valve-based capping stack 210 from the first ram BOP 205 and attaching a known BOP, such as an annular BOP, which uses an annular sealing mechanism as opposed to a gate valve-based mechanism, to the first ram BOP 205.
The computer system 900 may include a processor 910, computer-readable storage media such as memory 920 and a storage device 930, and an input/output device 940. Each of the components 910, 920, 930, and 940 may be interconnected, for example, using a system bus 950. The processor 910 may process instructions for execution within the computer system 900. In some embodiments, the processor 910 is a single-threaded processor, a multi-threaded processor, a system on a chip, a special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit), or another type of processor. The processor 910 may be execute a computer readable program code stored in the memory 920 or on the storage device 930. The memory 920 and the storage device 930 include non-transitory media such as random access memory (RAM) devices, read only memory (ROM) devices, optical devices (e.g., CDs or DVDs), semiconductor memory devices (e.g., EPROM, EEPROM, flash memory devices, and others), magnetic disks (e.g., internal hard disks, removable disks, and others), and magneto-optical disks.
The input/output device 940 may perform input/output operations for providing the above-mentioned input data to the computer system 900. The computer system 400 may process the input data and provide the processing results using the input/output device 940.
In some embodiments, the input/output device 940 can include one or more network interface devices, e.g., an Ethernet card; a serial communication device, e.g., an RS-232 port; and/or a wireless interface device, e.g., an 802.11 card, a 3G wireless modem, or a 4G wireless modem. In some embodiments, the input/output device 960 can include driver devices configured to receive input data and send output data to other input/output devices 960, including, for example, a keyboard, a pointing device (e.g., a mouse, a trackball, a tablet, a touch sensitive screen, or another type of pointing device), a printer, and display devices (e.g., a monitor, or another type of display device) for displaying information to a user. Other kinds of devices can be used to provide for interaction with the user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In some embodiments, mobile computing devices, mobile communication devices, and other devices can be used.
The computer system 900 may include a single processing system, or may be a part of multiple processing systems that operate in proximity or generally remote from each other and typically interact through a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the Internet), a network comprising a satellite link, and peer-to-peer networks (e.g., ad hoc peer-to-peer networks). A relationship of client and server may arise by virtue of computer programs running on the respective processing systems and having a client-server relationship to each other.
In one embodiment of operation, the controller 130 receives signals from downhole sensors that provide data to the controller 130 regarding the blow out conditions of the well. The controller may then use this data to operate the various components of the hybrid well capping stack system 105 and the ROV to shut-in the well in a controlled manner, as described above.
Numerous other modifications, equivalents, and alternatives, will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such modifications, equivalents, and alternatives where applicable.
Embodiments herein comprise:
A hybrid well capping stack system, comprising: a first ram blow-out preventer (BOP) couplable to a mandrel of a wellbore and having first and second opposing ram heads positionable toward a center thereof to shut off a fluid flow of the wellbore when coupled to a mandrel of a wellbore; and a gate valve-based capping stack having a frame coupled to the first ram BOP adjacent the mandrel and having at least first and second flowlines coupled thereto, at least one of the at least first and second flowlines having a gate vale coupled thereto and wherein at least one of the at least first and second flowlines is located on the frame to divert a flow of fluid laterally from a central flow axis of the wellbore.
Another embodiment is directed to a hybrid well capping stack system, comprising: a first annular connector that is couplable to a mandrel of a wellhead located adjacent a sea bed; a first ram blow-out-preventer (BOP) having first and second hydraulically activated opposing ram heads, a lower connecting mandrel of the first ram BOP being coupable to the first annular connector; a second annular connector coupled to an upper connecting mandrel of the first ram BOP; a gate valve-based capping stack having a mandrel coupled to the second annular connector and having a frame with at least a first flowline, a second flowline, and a third flowline located between the first and second flowline, at least two of the first, second and third flowlines having a gate vale coupled thereto and wherein the gate valve is located on the frame to divert a flow of fluid laterally from a central axis of the gate valve-based capping stack; and a control panel coupled to the first ram BOP and the gate valve-based capping stack.
Another embodiment is directed to a method of controlling a fluid flow of a wellbore, comprising: coupling a hybrid well capping stack system to a mandrel of a wellbore. The coupling hybrid well capping stack system comprises: at least one ram blow-out preventer (BOP), having first and second opposing ram heads positionable toward a central flow axis of the wellbore, wherein the opposing ram heads of the ram BOP are in an open position; and a gate valve-based capping stack having a frame coupled to the at least one ram BOP and having at least first and second flowlines coupled thereto, each of the first and second flowlines having a gate valve coupled thereto, wherein the gate valve is in an open position and the first and second flowlines are located on the frame to divert a flow of fluid emanating from the wellbore laterally from a central flow axis of the wellbore; sequentially closing the first and second flowlines; and closing the first ram BOP to shut off the fluid flow subsequent to sequentially closing the gate valve of the first and second flowlines.
Each of the foregoing embodiments may comprise one or more of the following additional elements singly or in combination, and neither the example embodiments or the following listed elements limit the disclosure, but are provided as examples of the various embodiments covered by the disclosure:
Element 1: wherein the gate valve-based capping stack further includes a third flow line located between the at least first and second flowlines and having a gate valve coupled thereto, and wherein the at least first and second flowlines are located on the frame to divert a flow of fluid laterally from a central flow axis of the wellbore.
Element 2: wherein the gate valve of the at least one of the at least first and second flowlines has a choke valve coupled thereto.
Element 3: wherein each of the at least the first and second flowlines has a gate valve coupled thereto with a choke valve coupled to each of the gate valves.
Element 4: wherein the gate valve of the first flowline is an first upper gate valve and the first flowline includes a first lower gate valve, and the gate valve of the second flowline is a second upper gate valve and the second flowline includes a second lower gate valve.
Element 5: wherein the total flow diameter of the at least first and second flowlines is about 18 inches.
Element 6: further comprising a remotely operated vehicle (ROV) interface located between the first ram BOP and the gate valve-based capping stack.
Element 7: further including at least a second or third ram BOP sequentially coupled to each other and the first ram BOP adjacent the mandrel.
Element 8: wherein the gate valve-based capping stack provides electrical control signals, or acoustic control signals to the first ram BOP and the gate valve-based capping stack.
Element 9: wherein the controller includes an interface panel coupled to the gate valve-based capping stack and located between the first ram BOP and the gate valve-based capping stack and further includes a remotely operated vehicle (ROV) interface panel.
Element 10: wherein the gate valve of the first flowline and the gate valve of the second flowline has a choke valve coupled thereto, and wherein the gate valve of the first flowline is an first upper gate valve and the first flowline includes a first lower gate valve, and the gate valve of the second flowline is a second upper gate valve and the second flowline includes a second lower gate valve.
Element 11: further including at least a second ram BOP coupled to the first ram BOP and located between the first ram BOP and the gate valve-based capping stack.
Element 12: further comprising reducing the fluid flow through the gate valve-based capping stack with a choke valve coupled to at least one of the first and second flowlines, prior to sequentially closing the first and second flowlines.
Element 13: wherein the frame of the gate valve-based capping stack includes a third flowline having a gate valve coupled thereto and being located between the first and second flowlines, and the first and second flowlines are located on the frame to divert a flow of fluid emanating from the wellbore laterally from a central flow axis of the wellbore, and sequentially closing includes closing the gate valve of the third flowline prior to sequentially closing the gate valve of the first and second flowlines.
Element 14: wherein sequentially closing the gate valves of the first or second flowlines and closing the ram BOP includes transmitting control data from a controller to the first ram BOP and the gate valve-based capping stack.
Element 15: wherein the gate valve of the first flowline is a first upper gate valve and the first flowline includes a first lower gate valve and the gate valve of the second flowline is a second upper gate valve and the second flowline includes a second lower gate valve, and the method further comprises sequentially closing the first upper gate valve and the first lower gate valve and then sequentially closing the second upper gate valve and the second lower gate valve.
Element 16: further including removing the gate valve-based capping stack from the at least one ram BOP and attaching at least a second BOP to the at least one ram BOP.
Element 17: wherein attaching the at least a second BOP includes attaching one or more sequentially coupled ram BOPs to the at least one ram BOP.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/056897 | 10/17/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/078819 | 4/25/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4572298 | Weston | Feb 1986 | A |
9080411 | Lugo | Jul 2015 | B1 |
20120160509 | Caldwell | Jun 2012 | A1 |
20120318516 | Beynet et al. | Dec 2012 | A1 |
20120318520 | Lugo | Dec 2012 | A1 |
20130020086 | Anderson et al. | Jan 2013 | A1 |
20130118755 | Kotrla et al. | May 2013 | A1 |
20130299177 | Lyle | Nov 2013 | A1 |
20140034337 | Van Wijk | Feb 2014 | A1 |
20150021036 | Shafer | Jan 2015 | A1 |
20150021037 | Shafer | Jan 2015 | A1 |
20150060081 | Cox | Mar 2015 | A1 |
20170122091 | Paturu | May 2017 | A1 |
20170218719 | Lugo et al. | Aug 2017 | A1 |
20170350210 | Lugo | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
9967500 | Dec 1999 | WO |
2019078819 | Apr 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20210071499 A1 | Mar 2021 | US |