Rapid solidification investment casting

Information

  • Patent Grant
  • 6622774
  • Patent Number
    6,622,774
  • Date Filed
    Thursday, December 6, 2001
    22 years ago
  • Date Issued
    Tuesday, September 23, 2003
    21 years ago
Abstract
An investment casting process utilizes rapid cooling during solidification to achieve a desired final microstructure. A molten high temperature aluminum alloy is poured into a ceramic shell mold. The ceramic shell mold is then lowered into an oil bath held in a quenching tank to rapidly cool the molten material. Thus, solidification takes place quickly via rapid extraction of the latent heat of the metal by the quenching oil bath. The rapid solidification achieves a uniform fine microstructure in an as-cast component.
Description




BACKGROUND OF THE INVENTION




This invention relates to an investment casting method that utilizes rapid cooling during solidification to achieve a desired uniform fine microstructure for an as-cast component.




Investment casting is typically used to produce parts having complex shapes that are cost prohibitive to produce by other casting methods or which cannot be made by other methods such as sand or permanent mold casting. During the investment casting process, molten metal is poured into a pre-heated ceramic shell mold. A known characteristic of the ceramic shell mold used in investment casting is slow solidification. Slow solidification produces a coarse and heterogeneous casting microstructure. When conventional aluminum alloys are cast, this coarse and heterogeneous microstructure is acceptable because the microstructure for the final product can be altered to a desired microstructure by post-casting heat treatment.




Slow solidification becomes disadvantageous when the cast alloy needs to be used in an as-cast form and fast cooling rates are required to achieve the desired uniform fine microstructure. This is particularly true when dispersion strengthened alloys are processed via casting methods. For example, when cast high temperature aluminum alloys are used in an as-cast state, or with minimal post-casting heat treatment to produce aircraft engine parts, rapid cooling during solidification is a crucial part of achieving the desired as-cast microstructure.




Thus, it is desirable to provide an improved investment casting process that accommodates fast cooling of the casting during solidification while using conventional investment casting ceramic shell molds. It is also desirable for the improved investment casting process to be easily incorporated into existing foundry facilities in addition to overcoming the above referenced deficiencies.




SUMMARY OF THE INVENTION




The subject invention provides an investment casting process that permits rapid cooling of the casting while using conventional ceramic shell molds. Molten material is poured into the pre-heated ceramic shell mold. The mold is then rapid cooled by quenching the shell mold in an oil bath.




In the preferred embodiment, the molten material is a high temperature aluminum alloy having a melting point temperature approximately between 600 to 700° C. Prior to quenching the mold in the oil bath, the molten material is preferably maintained at a temperature approximately between 50 to 100° C. above the melting point temperature. The oil preferably has a flash point greater than the melting point temperature of the aluminum alloy and has a low viscosity at room temperature.




The cooling rate can be specifically tailored to various component types/shapes by controlling/varying the immersion rate of the shell mold into the oil bath. Cooling rate can also be controlled by varying the type of oil, e.g., oils having different flash points and viscosities, or by varying the temperature of the oil. Cooling rate is also a function of the thickness and permeability of the shell mold.




The subject invention provides an improved investment casting process that utilizes rapid cooling during solidification to achieve a desired final as-cast microstructure. These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic view that depicts the pouring of molten material into a mold.





FIG. 2

is a schematic view cross-sectional view of a ceramic shell mold.





FIG. 3

is a schematic view that depicts the mold of

FIG. 1

being lowered into a quenching tank.





FIG. 4

is a schematic view that depicts the mold of

FIG. 3

immersed in oil.





FIG. 5

is a flowchart of the subject invention.











DETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT




A unique investment casting method and apparatus is shown in

FIGS. 1-5

. The subject investment casting process utilizes rapid cooling during solidification to achieve a desired uniform fine microstructure in an as-cast component. Preferably, the subject casting process is used to produce as-cast aircraft engine components, however, other component types can also be produced with the subject process.




As shown in

FIG. 1

, a ladle


10


is used to pour a molten material


12


into a pre-heated conventional ceramic shell mold


14


. The ceramic shell molds used in investment casting methods are well known in the art and will not be discussed in further detail. Preferably, the molten material


12


is a high temperature aluminum alloy that has a melting point temperature approximately between 600 to 700° C. While an aluminum alloy is preferred, other similar materials known in the art could also be used.




The mold


14


has an outer surface


16


and an inner structure


18


that defines a desired shape for a component. As the molten material


12


is poured into the mold


14


it flows around the inner structure


18


and fills the mold


14


to form the component.




The mold


14


is lowered into a quenching tank


20


, which is used to hold a predetermined amount of oil or other similar fluid


22


. Preferably, the oil


22


has a high flash point and has a low viscosity at room temperature. The flash point is the lowest temperature at which vapors above a volatile combustible substance ignite in air when exposed to flame. Preferably, the flash point of the quenching oil


22


is greater than the melting point temperature of the molten material


12


.




A lowering mechanism


24


is used to immerse the mold


14


in the oil


22


at a predetermined immersion speed. The immersion speed controls the cooling rate and can be a constant speed or can a variable speed depending upon the desired cooling rate for a specific component. A sensor or other similar detection mechanism


26


can be used to monitor the immersion speed and a central processing unit (CPU)


28


can generate a control signal to control the immersion speed. Optionally, manual control can be used for immersion of the mold


14


into the tank


20


.




As the mold


14


is lowered into the quenching oil


22


, the outer surface


16


of the mold


14


is surrounded by the oil


22


as shown in FIG.


4


. The oil


22


penetrates the mold and contacts the molten material


12


to rapidly cool the component. The mold


14


can be completely immersed within the oil


22


or only partly immersed depending upon the cooling rate required. Additionally, the oil


22


can be stirred either manually or in an automated manner to achieve a desired cooling rate. Stirring the oil


22


allows heated oil


22


in the immediate vicinity of the mold


14


to be moved away from the mold


14


and be replaced by cooler oil


22


.




Another factor that affects the cooling rate is the temperature of the oil


22


. The initial temperature of the quenching oil


22


can be adjusted depending on the quenching power needed for solidification. A temperature sensor or other similar monitoring mechanism


30


can be used to monitor the temperature of the oil


22


. The CPU


28


can then use the oil temperature information to determine whether the oil


22


is at the desired temperature to produce the desired quenching power.




Quenching power can also be further adjusted by selecting from a variety of quenching fluids of different cooling power. Two of the important cooling characteristics for fluids are viscosity and evaporative capability. Preferably oil with a high flash point and a low viscosity at room temperature is used as the quenching oil


22


. Low viscosity oils are preferred because they have better wetting properties and penetrate the ceramic shell mold


14


more efficiently then high viscosity oils. Additionally, evaporative capability is important because too much evaporation can affect the surface finish of the component. For example, water is too evaporative and produces a significant amount of steam when the mold


14


is immersed in the water. The steam penetrates the mold


14


and produces localized pressure forces that affect the metal alloy as it solidifies resulting in a non-smooth surface. On the other hand, the fluid must provide sufficient evaporation to produce the desired cooling rate. Thus, quenching oils are preferred, as indicated above. The preferred type of quenching oil is either Farbest Corporation's quenching oil #1 or Castrol Industrial East, Incorporated quenching oil, however other similar oils could also be used.




The temperature at which the molten material


12


is when the molten material


12


is poured into the pre-heated mold


14


also affects quenching power. If the temperature of the molten metal


12


is too high, i.e. the molten material


12


is superheated, then more quenching power is needed for rapid cooling. Preferably, the molten material


12


is heated to a temperature slightly greater than the melting temperature of the material


12


prior to quenching. The mold


14


can be preheated to assist in maintaining the molten material


12


at the desired temperature prior to quenching. Preferably, the molten material


12


is maintained at 50 to 100° C. above the melting temperature prior to quenching.




Thickness and permeability of the shell mold


14


also affects the cooling rate. Effective heat transfer occurs as a result of direct contact of quenching oil with the molten material


12


in the mold


14


. Thin wall thickness in the mold


14


and high mold permeability facilitate rapid cooling, however, the mold


14


must be strong enough to avoid cracking. Reduced wall thickness and enhanced mold permeability can lead to decreased mold strength. The mold


14


is designed to maintain a proper balance between mold strength and cooling power requirements. One factor that affects mold thickness is the weight of the component being produced. Thus, mold thickness is a function of component weight, i.e. a heavy component requires a thicker mold than a lighter component.




The steps for the unique investment casting method used to produce an as-cast component having a desired final microstructure are outlined in FIG.


5


. The metal alloy is melted and maintained at a desired temperature, indicated at step


40


. The molten metal alloy


12


is then poured into a pre-heated ceramic shell mold


14


as indicated at step


50


. The ceramic shell mold


14


is lowered into a quenching tank


20


as indicated at step


60


. The mold


14


is lowered at a predetermined immersion rate to produce a desired final microstructure for the as-cast component as indicated at step


70


.




Additional steps include filling the quenching tank


20


with a quenching oil that has a flash point above the melting temperature of the molten metal alloy


12


and which also has a low viscosity at room temperature. The molten metal alloy


12


is preferably maintained at a temperature that is 50 to 100° C. above the melting point of the molten metal ally


12


prior to quenching. This unique process provides rapid cooling during solidification of a high temperature alloy in a traditional investment casting ceramic shell mold to produce an as-cast component having a desired uniform and fine microstructure.




The aforementioned description is exemplary rather that limiting. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed. However, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. Hence, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For this reason the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. A method for producing a cast component comprising the steps of:(a) pouring a molten material into a ceramic shell mold; and (b) immersing the ceramic shell mold in oil to produce a desired final microstructure for the cast component wherein the oil has a high flash point temperature and low viscosity at room temperature with the flash point temperature being greater than the melting temperature of the molten material.
  • 2. A method according to claim 1 including maintaining the molten material at 50 to 100° C. above the melting point of the molten material prior to step (b).
  • 3. A method according to claim 1 wherein the molten material comprises a high temperature aluminum alloy having a melting point approximately between 600 to 700° C.
  • 4. A method according to claim 1 wherein step (b) further includes controlling temperature of the oil to provide a predetermined quenching power.
  • 5. A method according to claim 1 further including having the oil at room temperature prior to step (b).
  • 6. A method according to claim 1 wherein step (b) further includes controlling immersion speed of the ceramic shell mold into the oil to control the cooling rate of the molten material.
  • 7. A method according to claim 1 including the step of controlling ceramic shell mold wall thickness as a function of weight of the component being cast prior to step (a).
  • 8. An investment casting method for producing an as-cast component having a desired final microstructure comprising the steps of:(a) pouring a molten metal alloy into a ceramic shell mold; and (b) lowering the ceramic shell mold into a fluid bath at a predetermined immersion rate to produce a desired final microstructure for the as-cast component wherein the fluid is oil that has a flash point above the melting temperature of the molten metal alloy and a low viscosity at room temperature.
  • 9. A method according to claim 8 including having the molten metal alloy at 50 to 100° C. above the melting point of the molten metal ally prior to step (b).
  • 10. A method according to claim 9 including varying temperature of the oil during step (b) to achieve a desired cooling rate over time.
  • 11. A method according to claim 10 including varying the immersion rate during step (b) to achieve a desired cooling rate over time.
  • 12. A method according to claim 11 including the step of controlling ceramic shell mold wall thickness as a function of weight of the component being cast prior to step (a).
  • 13. A method according to claim 12 wherein the molten metal alloy is a high temperature aluminum alloy having a melting point temperature approximately between 600 to 700° C.
  • 14. An investment casting system for producing an as-cast component having a desired final microstructure comprising:a ceramic shell mold having an outer surface and an internal structure defining a desired shape of a component; a ladle for pouring a molten material into said internal structure to form said component; a quenching tank wherein said ceramic shell mold is lowered into said quenching tank by a mold moving mechanism; and a predetermined amount of oil held within said quenching tank and having a flash point temperature higher than the melting temperature of said molten material wherein said outer surface of said ceramic shell mold interacts with said oil as said mold moving mechanism lowers said ceramic shell mold into said quenching tank to rapidly cool said molten material during solidification to achieve a desired final as-cast microstructure in said component.
  • 15. A system according to claim 14 wherein said internal structure is defined by a variable wall thickness and wherein said wall thickness are variable between different component types as a function of component weight.
  • 16. A system according to claim 14 including a central controller for generating a control signal that is communicated to said mold moving mechanism to lower said ceramic shell mold into said oil at a predetermined immersion rate.
  • 17. A system according to claim 16 including a sensor for measuring immersion speed of said ceramic shell mold into said oil and generating a sensor signal representative of said immersion speed wherein said sensor signal is transmitted to said central controller.
  • 18. A system according to claim 14 including a sensor for measuring oil temperature and generating a sensor signal representative of said oil temperature wherein said sensor signal is transmitted to a central controller.
US Referenced Citations (23)
Number Name Date Kind
2968848 Carter Jan 1961 A
3598173 Dore et al. Aug 1971 A
3612151 Harrington et al. Oct 1971 A
3763926 Tschinkel et al. Oct 1973 A
3861449 Barbero Jan 1975 A
3905415 Lefebvre Sep 1975 A
3915761 Tschinkel et al. Oct 1975 A
3939895 Sawyer Feb 1976 A
4157728 Mitamura et al. Jun 1979 A
4166495 Yu Sep 1979 A
4190094 Giamei Feb 1980 A
4593745 Yu et al. Jun 1986 A
4607679 Tsai et al. Aug 1986 A
4609029 Vishnevsky et al. Sep 1986 A
4858671 Hesterberg et al. Aug 1989 A
5522448 Righi Jun 1996 A
5592984 Schmiedeknecht et al. Jan 1997 A
5681407 Yu et al. Oct 1997 A
6019158 Soderstrom et al. Feb 2000 A
6239082 Hewson et al. May 2001 B1
6257316 Vandermeer Jul 2001 B1
6276433 Gigliotti, Jr. et al. Aug 2001 B1
6471397 Soderstrom et al. Oct 2002 B2
Non-Patent Literature Citations (2)
Entry
Metals Handbook, Ninth Edition, ASM Handbook Committee, Apr. 1982, American Society for Metals, p. 145, 161-164, and 167.*
Physical Metallurgy Principles, Abbaschian, 1994, PWS Publishing Company, Third Edition, p. 458-459.