Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening

Information

  • Research Project
  • 10080587
  • ApplicationId
    10080587
  • Core Project Number
    R44AI155254
  • Full Project Number
    1R44AI155254-01
  • Serial Number
    155254
  • FOA Number
    PA-19-272
  • Sub Project Id
  • Project Start Date
    5/1/2020 - 4 years ago
  • Project End Date
    4/30/2023 - a year ago
  • Program Officer Name
    MINNICOZZI, MICHAEL
  • Budget Start Date
    5/1/2020 - 4 years ago
  • Budget End Date
    4/30/2021 - 3 years ago
  • Fiscal Year
    2020
  • Support Year
    01
  • Suffix
  • Award Notice Date
    5/1/2020 - 4 years ago
Organizations

Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening

Therapeutic monoclonal antibodies bind to specific regions of proteins called epitopes, which elicit cellular responses that treat or cure disease. Discovering therapeutic antibodies traditionally requires laborious and expensive screening experiments, so computational approaches that select which antibodies bind an epitope best and have the most desirable pharmaceutical properties are in high demand. Structure-based antibody design is also important to the modern drug discovery and development process. This approach requires a high- resolution quaternary (3D) protein complex structure, whose experimental determination is often a slow process that is not always successful. Protein structure and binding interface prediction algorithms are poised to impact human health by accelerating the construction of high-confidence structural models of drug targets and biopharmaceuticals, which will help identify new therapeutic strategies. However, the current algorithms are limited in their ability to distinguish stronger-binding antibodies from weaker ones, which is preventing the discovery of broad classes of therapeutics. In addition, technologies are needed to predict if a candidate antibody will fail as early as possible in the development process. With improvements in simulating removal of molecular liabilities without damaging function, computer-aided antibody design can be used to lower drug development costs and focus experiments on the most promising drug candidates. Here we propose to advance antibody discovery by developing highly accurate software tools built on the success of DNASTAR?s NovaFold Antibody program for antibody structure prediction, NovaDock for flexible protein-protein docking, and Lasergene Protein Design for protein engineering. The aims of the project focus 1) on developing more accurate and effective immune complex (an interacting antibody and antigen) structure predictions through better modeling of the challenging complementarity-determining regions (CDR), which play a critical role in antibody affinity and selectivity; and 2) on predicting antibody sequences that reduce chemical and energetic liabilities that prove detrimental to an antibody?s manufacturing process or therapeutic effect in a patient. In particular, overall predictive capability will be improved by incorporating computational acceleration techniques to support the virtual screening of tens of thousands of antibody sequences. Finally, and for the first time, this project will develop a ?virtual immune system? to approach human antibody discovery, where antibodies will be modeled from germline sequences and selected for best recognizing an antigen of interest. The overall project goal is to deliver an advanced antibody screening pipeline that is powerful, accurate, and produces fast results, which will accelerate antibody discovery by enabling detailed and accurate immune complex structure predictions and structure-based liability detection at a high-throughput scale.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R44
  • Administering IC
    AI
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    999980
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:999980\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    DNASTAR, INC.
  • Organization Department
  • Organization DUNS
    130194947
  • Organization City
    MADISON
  • Organization State
    WI
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    537055202
  • Organization District
    UNITED STATES