This invention relates to tactical satellite communication (TACSAT) antennas, and, more particularly, to a TACSAT antenna which is housed within an expandable/collapsible frame so that the antenna can be rapidly deployed, and rapidly stowed in seconds into a small volume and manufactured at reduced cost compared to existing designs.
Satellite radios employ an antenna to transmit and receive signals, and require high gain to communicate with geosynchronous satellites. A number of antennas have been developed in the past for satellite radios but most are relatively large and bulky, they must be unloaded from a container, backpack or the like and then assembled for use. Conventionally, it takes tens of minutes to deploy a TACSAT antenna, and it is not unusual for a soldier or other operator of a satellite radio to begin using it before the antenna is fully assembled. In many military operations and other situations, time is of the essence and it is highly desirable to substantially reduce the time required to deploy, and more so to stow, the antenna.
As noted above, the stowed size of typical TACSAT antennas is large and bulky. Efforts to reduce the stowed size have typically resulted in decreased gain of the antenna which, in turn, degrades performance of the satellite communications link. Additionally, the smaller the stowed size of the antenna, the higher its cost. It is not unusual for TACSAT antennas to be priced at several thousand dollars per unit, while still suffering from problems of large stowed size and insufficient gain.
This invention is directed to a TACSAT antenna system which may be rapidly deployed, exhibits high gain, rapidly stowed into a small, compact size and can be manufactured at low cost.
The antenna system of this invention includes a “twist and fold” type of self-deployable housing having stiff frame elements which are interconnected by sections of fabric to form a hollow interior. The housing is movable between a deployed or expanded position and a stowed or collapsed position in which it occupies a very compact space.
In the presently preferred embodiment, the circular polarized antenna is embodied by a vertically polarized Yagi-Uda array and a horizontally polarized Yagi-Uda array mounted on separate support structures to the housing. Each support structure preferably takes the form of a section of fabric or similar material, and the dipole elements of the arrays are formed of electrically conductive material such as copper thread embedded in the fabric sections. The fabric sections with arrays are movable between the expanded and collapsed positions with the housing, and are located in different planes so that the arrays they carry create circular polarization. The arrays may be connected by a hybrid balun and coaxial cable to a TACSAT radio.
The structure, operation and advantages of the presently preferred embodiment of this invention will become further apparent upon consideration of the following description, taken in conjunction with the accompanying drawings, wherein:
Referring initially to
With reference to
Considering initially the mounting of first and second sections 20 and 26 to the housing 10, and their relative positioning, the first section 20 of fabric material is preferably located within the hollow interior 14 of the housing 10. A lower edge 32 of the first section 20 of fabric material is affixed to a lower end of the base of housing 10, and it extends upwardly at an angle of approximately 450 relative to vertical. The opposite, upper edge 34 of first section 20 of fabric material is affixed to the top end of the housing 10, as shown. The second section 26 of fabric material is mounted to one side of the housing 10 at an angle of approximately 90° relative to the first section 20 and in a different plane. The “plane” in which the first section 20 is mounted extends along approximately a 45° angle from the bottom to the top of the housing 10 in its expanded position, whereas the second section 26 is located in a “plane” defined by one side of the housing 10 in the expanded position, as shown in
As noted above, the first section 20 of fabric material is provided with a first array 22 of dipole elements 24. In the presently preferred embodiment, the dipole elements 24 form a vertically polarized Yagi-Uda array although other dipole arrays may be employed. Each of the dipole elements 24 is preferably formed of an electrically conductive material, such as copper thread, which is embedded in the fabric material of the first section 20. The dipole elements 30 of the second section 26 of fabric material form a horizontally polarized Yagi-Uda array, although, like the first array 20, other dipole arrays may be employed. Each of the dipole elements 24 is preferably formed of an electrically conductive material, such as copper thread, which is embedded in the fabric material of the second section 26. It is contemplated that other electrically conductive materials may be used to form the dipole elements 24 and 30, and other means of affixing such materials could be employed, so long as such material is fixed in placed and movable with the first and second sections 20, 26, respectively, in response to the expansion and collapse of the housing 10.
As shown in
As schematically depicted in
The housing 10 and antenna 12 of this invention collectively form a rapidly deployable antenna system which is light-weight, inexpensive to manufacture, occupies minimal space in the collapsed position and is easily manipulated between the collapsed and expanded positions with minimal time and effort. The antenna 12 provides high gain, circular polarization to combat fading, and may be employed with essentially any type of TACSAT radio.
While the invention has been described with reference to a preferred embodiment, it should be understood by those skilled in the art that various changes may be made and equivalents substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3715759 | Esposito et al. | Feb 1973 | A |
6154180 | Padrick | Nov 2000 | A |
6326932 | Mannan | Dec 2001 | B1 |
6360760 | Louie et al. | Mar 2002 | B1 |
6952189 | Engargiola et al. | Oct 2005 | B2 |
7133001 | Mrstik et al. | Nov 2006 | B2 |
20070103376 | Goldberg et al. | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080088523 A1 | Apr 2008 | US |