Rapidly inserted central catheter and methods thereof

Information

  • Patent Grant
  • 11890429
  • Patent Number
    11,890,429
  • Date Filed
    Friday, August 28, 2020
    4 years ago
  • Date Issued
    Tuesday, February 6, 2024
    a year ago
Abstract
Rapidly inserted central catheters (“RICC”), and methods thereof. A RICC can include a catheter tube including a first section in a distal-end portion of the catheter tube, a second section in the distal-end portion of the catheter tube proximal of the first section, and a junction between the first and second sections of the catheter tube. The first section of the catheter tube can be formed of a first material having a first durometer. The second section of the catheter tube can be formed of a second material having a second durometer less than the first durometer. The first and second sections of the catheter tube can have a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient.
Description
BACKGROUND

A central venous catheter (“CVC”) is formed of a material having a relatively low durometer, which contributes to the CVC having a lack of column strength. Due to the lack of column strength, CVCs are commonly introduced into patients and advanced through vasculatures thereof by way of the Seldinger technique. The Seldinger technique utilizes a number of steps and medical devices (e.g., a needle, a scalpel, a guidewire, an introducer sheath, a dilator, a CVC, etc.). While the Seldinger technique is effective, the number of steps are time consuming, handling the number of medical devices is awkward, and both of the foregoing can lead to patient trauma. In addition, there is a relatively high potential for touch contamination due to the number of medical devices that need to be interchanged during the number of steps of the Seldinger technique. As such, there is a need to reduce the number of steps and medical devices involved in introducing a catheter into patient and advancing the catheter through a vasculature thereof.


Disclosed herein are rapidly inserted central catheters (“RICCs”) and methods thereof that address the foregoing.


SUMMARY

Disclosed herein is a RICC including, in some embodiments, a catheter tube including a first section in a distal-end portion of the catheter tube, a second section in the distal-end portion of the catheter tube proximal of the first section, and a junction between the first and second sections of the catheter tube. The first section of the catheter tube is formed of a first material having a first durometer. The second section of the catheter tube is formed of a second material having a second durometer less than the first durometer. The first and second sections of the catheter tube have a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient.


In some embodiments, the junction is a third section of the catheter tube formed of a third material having a third durometer between the first and second durometers.


In some embodiments, the junction includes a tapered distal-end portion, the first section of the catheter tube includes a flared proximal-end portion, and the tapered distal-end portion of the junction sits within the flared proximal-end portion of the first section of the catheter tube.


In some embodiments, the junction includes a proximal-end portion, the second section of the catheter tube includes a distal-end portion, and the proximal-end portion of the junction abuts the distal-end portion of the second section of the catheter tube.


In some embodiments, each section of the first and second sections of the catheter tube is welded to the junction in a heat weld.


In some embodiments, each section of the first and second sections of the catheter tube is welded to the junction in a solvent weld.


In some embodiments, the first section of the catheter tube includes a flared proximal-end portion, the second section of the catheter tube includes a tapered distal-end portion, and the tapered distal-end portion of the second section of the catheter tube sits within the flared proximal-end portion of the first section of the catheter tube.


In some embodiments, each section of the first and second sections of the catheter tube is welded to the other section in a heat weld, thereby forming the junction between the first and second sections of the catheter tube.


In some embodiments, each section of the first and second sections of the catheter tube is welded to the other section in a solvent weld, thereby forming the junction between the first and second sections of the catheter tube.


In some embodiments, the RICC includes a necked-down section about the junction. The necked-down section is configured to provide a smooth transition between the first and second sections of the catheter tube.


In some embodiments, the first section of the catheter tube is polytetrafluoroethylene, polypropylene, or polyurethane.


In some embodiments, the second section of the catheter tube is polyvinyl chloride, polyethylene, polyurethane, or silicone.


Also disclosed herein is a method of making a RICC including, in some embodiments, obtaining steps of obtaining each section of a first section, a second section, and a third section of a catheter tube. The first section of the catheter tube is formed of a first material having a first durometer. The second section of the catheter tube is formed of a second material having a second durometer. The third section of the catheter tube is formed of a third material having a third durometer between the first and second durometers. The method also includes a flaring step of flaring a proximal-end portion of the first section of the catheter tube to form a flared proximal-end portion of the first section of the catheter tube. The method also includes an inserting step of inserting a tapered distal-end portion of the third section of the catheter tube into the flared proximal-end portion of the first section of the catheter tube. The method also includes an abutting step of abutting a distal-end portion of the second section of the catheter tube and a proximal-end portion of the third section of the catheter tube. The method also includes welding steps of welding the first, second, and third sections of the catheter tube together to form a junction of the third material between the first and second sections of the catheter tube.


In some embodiments, a welding step of welding the second and third sections of the catheter tube occurs before the inserting and welding steps of inserting the tapered distal-end portion of the third section of the catheter tube into the flared proximal-end portion of the first section of the catheter tube and welding the first and third sections of the catheter tube together.


In some embodiments, each welding step of the welding steps is independently heat welding or solvent welding.


In some embodiments, the method further includes a tapering step of tapering a non-tapered distal-end portion of the third section of the catheter tube to form the tapered distal-end portion of the third section of the catheter tube.


In some embodiments, the method further includes a necking-down step of necking down the catheter tube to form a necked-down section about the junction. The necked-down section is configured to provide a smooth transition between the first, second, and third sections of the catheter tube.


Also disclosed herein is a method of making a RICC including, in some embodiments, obtaining steps of obtaining a first section of a catheter tube formed of a first material having a first durometer and obtaining a second section of the catheter tube formed of a second material having second durometer less than the first durometer. The method also includes a flaring step of flaring a proximal-end portion of the first section of the catheter tube to form a flared proximal-end portion of the first section of the catheter tube. The method also includes an inserting step of inserting a tapered distal-end portion of the second section of the catheter tube into the flared proximal-end portion of the first section of the catheter tube. The method also includes a welding step of welding the first and second sections of the catheter tube together to form a junction between the first and second sections of the catheter tube.


In some embodiments, the welding step includes heat welding or solvent welding.


In some embodiments, the method further includes a tapering step of tapering a non-tapered distal-end portion of the second section of the catheter tube to form the tapered distal-end portion of the second section of the catheter tube.


In some embodiments, the method further includes a necking-down step of necking down the catheter tube to form a necked-down section about the junction. The necked-down section is configured to provide a smooth transition between the first and second sections of the catheter tube.


Also disclosed herein is a method of a RICC including, in some embodiments, an insertion site-creating step of creating an insertion site with a needle to access a vasculature of a patient; an inserting step of inserting a distal-end portion of a catheter tube of the RICC into the insertion site over the needle; and an advancing step of advancing the distal-end portion of the catheter tube through the vasculature of the patient without use of a Seldinger technique.


In some embodiments, the method further includes a withdrawing step of withdrawing the needle from the RICC after the insertion site-creating step.


In some embodiments, the insertion site is at a right subclavian vein or a right internal jugular vein.


In some embodiments, the advancing step includes advancing the distal-end portion of the catheter tube through the right subclavian vein or the right internal jugular vein, a right brachiocephalic vein, and into a superior vena cava.


Also disclosed herein is a RICC including, in some embodiments, a catheter tube including a first section having a single lumen in a distal-end portion of the catheter tube, a second section having a pair of lumens in the distal-end portion of the catheter tube proximal of the first section, and a junction between the first and second sections of the catheter tube in which the pair of lumens transitions into the single lumen. The first section of the catheter tube is formed of a first material having a first durometer. The second section of the catheter tube is formed of a second material having a second durometer less than the first durometer. The first and second sections of the catheter tube have a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient.


Disclosed herein is a RICC including, in some embodiments, a catheter tube including a first section in a distal-end portion of the catheter tube, a second section in the distal-end portion of the catheter tube proximal of the first section, and a junction between the first and second sections of the catheter tube. The first and second sections of the catheter tube are formed of a same material or different materials having substantially equal durometers provided the first and second sections of the catheter tube have a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient.


These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which describe particular embodiments of such concepts in greater detail.





DRAWINGS


FIG. 1A illustrates a distal-end portion of a first RICC in accordance with some embodiments.



FIG. 1B illustrates a cross section of the distal-end portion of the first RICC of FIG. 1A.



FIG. 2 illustrates a cross section of a second RICC in accordance with some embodiments.



FIG. 3 illustrates a cross section of a third RICC in accordance with some embodiments.



FIG. 4A illustrates part of a method of making at least the first RICC in accordance with some embodiments.



FIG. 4B illustrates another part of the method of making at least the first RICC in accordance with some embodiments.



FIG. 5A illustrates part of a method of making at least an alternative of the first RICC in accordance with some embodiments.



FIG. 5B illustrates another part of the method of making at least the alternative of the second RICC in accordance with some embodiments.



FIG. 6A illustrates a distal-end portion of a fourth RICC in accordance with some embodiments.



FIG. 6B illustrates a cross section of the distal-end portion of the fourth RICC of FIG. 6A.



FIG. 7 illustrates another part of the method of making at least the fourth RICC in accordance with some embodiments.





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near a clinician when the catheter is used on a patient. Likewise, a “proximal length” of, for example, the catheter includes a length of the catheter intended to be near the clinician when the catheter is used on the patient. A “proximal end” of, for example, the catheter includes an end of the catheter intended to be near the clinician when the catheter is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the catheter can include the proximal end of the catheter; however, the proximal portion, the proximal end portion, or the proximal length of the catheter need not include the proximal end of the catheter. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the catheter is not a terminal portion or terminal length of the catheter.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a catheter disclosed herein includes a portion of the catheter intended to be near or in a patient when the catheter is used on the patient. Likewise, a “distal length” of, for example, the catheter includes a length of the catheter intended to be near or in the patient when the catheter is used on the patient. A “distal end” of, for example, the catheter includes an end of the catheter intended to be near or in the patient when the catheter is used on the patient. The distal portion, the distal end portion, or the distal length of the catheter can include the distal end of the catheter; however, the distal portion, the distal end portion, or the distal length of the catheter need not include the distal end of the catheter. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the catheter is not a terminal portion or terminal length of the catheter.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


As set forth above, there is a need to reduce the number of steps and medical devices involved in introducing a catheter into patient and advancing the catheter through a vasculature thereof. Disclosed herein are RICCs and methods thereof that address the foregoing.


Rapidly Inserted Central Catheters



FIG. 1A illustrates a distal-end portion of a RICC 100 in accordance with some embodiments. FIG. 1B illustrates a cross section of the distal-end portion of the RICC 100 of FIG. 1A. FIG. 2 illustrates a cross section of a RICC 200 in accordance with some embodiments. FIG. 3 illustrates a cross section of a RICC 300 in accordance with some embodiments. FIG. 6A illustrates a distal-end portion of a RICC 600 in accordance with some embodiments. FIG. 6B illustrates a cross section of the distal-end portion of the RICC 600 of FIG. 6A.


As shown, the RICC 100 includes a catheter tube 110 including a first section 120 in the distal-end portion of the catheter tube 110, a second section 130 in the distal-end portion of the catheter tube 110 proximal of the first section 120, and a junction 140 between the first section 120 and second section 130 of the catheter tube 110. Likewise, the RICC 200 includes a catheter tube 210 including a first section 220 in the distal-end portion of the catheter tube 210, the second section 130 in the distal-end portion of the catheter tube 210 proximal of the first section 220, and a junction 240 between the first section 220 and second section 130 of the catheter tube 210. Further likewise, the RICC 300 includes a catheter tube 310 including the first section 220 in the distal-end portion of the catheter tube 310, a second section 330 in the distal-end portion of the catheter tube 310 proximal of the first section 220, and a junction 340 between the first section 220 and second section 330 of the catheter tube 310. Even further likewise, the RICC 600 includes a catheter tube 610 including a first section 620 in the distal-end portion of the catheter tube 610, the second section 130 in the distal-end portion of the catheter tube 610 proximal of the first section 620, and the junction 140 between the first section 620 and second section 130 of the catheter tube 610. Together, the first section 120, 220, or 620 of the catheter tube 110, 210, 310, or 610, the second section 130 or 330 of the catheter tube 110, 210, 310, or 610 and the junction 140, 240, or 340 have a column strength sufficient to prevent buckling of the catheter tube 110, 210, 310, or 610 when inserted into an insertion site and advanced through a vasculature of a patient. While the RICC 100, 200, 300, and 600 have the foregoing sections, it should be understood other sections and configurations thereof are possible.


While only a single lumen 112 is shown for the RICC 100, 200, 300, or 600, the RICC 100, 200, 300, or 600 is not limited to being a monoluminal catheter. Indeed, the RICC 100, 200, 300, or 600 can alternatively be a diluminal catheter, a triluminal catheter, a tetraluminal catheter, etc. A number of lumens 112 in one portion of the RICC 100, 200, 300, or 600 can also transition into a fewer number of lumens 112 in another portion of the RICC 100, 200, 300, or 600. For example, a pair of lumens 112 in the second section 130 of the catheter tube 110 of the RICC 100 can transition into the single 112 lumen in the first section 120 of the catheter tube 110.


The first section 120 or 220 of the catheter tube 110, 210, or 310 includes a flared proximal-end portion 122 or 222 and a tip 124 of the first section 120 or 220 of the catheter tube 110, 210, or 310 that doubles as the tip 124 of the catheter tube 110, 210, or 310. The flared proximal-end portions 122 or 222 can differ with respect to degree of flare with the flared proximal-end portion 122 of the first section 110 having a greater degree of flare than the flared proximal-end portion 222 of the first section 220 of either the second catheter tube 210 or the third catheter tube 310. While the first section 620 of the catheter tube 610 likewise includes the tip 124 that doubles as the tip 124 of the catheter tube 610, the first section 620 of the catheter tube 610 does not include a flared proximal-end portion like the flared proximal-end portion 122 or 222 of the first section 120 or 220 of the catheter tube 110, 210, or 310. Instead, a proximal-end portion 622 of the first section 620 of the catheter tube 610 continues with a same outer diameter as a distal-end portion of the first section 620 of the catheter tube 610 proximal of the tip 124.


The first section 120, 220, or 620 of the catheter tube 110, 210, 310, or 610 is formed of a first material having a first durometer. The first material can be polytetrafluoroethylene, polypropylene, or polyurethane, but the first material is not limited to the foregoing polymers. Polyurethane is advantageous in that the first section 120, 220, or 620 of the catheter tube 110, 210, 310, or 610 can be relatively rigid at room-temperature but become more flexible in vivo at body temperature, which reduces irritation to vessel walls and phlebitis.


The second section 130 or 330 of the catheter tube 110, 210, 310, or 610 includes a distal-end portion 132, 232, or 332 as best seen in FIG. 4B.


The second section 130 or 330 of the catheter tube 110, 210, 310, or 610 is formed of a second material having a second durometer less than the first durometer of the first material. The first durometer and the second durometer can be on different scales (e.g., Type A or Type D), so the second durometer might not be numerically less than the first durometer. That said, the hardness of the second material can still be less than the hardness of the first material as the different scales—each of which ranges from 0 to 100—are designed for characterizing different materials in groups of the materials having a like hardness. The second material can be polyvinyl chloride, polyethylene, polyurethane, or silicone, but the first material is not limited to the foregoing polymers. Polyurethane is advantageous in that can be less thrombogenic than some other polymers.


Notwithstanding the foregoing, the first section 120, 220, or 620 and the second section 130 or 330 of the catheter tube 110, 210, 310, or 610 can be formed of a same material or different materials having substantially equal durometers provided a column strength of the catheter tube 110, 210, 310, or 610 is sufficient to prevent buckling of the catheter tube 110, 210, 310, or 610 when inserted into an insertion site and advanced through a vasculature of a patient.


The junction 140, 240, or 340 can be a third section of the catheter tube 110, 210, 310, or 610. The junction 140, 240, or 340 includes a tapered distal-end portion 142, 242, or 342 as best seen in FIG. 4B, as well as a proximal-end portion 144, 244, or 344. Each tapered distal-end portion of the tapered distal-end portions 142, 242, and 342 can differ with respect to degree of taper. For example, the tapered distal-end portion 142 of the junction 140 can have a greater degree of taper than the tapered distal-end portion 242 or 342 of the junction 240 or 340.


The junction 140, 240, or 340 is formed of a third material having a third durometer between the first durometer of the first material of the first section 120, 220, or 620 of the catheter tube 110, 210, 310, or 610 and the second durometer of the second material of the second section 130 or 330 of the catheter tube 110, 210, 310, or 610. Like that set forth above, such durometers can be on different scales (e.g., Type A or Type D), so the third durometer might not be numerically between the first durometer and the second durometer. Alternatively, the third material can have a same durometer as the first material of the first section 120, 220, or 620 of the catheter tube 110, 210, 310, or 610 or the second material of the second section 130 or 330 of the catheter tube 110, 210, 310, or 610.


The tapered distal-end portion 142, 242, or 342 of the junction 140, 240, or 340 sits at least partially within the flared proximal-end portion 122 or 222 of the first section 120 or 220 of the catheter tube 110, 210, or 310. With respect to the catheter tube 610, however, the tapered distal-end portion 142 of the junction 140 abuts the proximal-end portion 622 of the first section 620 of the catheter tube 610. The proximal-end portion 144, 244, or 344 of the junction 140, 240, or 340 abuts the distal-end portion 132 or 332 of the second section 130 or 330 of the catheter tube 110, 210, 310, or 610. Each section of the first section 120, 220, or 620 and second section 130 or 330 of the catheter tube 110, 210, 310, or 610 is independently welded to the junction 140, 240, or 340 in a heat weld or a solvent weld. If one type of welding is used, the first section 120, 220, or 620 and second section 130 or 330 of the catheter tube 110, 210, 310, or 610 can be welded to the junction 140, 240, or 340 in one heat-welding or a solvent-welding step. The flared proximal-end portion 122 of the first section 120 of the catheter tube 110 is exposed, whereas the flared proximal-end portion 222 of the first section 220 of the catheter tube 210 or 310 is concealed by an overlying portion of the junction 240 or 340 for a smoother transition. For an even smoother transition, both the second section 330 of the catheter tube 310 and the junction 340 can be necked-down in a combined necked down section about the junction 340.


As an alternative to the foregoing, the second section 130 or 330 of the catheter tube 110, 210, 310, or 610 includes the junction 140, 240, or 340 or third section of the catheter tube 110, 210, 310, or 610. That is, the third section of the catheter tube 110, 210, 310, or 610 is not formed separately from the second section 130 or 330 of the catheter tube 110, 210, 310, or 610 and welded thereto—but integrally with the second section 130 or 330 of the catheter tube 110, 210, 310, or 610 as shown in FIG. 5A for a second section 530. Like that set forth above for the junction 140, 240, or 340, the second section 530 includes a tapered distal-end portion 542. The tapered distal-end portion 542 can differ with respect to degree of taper. For example, the tapered distal-end portion 542 of the second section 530 can have a greater degree of taper for the catheter tube 110 or 610 than for either catheter tube of the catheter tubes 210 and 310.


The tapered distal-end portion 542 of the second section 530 of the catheter tube 110, 210, or 310 sits at least partially within the flared proximal-end portion 122 or 222 of the first section 120 or 220 of the catheter tube 110, 210, or 310 or abuts the proximal-end portion 622 of the first section 620 of the catheter tube 610. The first section 120, 220, or 620 and second section 530 of the catheter tube 110, 210, 310, or 610 are welded together in a heat weld or a solvent weld. The flared proximal-end portion 122 of the first section 120 of the catheter tube 120 is exposed, whereas the flared proximal-end portion 222 of the first section 220 of the catheter tube 210 or 310 is concealed by an overlying portion of the second section 530 of the catheter tube 210 or 310 for a smoother transition. For an even smoother transition, the second section 530 of the catheter tube 310 can be necked-down in a necked down section.


Methods



FIGS. 4A and 4B illustrate a method of making at least the RICC 100 in accordance with some embodiments. Indeed, the method shown in FIGS. 4A and 4B is also applicable to the RICC 200 and 300. FIG. 7 illustrates a method of making at least the RICC 600 accordance with some embodiments. The method of making the RICC 600 is analogous to that shown in FIG. 4B for the RICC 100 albeit without aspects of the method directed to the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. For expository expediency, the method of FIGS. 4A and 4B will be primarily described with reference to making the RICC 100. Only where the method of making the RICC 200, 300, or 600 appreciably diverges from that of the RICC 100 will the method of FIGS. 4A and 4B be described with reference to the RICC 200 or 300 or the method of FIG. 7 be described with reference to the RICC 600.


The method of making the RICC 100 includes obtaining steps of obtaining each section of the first section 120, the second section 130, and the junction or third section 140 of the catheter tube 110. Again, the first section 120 of the catheter tube 110 is formed of a first material having a first durometer, the second section 130 of the catheter tube 110 is formed of a second material having a second durometer, and the third section 140 of the catheter tube 110 is formed of a third material having a third durometer between the first and second durometers. Such materials having such durometers make use of different melting temperatures and promote welds between the different sections 120, 130, and 140 of the catheter tube 110 sufficient for using the RICC 100.


The method also includes a flaring step of flaring a proximal-end portion of a nascent first section 424 of the catheter tube 110 to form the first section 120 of the catheter tube 110 with the flared proximal-end portion 122. Notably, the first section 620 of the catheter tube 610 does not include a flared proximal-end portion like the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. Therefore, the method of making the RICC 600 need not include the foregoing flaring step.


The method also includes an inserting step of inserting the tapered distal-end portion 142 of the third section 140 of the catheter tube 110 into the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. Notably, the first section 620 of the catheter tube 610 does not include a flared proximal-end portion like the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. Therefore, the method of making the RICC 600 need not include the foregoing inserting step. Instead, the method of making the RICC 600 includes an abutting step of abutting the tapered distal-end portion 142 of the third section 140 of the catheter tube 610 into the proximal-end portion 622 of the first section 620 of the catheter tube 610.


The method also includes an abutting step of abutting the distal-end portion 132 of the second section 130 of the catheter tube 110 and the proximal-end portion 144 of the third section 140 of the catheter tube 110.


The method also includes welding steps of welding the first, second, and third sections of the catheter tube 110 together to form the junction 140 of the third material between the first section 120 and second section 130 of the catheter tube 110.


The welding step of welding the second section 130 and third section 140 of the catheter tube occurs before the inserting and welding steps of inserting the tapered distal-end portion 142 of the third section 140 of the catheter tube 110 into the flared proximal-end portion 122 of the first section 120 of the catheter tube 110 and welding the first section 120 and third section 140 of the catheter tube 110 together. With respect to the method of making the RICC 600, the welding step of welding the second section 130 and third section 140 of the catheter tube occurs before the abutting and welding steps of abutting the tapered distal-end portion 142 of the third section 140 of the catheter tube 610 and the proximal-end portion 622 of the first section 620 of the catheter tube 610 and welding the first section 620 and third section 140 of the catheter tube 610 together. Each welding step of the welding steps is independently heat welding (e.g., radiofrequency [“RF”] welding) or solvent welding.


Flaring the proximal-end portion of the nascent first section 424 of the catheter tube 110 to form the flared proximal-end portion 122 of the first section 120 of the catheter tube 110 and inserting the tapered distal-end portion 142 of the third section 140 of the catheter tube 110 into the flared proximal-end portion 122 of the first section 120 of the catheter tube 110 makes it possible to place an RF-welding element a short distance from a start of the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. This reduces a risk of causing a defect or a weak spot in the catheter tube 110. The RF-welding element would touch off a short distance distal of portion 121 and a short distance proximal of the portion 121 where the flared proximal-end portion 122 of the first section 120 of the catheter tube 110 begins so as to avoid too much heat exposure to the thin wall of the first section 120 of the catheter tube 110.


The method further includes a tapering step of tapering a non-tapered distal-end portion of the third section 140 of the catheter tube 110 to form the tapered distal-end portion 142 of the third section 140 of the catheter tube 110.


For at least the RICC 300, the method further includes a necking-down step of necking down the catheter tube 310 to form a necked-down section about the junction 340. The necked-down section is configured to provide a smooth transition between the first, second, and third sections of the catheter tube 310.



FIGS. 5A and 5B illustrate a method of making the alternative of the RICC 100 in accordance with some embodiments.


The method of making the alternative to the RICC 100 includes obtaining steps of obtaining the first section 120 of the catheter tube 110 formed of a first material having a first durometer and the second section 530 of the catheter tube 110 formed of a second material having second durometer less than the first durometer. The method also includes a flaring step of flaring the nascent first section 424 of the catheter tube 110 as shown in FIG. 4B to form the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. The method also includes an inserting step of inserting the tapered distal-end portion 542 of the second section 530 of the catheter tube 110 into the flared proximal-end portion 122 of the first section 120 of the catheter tube 110. The method also includes a welding step of heat or solvent welding the first section 120 and second section 530 of the catheter tube 110 together to form a junction therebetween.


The method further includes a tapering step of tapering a non-tapered distal-end portion 132 of the second section 130 of the catheter tube 110 to form the tapered distal-end portion 542 of the second section 530 of the catheter tube 110. Forming the tapered distal-end portion 542 of the second section 530 of the catheter tube 110 can be accomplished by removing some material from the non-tapered distal-end portion 132 of the second section 130 of the catheter tube 110 or melting or dissolving some of the material of the non-tapered distal-end portion 132 of the second section 130 of the catheter tube 110 during the welding step.


For at least the RICC 300, the method further includes a necking-down step of necking down the catheter tube 310 to form a necked-down section about the junction between the first section 120 and second section 530 of the catheter tube 110. The necked-down section is configured to provide a smooth transition between the first section 220 and second section 530 of the catheter tube 310.


The method of making each RICC of the RICCs 100, 200, and 300 further includes a mandrel-mounting step of mounting the sections used in making the RICCs 100, 200, and 300 on mandrels to keep lumens thereof from collapsing during the more welding steps.


A method of the RICC 100 includes an insertion site-creating step of creating an insertion site with a needle to access a vasculature of a patient; an inserting step of inserting the distal-end portion of the catheter tube 110 of the RICC 100 into the insertion site over the needle; and an advancing step of advancing the distal-end portion of the catheter tube 110 through the vasculature of the patient without use of a Seldinger technique. A smaller outer diameter of the first section 120 of the RICC 100 facilitates the inserting step, which requires pushing through at least skin tissue. In addition, the transition between the first section 120 and second section 130 eliminates snagging on at least the skin tissue making it possible to insert the RICC 100 like a peripheral intravenous (“IV”) catheter.


The method further includes a withdrawing step of withdrawing the needle from the RICC 100 after the insertion site-creating step.


The insertion site is at a right subclavian vein or a right internal jugular vein.


The advancing step includes advancing the distal-end portion of the catheter tube 110 through the right subclavian vein or the right internal jugular vein, a right brachiocephalic vein, and into a superior vena cava.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. A rapidly inserted central catheter (“RICC”), comprising: a first section of a catheter tube consisting of a first material having a first durometer, the first section in a distal-end portion of the catheter tube;a second section of the catheter tube consisting of a second material having a second durometer less than the first durometer, the second section in the distal-end portion of the catheter tube proximal of the first section, the first section and the second section of the catheter tube having a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient; anda junction as a third section of the catheter tube including a third material having a third durometer between the first durometer and the second durometer, the junction located between the first section and the second section of the catheter tube and the junction including a tapered distal-end portion, the first section of the catheter tube including a flared proximal-end portion, and the tapered distal-end portion of the junction sitting within the flared proximal-end portion of the first section of the catheter tube.
  • 2. The RICC of claim 1, wherein the junction includes a proximal-end portion, the second section of the catheter tube includes the distal-end portion, and the proximal-end portion of the junction abuts the distal-end portion of the second section of the catheter tube.
  • 3. The RICC of claim 1, wherein the first section and the second section of the catheter tube are welded to the junction in a heat weld.
  • 4. The RICC of claim 1, wherein the first section and the second section of the catheter tube are welded to the junction in a solvent weld.
  • 5. The RICC of claim 1, wherein the RICC includes a necked-down section about the junction, the necked-down section configured to provide a smooth transition between the first section and the second section of the catheter tube.
  • 6. The RICC of claim 1, wherein the first section of the catheter tube is polytetrafluoroethylene, polypropylene, or polyurethane.
  • 7. The RICC of claim 1, wherein the second section of the catheter tube is polyvinyl chloride, polyethylene, polyurethane, or silicone.
  • 8. The RICC of claim 1, wherein the first section of the catheter tube has a single lumen, the second section of the catheter tube has a pair of lumens, and the pair of lumens transitions into the single lumen in the junction.
  • 9. A method of making a rapidly inserted central catheter (“RICC”), comprising: obtaining a first section of a catheter tube consisting of a first material having a first durometer, a second section of the catheter tube consisting of a second material having a second durometer, and a third section of the catheter tube including a third material having a third durometer between the first durometer and the second durometer;flaring a proximal-end portion of the first section of the catheter tube to form a flared proximal-end portion of the first section of the catheter tube;inserting a tapered distal-end portion of the third section of the catheter tube into the flared proximal-end portion of the first section of the catheter tube;abutting a distal-end portion of the second section of the catheter tube and the proximal-end portion of the third section of the catheter tube; andwelding the first, second, and third sections of the catheter tube together to form a junction of the third material between the first section and the second section of the catheter tube.
  • 10. The method of claim 9, wherein welding the second section and the third section of the catheter tube occurs prior to inserting the tapered distal-end portion of the third section of the catheter tube into the flared proximal- end portion of the first section of the catheter tube and welding the first section and the third section of the catheter tube together.
  • 11. The method of claim 9, wherein welding is independently heat welding or solvent welding.
  • 12. The method of claim 9, further comprising tapering a non-tapered distal-end portion of the third section of the catheter tube to form the tapered distal-end portion of the third section of the catheter tube.
  • 13. The method of claim 9, further comprising necking down the catheter tube to form a necked-down section about the junction, the necked-down section configured to provide a smooth transition between the first, second, and third sections of the catheter tube.
  • 14. A method of making a rapidly inserted central catheter (“RICC”), comprising: obtaining a first section of a catheter tube consisting of a first material having a first durometer and a second section of the catheter tube consisting of a second material having second durometer less than the first durometer;flaring a proximal-end portion of the first section of the catheter tube to form a flared proximal-end portion of the first section of the catheter tube;inserting a tapered distal-end portion of the second section of the catheter tube into the flared proximal-end portion of the first section of the catheter tube; andwelding the first section and the second section of the catheter tube together to form a junction between the first section and the second section of the catheter tube.
  • 15. The method of claim 14, wherein welding is heat welding or solvent welding.
  • 16. The method of claim 14, further comprising tapering a non-tapered distal-end portion of the second section of the catheter tube to form the tapered distal-end portion of the second section of the catheter tube.
  • 17. The method of claim 14, further comprising necking down the catheter tube to form a necked-down section about the junction, the necked-down section configured to provide a smooth transition between the first section and the second section of the catheter tube.
  • 18. A rapidly inserted central catheter (“RICC”), comprising: a first section of a catheter tube consisting of a first material having a first durometer, the first section in a distal-end portion of the catheter tube;a second section of the catheter tube consisting of a second material having a second durometer less than the first durometer, the second section in the distal-end portion of the catheter tube proximal of the first section, the first section and the second section of the catheter tube having a column strength sufficient to prevent buckling of the catheter tube when inserted into an insertion site and advanced through a vasculature of a patient; anda junction between the first section and the second section of the catheter tube, the first section of the catheter tube including a flared proximal-end portion, the second section of the catheter tube including a tapered distal-end portion, and the tapered distal-end portion of the second section of the catheter tube sitting within the flared proximal-end portion of the first section of the catheter tube.
  • 19. The RICC of claim 18, wherein the RICC includes a necked-down section about the junction, the necked-down section configured to provide a smooth transition between the first section and the second section of the catheter tube.
  • 20. The RICC of claim 18, wherein the first section of the catheter tube is polytetrafluoroethylene, polypropylene, or polyurethane.
  • 21. The RICC of claim 18, wherein the second section of the catheter tube is polyvinyl chloride, polyethylene, polyurethane, or silicone.
  • 22. The RICC of claim 18, wherein the first section of the catheter tube has a single lumen, the second section of the catheter tube has a pair of lumens, and the pair of lumens transitions into the single lumen in the junction.
  • 23. The RICC of claim 18, wherein the first section and the second section of the catheter tube are welded together in a heat weld, thereby forming the junction between the first section and the second section of the catheter tube.
  • 24. The RICC of claim 18, wherein the first section and the second section of the catheter tube are welded together in a solvent weld, thereby forming the junction between the first section and the second section of the catheter tube.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 62/898,408, filed Sep. 10, 2019, which is incorporated by reference in its entirety into this application.

US Referenced Citations (257)
Number Name Date Kind
1013691 Shields Jan 1912 A
3225762 Guttman Dec 1965 A
3890976 Bazell et al. Jun 1975 A
4205675 Vaillancourt Jun 1980 A
4270535 Bogue et al. Jun 1981 A
4292970 Hession, Jr. Oct 1981 A
4468224 Enzmann et al. Aug 1984 A
4525157 Vaillancourt Jun 1985 A
4581019 Curelaru et al. Apr 1986 A
4661300 Daugherty Apr 1987 A
5017259 Kohsai May 1991 A
5040548 Yock Aug 1991 A
5057073 Martin Oct 1991 A
5112312 Luther May 1992 A
5120317 Luther Jun 1992 A
5188593 Martin Feb 1993 A
5195962 Martin et al. Mar 1993 A
5207650 Martin May 1993 A
5267958 Buchbinder et al. Dec 1993 A
5295970 Clinton et al. Mar 1994 A
5306247 Pfenninger Apr 1994 A
5328472 Steinke et al. Jul 1994 A
5350358 Martin Sep 1994 A
5368567 Lee Nov 1994 A
5378230 Mahurkar Jan 1995 A
5380290 Makower et al. Jan 1995 A
5389087 Miraki Feb 1995 A
5439449 Mapes et al. Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5489271 Andersen Feb 1996 A
5573520 Schwartz et al. Nov 1996 A
5683370 Luther et al. Nov 1997 A
5690613 Verbeek Nov 1997 A
5718678 Fleming, III Feb 1998 A
5772636 Brimhall et al. Jun 1998 A
5885251 Luther Mar 1999 A
5919164 Andersen Jul 1999 A
5947940 Beisel Sep 1999 A
5957893 Luther et al. Sep 1999 A
6206849 Martin et al. Mar 2001 B1
6332877 Michels Dec 2001 B1
6475187 Gerberding Nov 2002 B1
6606515 Windheuser et al. Aug 2003 B1
6716228 Tal Apr 2004 B2
6726659 Stocking et al. Apr 2004 B1
6819951 Patel et al. Nov 2004 B2
6821287 Jang Nov 2004 B1
6926692 Katoh et al. Aug 2005 B2
6962575 Tal Nov 2005 B2
6994693 Tal Feb 2006 B2
6999809 Currier et al. Feb 2006 B2
7025746 Tal Apr 2006 B2
7029467 Currier et al. Apr 2006 B2
7037293 Carrillo et al. May 2006 B2
7074231 Jang Jul 2006 B2
7141050 Deal et al. Nov 2006 B2
7144386 Korkor et al. Dec 2006 B2
7311697 Osborne Dec 2007 B2
7364566 Elkins et al. Apr 2008 B2
7377910 Katoh et al. May 2008 B2
7390323 Jang Jun 2008 B2
D600793 Bierman et al. Sep 2009 S
D601242 Bierman et al. Sep 2009 S
D601243 Bierman et al. Sep 2009 S
7594911 Powers et al. Sep 2009 B2
7691093 Brimhall Apr 2010 B2
7722567 Tal May 2010 B2
D617893 Bierman et al. Jun 2010 S
D624643 Bierman et al. Sep 2010 S
7819889 Healy et al. Oct 2010 B2
7857788 Racz Dec 2010 B2
D630729 Bierman et al. Jan 2011 S
7909797 Kennedy, II et al. Mar 2011 B2
7909811 Agro et al. Mar 2011 B2
7922696 Tal et al. Apr 2011 B2
7938820 Webster et al. May 2011 B2
7967834 Tal et al. Jun 2011 B2
7985204 Katoh et al. Jul 2011 B2
8073517 Burchman Dec 2011 B1
8105286 Anderson et al. Jan 2012 B2
8192402 Anderson et al. Jun 2012 B2
8202251 Bierman et al. Jun 2012 B2
8206356 Katoh et al. Jun 2012 B2
8372107 Tupper Feb 2013 B2
8377006 Tal et al. Feb 2013 B2
8454577 Joergensen et al. Jun 2013 B2
8585858 Kronfeld et al. Nov 2013 B2
8657790 Tal et al. Feb 2014 B2
8672888 Tal Mar 2014 B2
8696645 Tal et al. Apr 2014 B2
8784362 Boutilette et al. Jul 2014 B2
8827958 Bierman et al. Sep 2014 B2
8876704 Golden et al. Nov 2014 B2
8882713 Call et al. Nov 2014 B1
8900192 Anderson et al. Dec 2014 B2
8900207 Uretsky Dec 2014 B2
8915884 Tal et al. Dec 2014 B2
8956327 Bierman et al. Feb 2015 B2
9023093 Pal May 2015 B2
9138252 Bierman et al. Sep 2015 B2
9180275 Helm Nov 2015 B2
9265920 Rundquist et al. Feb 2016 B2
9272121 Piccagli Mar 2016 B2
9522254 Belson Dec 2016 B2
9554785 Walters et al. Jan 2017 B2
9566087 Bierman et al. Feb 2017 B2
9675784 Belson Jun 2017 B2
9713695 Bunch et al. Jul 2017 B2
9764117 Bierman et al. Sep 2017 B2
9770573 Golden et al. Sep 2017 B2
9814861 Boutillette et al. Nov 2017 B2
9820845 von Lehe et al. Nov 2017 B2
9861383 Clark Jan 2018 B2
9884169 Bierman et al. Feb 2018 B2
9889275 Voss et al. Feb 2018 B2
9913585 McCaffrey et al. Mar 2018 B2
9913962 Tal et al. Mar 2018 B2
9950139 Blanchard et al. Apr 2018 B2
9981113 Bierman May 2018 B2
10010312 Tegels Jul 2018 B2
10065020 Gaur Sep 2018 B2
10098724 Adams et al. Oct 2018 B2
10111683 Tsamir et al. Oct 2018 B2
10118020 Avneri et al. Nov 2018 B2
10130269 McCaffrey et al. Nov 2018 B2
10220184 Clark Mar 2019 B2
10220191 Belson et al. Mar 2019 B2
10265508 Baid Apr 2019 B2
10271873 Steingisser et al. Apr 2019 B2
10376675 Mitchell et al. Aug 2019 B2
10675440 Abitabilo et al. Jun 2020 B2
10806901 Burkholz et al. Oct 2020 B2
20010044594 Martin et al. Nov 2001 A1
20020040231 Wysoki Apr 2002 A1
20020198492 Miller Dec 2002 A1
20030036712 Heh et al. Feb 2003 A1
20030060863 Dobak Mar 2003 A1
20030088212 Tal May 2003 A1
20030100849 Jang May 2003 A1
20030153874 Tal Aug 2003 A1
20030158514 Tal Aug 2003 A1
20040116901 Appling Jun 2004 A1
20040193093 Desmond Sep 2004 A1
20040230178 Wu Nov 2004 A1
20050004554 Osborne Jan 2005 A1
20050245882 Elkins et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060009740 Higgins et al. Jan 2006 A1
20060116629 Tal et al. Jun 2006 A1
20060129100 Tal Jun 2006 A1
20060129130 Tal et al. Jun 2006 A1
20080045894 Perchik et al. Feb 2008 A1
20080125744 Treacy May 2008 A1
20080125748 Patel May 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080262431 Anderson et al. Oct 2008 A1
20080294111 Tal et al. Nov 2008 A1
20080312578 DeFonzo et al. Dec 2008 A1
20090221961 Tal et al. Sep 2009 A1
20090270889 Tal et al. Oct 2009 A1
20100256487 Hawkins et al. Oct 2010 A1
20100305474 DeMars et al. Dec 2010 A1
20110004162 Tal Jan 2011 A1
20110009827 Bierman et al. Jan 2011 A1
20110021994 Anderson et al. Jan 2011 A1
20110066142 Tal et al. Mar 2011 A1
20110144620 Tal Jun 2011 A1
20110152836 Riopelle et al. Jun 2011 A1
20110202006 Bierman et al. Aug 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110270192 Anderson et al. Nov 2011 A1
20120041371 Tal et al. Feb 2012 A1
20120065590 Bierman et al. Mar 2012 A1
20120078231 Hoshinouchi Mar 2012 A1
20120130411 Tal et al. May 2012 A1
20120130415 Tal et al. May 2012 A1
20120157854 Kurrus et al. Jun 2012 A1
20120220942 Hall et al. Aug 2012 A1
20120283640 Anderson et al. Nov 2012 A1
20120316500 Bierman et al. Dec 2012 A1
20130012924 Davis et al. Jan 2013 A1
20130053826 Shevgoor Feb 2013 A1
20130123704 Bierman et al. May 2013 A1
20130158338 Kelly et al. Jun 2013 A1
20130188291 Vardiman Jul 2013 A1
20130237931 Tal et al. Sep 2013 A1
20130306079 Tracy Nov 2013 A1
20140025036 Bierman et al. Jan 2014 A1
20140081210 Bierman et al. Mar 2014 A1
20140094741 Bellisario et al. Apr 2014 A1
20140100552 Gallacher et al. Apr 2014 A1
20140180255 LeBlanc et al. Jun 2014 A1
20140207052 Tal et al. Jul 2014 A1
20140207069 Bierman et al. Jul 2014 A1
20140214005 Belson Jul 2014 A1
20140257111 Yamashita et al. Sep 2014 A1
20140276432 Bierman et al. Sep 2014 A1
20140276599 Cully et al. Sep 2014 A1
20150080939 Adams et al. Mar 2015 A1
20150112310 Call et al. Apr 2015 A1
20150126930 Bierman et al. May 2015 A1
20150148595 Bagwell et al. May 2015 A1
20150190168 Bierman et al. Jul 2015 A1
20150196210 McCaffrey et al. Jul 2015 A1
20150224287 Bian et al. Aug 2015 A1
20150283357 Lampropoulos et al. Oct 2015 A1
20150297868 Tal et al. Oct 2015 A1
20150320969 Haslinger et al. Nov 2015 A1
20150351793 Bierman et al. Dec 2015 A1
20150359549 Lenker et al. Dec 2015 A1
20150359998 Carmel et al. Dec 2015 A1
20160082223 Barnell Mar 2016 A1
20160114124 Tal Apr 2016 A1
20160220786 Mitchell et al. Aug 2016 A1
20160325073 Davies et al. Nov 2016 A1
20160338728 Tal Nov 2016 A1
20160346503 Jackson Dec 2016 A1
20170035989 Gilman Feb 2017 A1
20170035990 Swift Feb 2017 A1
20170072165 Lim Mar 2017 A1
20170128700 Roche Rebollo May 2017 A1
20170172653 Urbanski et al. Jun 2017 A1
20170239443 Abitabilo et al. Aug 2017 A1
20170273713 Shah et al. Sep 2017 A1
20170326339 Bailey et al. Nov 2017 A1
20170361070 Hivert Dec 2017 A1
20180021545 Mitchell et al. Jan 2018 A1
20180116690 Sarabia May 2018 A1
20180117284 Appling et al. May 2018 A1
20180133438 Hulvershorn et al. May 2018 A1
20180154062 DeFonzo et al. Jun 2018 A1
20180154112 Chan et al. Jun 2018 A1
20180193042 Wilson et al. Jul 2018 A1
20180296799 Horst et al. Oct 2018 A1
20180296804 Bierman Oct 2018 A1
20190015646 Matlock et al. Jan 2019 A1
20190060616 Solomon Feb 2019 A1
20190076167 Fantuzzi et al. Mar 2019 A1
20190134349 Cohn et al. May 2019 A1
20190255294 Mitchell et al. Aug 2019 A1
20190276268 Akingba Sep 2019 A1
20190321590 Burkholz et al. Oct 2019 A1
20200016374 Burkholz et al. Jan 2020 A1
20210121661 Howell Apr 2021 A1
20210121667 Howell Apr 2021 A1
20210322729 Howell Oct 2021 A1
20210330941 Howell et al. Oct 2021 A1
20210330942 Howell Oct 2021 A1
20210361915 Howell et al. Nov 2021 A1
20210402149 Howell Dec 2021 A1
20210402153 Howell et al. Dec 2021 A1
20220001138 Howell Jan 2022 A1
20220032013 Howell et al. Feb 2022 A1
20230126869 Sepulveda et al. Apr 2023 A1
20230132903 Sepulveda et al. May 2023 A1
20230233796 Howell Jul 2023 A1
20230233800 Howell et al. Jul 2023 A1
Foreign Referenced Citations (72)
Number Date Country
0730880 Sep 1996 EP
2061385 May 2009 EP
1458437 Mar 2010 EP
2248549 Nov 2010 EP
2319576 May 2011 EP
2366422 Sep 2011 EP
2486880 Aug 2012 EP
2486881 Aug 2012 EP
2486951 Aug 2012 EP
2512576 Oct 2012 EP
2152348 Feb 2015 EP
3093038 May 2019 EP
2260897 Sep 2019 EP
1273547 May 1972 GB
9421315 Sep 1994 WO
9532009 Nov 1995 WO
9844979 Oct 1998 WO
9853871 Dec 1998 WO
9912600 Mar 1999 WO
9926681 Jun 1999 WO
2003008020 Jan 2003 WO
2003057272 Jul 2003 WO
2003066125 Aug 2003 WO
2006055288 May 2006 WO
2006055780 May 2006 WO
2007046850 Apr 2007 WO
2008033983 Mar 2008 WO
2008092029 Jul 2008 WO
2008131300 Oct 2008 WO
2008131289 Oct 2008 WO
2009114833 Sep 2009 WO
2009114837 Sep 2009 WO
2010048449 Apr 2010 WO
2010056906 May 2010 WO
2010083467 Jul 2010 WO
2010132608 Nov 2010 WO
2011081859 Jul 2011 WO
2011097639 Aug 2011 WO
2011146764 Nov 2011 WO
2012068162 May 2012 WO
2012068166 May 2012 WO
2012135761 Oct 2012 WO
2012162677 Nov 2012 WO
2013026045 Feb 2013 WO
2013138519 Sep 2013 WO
2014006403 Jan 2014 WO
2014100392 Jun 2014 WO
2014113257 Jul 2014 WO
2014152005 Sep 2014 WO
2014197614 Dec 2014 WO
2015057766 Apr 2015 WO
2016110824 Jul 2016 WO
2016123278 Aug 2016 WO
2016139590 Sep 2016 WO
2016139597 Sep 2016 WO
2016176065 Nov 2016 WO
2018089275 May 2018 WO
2018089285 May 2018 WO
2018089385 May 2018 WO
2018191547 Oct 2018 WO
2018213148 Nov 2018 WO
2018218236 Nov 2018 WO
2019146026 Aug 2019 WO
2019199734 Oct 2019 WO
2020069395 Apr 2020 WO
2021050302 Mar 2021 WO
2021062023 Apr 2021 WO
2021077103 Apr 2021 WO
2021081205 Apr 2021 WO
2021086793 May 2021 WO
2023069553 Apr 2023 WO
2023081314 May 2023 WO
Non-Patent Literature Citations (27)
Entry
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Final Office Action dated May 30, 2018.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Jan. 25, 2019.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Non-Final Office Action dated Nov. 2, 2017.
U.S. Appl. No. 15/008,628, filed Jan. 28, 2016 Notice of Allowance dated May 15, 2019.
PCT/US2021/039843 filed Jun. 30, 2021 International Search Report and Written Opinion dated Nov. 11, 2021.
PCT/US2021/044029 filed Jul. 30, 2021 International Search Report and Written Opinion dated Dec. 9, 2021.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Final Office Action dated Jan. 25, 2022.
PCT/US2020/057397 filed Oct. 26, 2020 International Search Report and Written Opinion dated Mar. 10, 2021.
U.S. Appl. No. 16/398,020, filed Apr. 29, 2019 Non-Final Office Action dated May 11, 2021.
PCT/US2021/028018 filed Apr. 19, 2021 International Search Report and Written Opinion dated Sep. 13, 2021.
PCT/US2021/028683 filed Apr. 22, 2021 International Search Report and Written Opinion dated Sep. 16, 2021.
PCT/US2021/029183 filed Apr. 26, 2021 International Search Report and Written Opinion dated Sep. 24, 2021.
PCT/US2021/033443 filed May 20, 2021 International Search Report and Written Opinion dated Sep. 23, 2021.
PCT/US2020/048583 filed Aug. 28, 2020 International Search Report and Written Opinion dated Nov. 13, 2020.
PCT/US2020/052536 filed Sep. 24, 2020 International Search Report and Written Opinion dated Dec. 4, 2020.
PCT/US2020/056364 filed Oct. 19, 2020 International Search Report and Written Opinion dated Jan. 19, 2021.
PCT/US2020/056864 filed Oct. 22, 2020 International Search Report and Written Opinion dated Jan. 14, 2021.
PCT/US2020/057202 filed Oct. 23, 2020 International Search Report and Written Opinion dated Jan. 21, 2021.
PCT/US2021/014700 filed Jan. 22, 2021 International Search Report and Written Opinion dated Jun. 29, 2021.
PCT/US2021/039084 filed Jun. 25, 2021 International Search Report and Written Opinion dated Jan. 10, 2022.
U.S. Appl. No. 17/077,728, filed Oct. 22, 2020 Non-Final Office Action dated Feb. 9, 2022.
PCT/US2022/047179 filed Oct. 19, 2022 International Search Report and Written Opinion dated Apr. 18, 2023.
PCT/US2022/048881 filed Nov. 3, 2022 International Search Report and Written Opinion dated Mar. 31, 2023.
PCT/US2023/010971 filed Jan. 17, 2023 International Search Report and Written Opinion dated Jul. 28, 2023.
PCT/US2023/010972 filed Jan. 17, 2023 International Search Report and Written Opinion dated May 30, 2023.
Yamada, T. et al., “Selective Hemi-Portocaval Shunt Based on Portal Vein Pressure for Small-for-Size Graft in Adult Living Donor Liver Transplantation.” American Journal of Transplantation, Blackwell Munksgaard, DK, vol. 8, no. 4, Feb. 5, 2008 [Feb. 5, 2008] pp. 847-853.
EP 20862936.0 filed Mar. 28, 2022 Extended European Search Report dated Sep. 19, 2023.
Related Publications (1)
Number Date Country
20210069471 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
62898408 Sep 2019 US