The present invention relates to tools for turning threaded fasteners such as bolts, nuts, studs, and the like, and more particularly relates to a combination wrench having a ratchet extraction wrench box for removing threaded fasteners that have heads that have been rounded off or otherwise damaged.
It is well known to use extraction tools to remove threaded fasteners, such as a screw or bolt, that have been damaged to an extent that a standard wrench, screwdriver, alien wrench or other torque producing tool can no longer securely grip the fastener. These extraction tools often accomplish the extraction of the fastener through the use of “teeth” made up of angled faces located within an opening in the tool. To remove a fastener, the teeth partially cut into and grasp the fastener such that the damaged fastener is rotated with the extraction tool.
Typically, the extraction tools are rotated by a by a separate socket wrench that releasably engages an aperture in the extraction tool to apply torque thereto. A separate standard open or box wrench or adjustable wrench that engages the periphery of the extraction tool can also be used to apply torque to the extraction tool. Extraction tools typically are designed to be attached to a socket wrench on one end, and to be placed over a fastener at the other end. Thus, one end of the extraction tool typically will have an opening that is sized to be releasably engaged by the socket wrench, while the other end will have an opening that is sized to engage a fastener to be removed. For very large fasteners, the extraction tool may be more difficult to fabricate, since it requires a pair of openings machined into the tool whose sizes vary greatly from each other. Alternatively, the extraction tools may be designed having a male post that is releasably engaged by the chuck of a torque producing tool such as a power drill. With either design, a separate torque producing tool is required to turn the extraction tool. Moreover, a significant amount of space surrounding the fastener being removed is required in order to accommodate the extraction tool and separate torque producing tool. Finally, the need for a separate torque producing tool increases the complexity of the fastener extraction process and requires the user to have available a variety of different sized extraction heads and torque producing tools.
Accordingly, it would be desirable to have an extraction tool that overcomes one or more of the disadvantages and limitations described above.
The invention consists of a combination wrench having a standard open-type or box-type wrench at one end thereof and a ratcheting extraction box at the other end thereof. The ratcheting extraction box is provided with a fastener extraction head that has an interior bore extending inwardly from a receiving opening. The bore has a plurality of helically-shaped grooves extending from the receiving end and curved radially and inwardly towards the central axis of the bore. Adjacent grooves form sharp ridges that extend in a helical fashion inside the bore. When the fastener extraction is placed over a fastener head, the ridges “bite” into the material of the fastener. Because the extraction head is formed as an integral part of the wrench there is no need to have a separate torque producing tool. Moreover, because a separate torque producing tool is not required and the wrench of the invention has a narrow profile when compared to existing extraction devices, the ratchet extraction wrench of the invention can be used in much tighter spaces.
An embodiment of a ratchet extraction wrench 2 for removing threaded fasteners that have been damaged is shown in
Body portion 4 has a second end 14 defining a ratchet extraction wrench box 16. As shown in greater detail in
Extraction head 40 consists of an annular shaped body 42 dimensioned to be closely but freely received in opening 20. Extraction head 40 is dimensioned such that the top and bottom surfaces of extraction head 40 are substantially flush with the top and bottom surfaces of second end 14 such that the extraction head does not extend outside of the profile of the wrench.
The outer surface 44 of body 42 is formed with an annular groove 46 that faces with groove 22 in opening 20 when the extraction head 40 is located in opening 22. The outer surface 44 also has teeth 48 formed thereon that extend about the outer periphery of head 40 and mate with teeth 32 on pawl 28. The teeth 48 and teeth 32 are formed such that when the extraction head is rotated in a first direction the teeth act as camming surfaces moving the pawl 28 against spring 30 and out of engagement with the extraction head 40 thereby allowing the extraction head to turn relative to body portion 14. When the extraction head 40 is rotated in the opposite direction teeth 48 and teeth 32 are configured to lock into engagement with one another thereby preventing the relative rotation between head 40 and body portion 14. Because head 40 is designed to extract fasteners, the teeth 32 and teeth 48 are arranged such that the head is locked relative to the wrench portion when the handle is turned in a direction to loosen the fastener being engaged. For most fasteners the head is locked when the wrench is rotated in a counter-clockwise direction. If the fastener is to be employed with a fastener having reverse threads the teeth would be configured to prevent rotation of the extraction head 40 in the clockwise direction.
To secure the extraction head 40 in opening 22 a deformable, resilient locking ring 38 is provided that is dimensioned to be received in the groove 46 formed in head 40. When the head is inserted into opening 20, the locking ring is compressed so as to be able to fit within opening 20. When groove 22 is aligned with groove 46, the ring 38 expands to its original non-compressed size such that it extends into groove 46. Ring 38 is dimensioned such that it extends into both grooves 22 and 46 in its normal non-compressed state thereby permanently locking extraction head 40 into opening 22. Permanently as used herein means that in normal use extraction head 40 is not removed from the body 4 and head 40 cannot be removed without disassembling or destroying the extraction wrench.
The extraction head 40 preferably is made of 4150 hardened steel, although in alternate embodiments other hardened steels may be used that have a hardness in the range approximately 50 to 60 Rockwell C. In other embodiments powdered metals may also be used to make the fastener extraction.
Referring to
The bore 58 and the grooves 60 define a generally frusto-conical receiving area 64. The receiving area 64 angles inwardly from the receiving end 56 towards the first end 54. This angle, known as a draft angle and depicted as A in
The wrench of the invention has been shown and described as having a standard open-type or box-type wrench at one end thereof and the ratchet extraction wrench box 16 at the other end thereof. The standard wrench could be replaced by a second ratchet extraction wrench box 16 such that the wrench would have the ratcheting feature at both ends thereof. In this embodiment one ratchet extraction wrench box 16 would preferably be dimensioned to receive fasteners of a first dimension range and the second ratchet extraction wrench box 16 would be dimensioned to receive fasteners of a second dimension range different than the first dimension range.
The fastener extraction wrench is shown with reference to a fastener having a right-hand thread. Those skilled in the art, however, will readily recognize the fastener extraction may be used to extract fasteners having left-hand threads by merely reversing the orientation of the grooves 60 and reversing the orientation of teeth 32 and teeth 48. Rotation of the fastener extraction relative to the fastener during loosening will cause the ridges to bite into the fastener. Because of the orientation of the ridges, further rotation will cause the fastener extraction to be seated more firmly upon the fastener due to the decreasing diameter of the receiving area. The ridges are designed to deform the material of the fastener as greater force is applied to the wrench such that the ridges bite or dig into the material of the fastener. The wrench of the invention operates in a ratcheting manner and greatly simplifies the extraction process because a single tool is used to provide both the extraction tool and the torque producing tool.
Once a fastener is extracted and is no longer in contact with the fastener extraction, the arcuate shape of the grooves and surfaces prevent large amounts of fastener material from remaining within the bore. There are no sharp crevices or creases for fastener material to get caught. Although a surface finish is not required, the surface finish of the bore preferably is made of an R16 surface finish in order to provide a smooth surface to further prevent material build up. In alternate embodiments, moreover, other suitable finishes that provide for smoothness of the bore may also be used.
An alternate embodiment of the extraction head is shown at 70 in
The wrench of the invention could also be used to screw on a threaded fastener rather than unscrew the fastener as previously described. It is contemplated that in certain applications it may be desireable to reattach a fastener that has been removed even though the fastener is damaged to an extent that a standard torque producing tool can no longer securely grip the fastener. In order to tighten a damaged fastener the insertion head 90 shown in
Moreover, the head 70 of
Another embodiment of the wrench of the invention is shown in
Thus it can be seen that the present ratcheting extraction wrench provides a simple and highly effective device for applying torque to extract a fastener that has a head that has been rounded off or otherwise damaged. The extraction wrench of the invention may be utilized alone without the need for any other torque producing tools. As will be readily appreciated, the extraction wrench may be built to various sizes in order to be used with a wide range of fasteners. While embodiments of the invention are disclosed herein, various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein.
This application claims priority under 35 U.S.C. 119(e) from co-pending provisional patent application Ser. No. 60/634,312, filed Dec. 8, 2004, by the inventors hereof, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1590200 | McGluckin | Jun 1926 | A |
3161090 | McLellan | Dec 1964 | A |
3996819 | King | Dec 1976 | A |
4440047 | Robbins | Apr 1984 | A |
4607547 | Martus | Aug 1986 | A |
4671141 | Hanson | Jun 1987 | A |
4781082 | Swertz | Nov 1988 | A |
4947712 | Brosnan | Aug 1990 | A |
4991468 | Lee | Feb 1991 | A |
5499560 | Aeschliman | Mar 1996 | A |
5551320 | Horobec et al. | Sep 1996 | A |
5737981 | Hildebrand | Apr 1998 | A |
5857390 | Whiteford | Jan 1999 | A |
5931064 | Gillespie | Aug 1999 | A |
5979274 | Hsieh | Nov 1999 | A |
6003411 | Knox et al. | Dec 1999 | A |
6044944 | Adams et al. | Apr 2000 | A |
6047620 | Kozak et al. | Apr 2000 | A |
6134990 | Ling et al. | Oct 2000 | A |
6230591 | Ling et al. | May 2001 | B1 |
6339976 | Jordan | Jan 2002 | B1 |
6389931 | Delaney et al. | May 2002 | B1 |
6598498 | Pigford et al. | Jul 2003 | B1 |
6644148 | Hu | Nov 2003 | B1 |
6666112 | Hu | Dec 2003 | B1 |
6732614 | Hu | May 2004 | B1 |
6745647 | Wang | Jun 2004 | B1 |
6807882 | Hu | Oct 2004 | B1 |
6877402 | Pigford et al. | Apr 2005 | B1 |
20050150331 | Horobec | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060117912 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
60634312 | Dec 2004 | US |