The present invention relates generally to ratchets, and more particularly to a ratchet that includes an improved, substantially silent mechanism for stopping reversal of motion.
Conventional ratchet tools are constructed with a bar or wheel with teeth that are engaged by a pawl to prevent reversal of motion. As a result, a conventional ratchet tool can be rotated freely in a first direction (no engagement of the pawl) while being stopped from rotation in a second opposite direction. This type of mechanism is useful to tighten fasteners such as a bolt. The ratchet engages the bolt head and the user can rotate the ratchet in one direction freely without driving the bolt head. However, when rotating the ratchet in a second, opposite direction, the ratchet does not rotate freely and drives the bolt head.
Drawbacks with conventional ratchets include an undesirable clicking sound when the ratchet is rotated in the first, non-bolt-head-driving direction. In addition, conventional pawl mechanisms have certain structural limits wherein they fail if a certain level of force is applied to the ratchet during operation.
Accordingly, it would be useful to provide a ratchet with a substantially silent movement-prevention mechanism when the ratchet is used to drive a fastener. A general object of the present invention is to provide such a mechanism for a ratchet. More specifically, objects of the invention include to provide such a mechanism that can be: (1) used without producing a clicking sound during operation; (2) incorporated into various ratchet designs; (3) used to withstand the highest levels of force that can be applied manually to a ratchet; and (4) incorporated into ratchet designs in a cost-effective way.
The invention may be characterized as a substantially silent movement-prevention mechanism for a ratchet. Put another way, the invention may be characterized as a ratchet with a handle and a head that includes a substantially silent movement-prevention mechanism. The mechanism includes a first component that defines a path, and a second component that is locatable in the path and moves bidirectionally within it. The path is constructed to include plural regions that prevent movement by the second component to allow the ratchet to drive a desired fastener. The first component is constructed to define a path, or plural paths, with a central region that allows movement of the second component and outer, opposing regions that prevent movement of the second component. The second component is formed as a roller or plural rollers. The central region of the path includes a subregion constructed to position the second component in a beginning location in the central region. The subregion may be formed as a depression in the path.
Various features and other objects and advantages which are attained by the invention will become more fully apparent after consideration of the accompanying drawings and the detailed description of the preferred embodiment which follows.
Referring to
Referring to
Referring to
Referring back to
Still referring to
Referring to
Tight tolerances are required to achieve the best results with the invention, and dimensions that have been found acceptable are shown below and refer to the letter references shown in
Any suitable material can be used to construct ratchet 14 and mechanism 10, but the presently preferred materials are as follows: 01 tool steel for second component 46 (also referred to herein as a triangle component); 5160 steel for handle 16; 52100 steel for rollers 30; and GS51 plastic (including 30% glass fibers) for first component 44. In addition, all screws, springs and detents/recesses are preferably made from stainless steel. To form the above-described mechanism components from steel, suitable machining techniques should be used including heat treatment of second component 44 and rollers 30 to provide elasticity.
By using the above materials and forming the above components, ratchets made according to the invention have been used to meet the accepted ANSI standard of being able to pull 165 ft. lbs. as compared to conventional ratchets whose maximum capability is 60-70 ft. lbs. before failing.
Referring to
The basic idea in operation is that there is not a true neutral to a ratchet made with the mechanism of the invention. The pre-loaded position is the starting point for engagement, and then turning of the knob causes the ratchet to be locked for clockwise or counterclockwise driving of a fastener such as a bolt.
The disclosure set forth above encompasses multiple distinct embodiments of the invention. While each of these embodiments has been disclosed in specific form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of this disclosure thus includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
This application is a continuation of U.S. patent application Ser. No. 11/204,906, filed Aug. 15, 2005, which is a continuation of U.S. patent application Ser. No. 10/644,972, filed Aug. 19, 2003 and entitled “Ratchet with Substantially Silent Movement-Prevention Mechanism”, which claims priority to U.S. Provisional Application Ser. No. 60/404,572, filed Aug. 19, 2002 and entitled “Ratchet”. The subject matter of the above-identified applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60404572 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11204906 | Aug 2005 | US |
Child | 11521817 | Sep 2006 | US |
Parent | 10644972 | Aug 2003 | US |
Child | 11204906 | Aug 2005 | US |