RATCHET WRENCH

Information

  • Patent Application
  • 20160176024
  • Publication Number
    20160176024
  • Date Filed
    December 17, 2014
    9 years ago
  • Date Published
    June 23, 2016
    8 years ago
Abstract
A ratchet wrench comprising a housing, at least one gear supported within the housing, one of the at least one gear comprising a drive hole, a stationary handle extending from the housing, a dynamic handle hingedly extending from the housing such that, the dynamic handle is rotatable between at least one handle open position and a handle closed position, and at least one pawl, each of the at least one pawl adapted to slide between a pawl open position and a pawl closed position, one of the at least one pawl adapted to be in engagement with one of the at least one gear at a time. The dynamic handle disposed in operative communication with the at least one pawl such that, rotating the dynamic handle towards the handle closed position causes the at least one gear rotate in one direction and releasing the dynamic handle causes pawl to return to the pawl open position without causing the at least one gear to rotate in the opposite direction.
Description
BACKGROUND
Field of the Invention

The present invention relates to mechanical tools and implements, and more particularly, to an improved ratchet wrench that negates the need for the user to physically rotate the wrench once the wrench is engaged to a rotary fastener such as, a nut or a bolt, so as to fasten or unfasten the same.


A conventional ratchet wrench, as well known in the art, improves over a simple wrench in a way that a user is no longer needed to disengage the drive or grip hole of the wrench from the rotary fastener (such as, a nut, a bolt, or the like) when tightening or loosening the same. In other words, rotating the ratchet wrench opposite to the intended direction (for fastening or unfastening) while engaged to the fastener doesn't result in the fastener being rotated in the non-intended direction owing to the arrangement of the gear and the pawl that meshes with the gear in only one direction of the rotation of the gear. Although, a ratchet wrench greatly eases the operation, it must be acknowledged that a conventional ratchet wrench still needs to be manually rotated in clockwise and counter-clockwise directions in order to get the fastening done. This could be an issue when using the ratchet wrench in tighter spaces, where manual rotation is limited. All in all, with all the technological advancement at one's disposal, a ratchet wrench that betters a conventional ratchet wrench by negating the need for the user to manually rotate the wrench to and fro would be a welcome product in the art.


SUMMARY

The present invention comprises an improved ratchet wrench that performs fastening and unfastening of rotary fasteners (such as, a bolt, a nut, etc.) while keeping the ratchet wrench stationary. The ratchet wrench comprises three gears, viz., a first gear, a second compound gear, and a drive gear wherein, the first gear meshes with the second gear and the second gear meshes with the drive gear, which comprises a drive hole for receiving the head of a rotary fastener.


The ratchet wrench further comprises a slidable pawl that is adapted to engage the first gear in one direction towards a pawl closed position so as to rotate the first gear and thereby the drive hole. The pawl, when slid in the opposite direction (to the pawl closed position) towards a pawl open position, disengagingly slides against the teeth of the first gear whereby, first gear and consequentially the drive hole remains stationary. The pawl is driven by a dynamic handle towards the pawl closed position whereby, the user, by simply operating the dynamic handle can effect the rotation of the drive. Releasing the dynamic handle causes the pawl to fall back to the pawl closed position.


Other objects and advantages of the embodiments herein will become readily apparent from the following detailed description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1, according to an embodiment of the present invention, is an illustration of a perspective view of the ratchet wrench.



FIG. 2, according to an embodiment of the present invention, is an illustration of a plan view of the ratchet wrench.



FIG. 3, according to an embodiment of the present invention, is an illustration of a perspective view of the ratchet wrench with the components therewithin being visible.



FIG. 4, according to an embodiment of the present invention, is an illustration of a plan view of the ratchet wrench with the components therewithin being visible.



FIG. 5, according to an embodiment of the present invention, is an illustration of an exploded perspective view of the ratchet wrench.



FIG. 6, according to an embodiment of the present invention, is an illustration of a plan view of the housing.



FIG. 7, according to an embodiment of the present invention, is an illustration of a perspective view of the housing.



FIG. 8, according to an embodiment of the present invention, is an illustration of a plan view of the slide track.



FIG. 9, according to an embodiment of the present invention, is an illustration of a perspective view of the housing with the stationary handle.



FIG. 10, according to an embodiment of the present invention, is an illustration of a plan view of the housing with the stationary handle.



FIG. 11, according to an embodiment of the present invention, is an illustration of a plan view of the arrangement of the gears.



FIG. 12, according to an embodiment of the present invention, is an illustration of a perspective view of a pawl.



FIG. 13, according to an embodiment of the present invention, is an illustration of a pawl being at pawl open position with respect to the corresponding slide track.



FIG. 14, according to an embodiment of the present invention, is an illustration of a pawl being at pawl closed position with respect to the corresponding slide track.



FIG. 15, according to an embodiment of the present invention, is an illustration of a perspective view of the dynamic handle.



FIGS. 16 through 18, according to an embodiment of the present invention, are sequential illustrations of the dynamic handle at the first handle open position, handle closed position, and the second handle open position.





FIGURES—REFERENCE NUMERALS



10—Ratchet Wrench



12—Housing



14—Drive Hole



16—Stationary Handle



18—Dynamic Handle



20—Side Wall



22—Circumferential Wall



24—Opening



26—Slide Track



28—Engagement Track



30—Disengagement Track



32—Distal Boundary



34—Transition Slope



36—Proximal Boundary



38—Stationary Bar



40—First Gear



42—Second Gear



44—Drive Gear



46—Smaller Gear



48—Larger Gear



50—Pawl



52—Projection Member



54—Hollow Section



56—Dynamic Bar



58—Bias Spring



60—Bias Rod


DETAILED DESCRIPTION

In the following detailed description, a reference is made to the accompanying drawings that form a part hereof, and in which the specific embodiments that may be practiced is shown by way of illustration. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments and it is to be understood that the logical, mechanical and other changes may be made without departing from the scope of the embodiments. The following detailed description is therefore not to be taken in a limiting sense.


The present invention comprises an improved ratcheting wrench or, simply ratchet wrench that negates the need for the user to manually rotate the handle of the ratchet wrench (when engaged with a rotary fastener, such as, a nut, bolt, etc.) in order to fasten or unfasten the rotary fastener.


Referring to FIGS. 1 and 2, the ratchet wrench 10 comprises a housing 12, a drive hole 14 (or alternatively, a drive head) accessible through the housing 10, and a pair of elongate handles viz., a stationary handle 16 and a dynamic handle 18 extending from the housing 10. As can be appreciated from FIG. 2, squeezing the dynamic handle 18 against the stationary handle 16 causes the drive hole 14 to rotate. Upon releasing the dynamic handle 18, the dynamic handle 18 returns to the former position by causing the ‘ratcheting effect’, as a result of which, the drive hole 14 remains stationary. The other components of the wrench 10 and the mutual operative communication therebetween will become apparent from the following body of text.


Referring to FIGS. 3 through 7, the housing 12 comprises a pair of flat side walls 20, each of which defined by a curved circumferential edge, and a circumferential wall 22 extending perpendicularly between the curved edges. While the circumferential wall 22 extends integrally from one side wall 20, the other side wall 20 may either be removably snap-fitted or fastened to the circumferential wall 22 so as to access the internal components within the housing 10 for maintenance or repairing purposes. The housing 12 further comprises a pair of opposingly-disposed flat, planar layer members (not shown), which are disposed parallel to the side walls 20. Each layer member comprises a thorough arc-shaped slide track disposed thereon wherein, the utility of the slide track will become apparent from the following body of text. Further, a portion of the opposingly-disposed top and bottom edges of a proximal portion of circumferential wall are cut off to form arc-shaped openings 24 wherein, the utility of the arc-shaped openings will be discussed in the following body of text.


Referring to FIG. 8, each slide track 26 is divided into a wider engagement track 28 and a narrower disengagement track 30 extending integrally from one extremity of the engagement track 28. As can appreciated from the referred drawings, the engagement and the disengagement tracks 28 and 30 share a common arc-shaped distal boundary 32 while a smooth, shallow transition slope 34 serves as a transition between the arc-shaped proximal boundaries 36 thereof. While the curvature-based orientation (concave vs. convex) of both the slider tracks 26 remains the same, the directions of the slider tracks 26 are reversed. More particularly, while one the slider track 26 proceeds from the engagement to the disengagement tracks 28 and 30 clockwise, the other slider track 26 proceeds from the disengagement to the engagement tracks 30 and 28 clockwise.


Referring to FIGS. 9 and 10, a substantially flat elongate stationary bar 38 integrally extends from a proximal edge of each side wall 20. The free ends of the stationary bars 38 are integrally joined together wherein, the pair of stationary bars 38 together makes up the aforementioned stationary handle 16. In one embodiment, the lateral edges of each stationary bar comprise a series of alternative crests and troughs for ergonomic reasons.


Referring to FIGS. 3 through 5, and 11, the wrench 10 further comprises three gears supported within housing 12 and each of which disposed parallel to the pair of side walls 20. The three gears comprise a first gear 40, a second gear 42, and a drive gear 44, wherein, the first gear 40 meshes with the second gear 42 and the second gear 42, in turn, meshes with the drive gear 44.


The second gear 42 comprises a compound gear wherein, more particularly, the first gear 40 meshes with the smaller gear 46, while the drive gear 44 meshes with the larger gear 48. Notably, the gear shafts of the first and second gears 40 and 42 extend through the layer members as the gear shafts are supported between the pair of side walls 20. The drive gear 44 comprises the drive hole 14, the either sides of which accessible through the side walls. In one embodiment, a drive head may be employed in lieu of the drive hole 14. Notably, the drive gear 44 is wider (or thicker) than the first and the second gears 40 and 42.


Referring to FIGS. 3 through 5, and 12, the wrench 10 further comprises two opposingly-disposed pawls 50, viz., a first and a second pawl, that are adapted to engage the first gear 40 in one direction and ratchet in the opposite direction. More particularly, the pawls 50 are configured such that, if the first pawl 50 engages first gear 40 in the clockwise direction, the second pawl 50 engages the first gear 40 in the counter-clockwise direction. Particularly, as can be appreciated from FIG. 12, each pawl 50 comprises an elongate cylindrical projection member 52 extending laterally therefrom wherein, the projection member 52 is adapted to be slidably received within the slide track 26. Each projection member 52 is adapted to be loosely received within the engagement track 28, while snugly received within the disengagement track 30. Each pawl 50 is adapted to be snugly and slidably disposed between the pair of layer members as the corresponding projection member 52 is slidably received within the corresponding slide track 26. The wrench 10 is configured such that, each pawl 50, when not ratcheting, engages the first gear 40 in the engagement track 28 (FIG. 8) and disengages the first gear in the disengagement track 30 (FIG. 8). More particularly, the narrower disengagement track 30 (FIG. 8) precludes the angular movement of the pawl 50 towards the first gear 40 (i.e., the forward movement) thereby keeping the pawl 50 disengaged from the first gear 40.


Referring to FIGS. 3 through 5, 8, and 12 through 14, notably, within the engagement track 28, each pawl 50 is slidably movable between a pawl open position and a pawl closed position wherein, in the pawl open position, the projection member 52 is at an extremity of the engagement track 28 which is farthest from the point of entry of the disengagement track 30 (ref. FIG. 13) and wherein, in the pawl closed position, the projection member 52 is at an extremity of the engagement track 28 which is nearest to the point of entry of the disengagement track 30 (ref. FIG. 14).


Referring to FIGS. 3 through 5, and 15 through 18, the dynamic handle 18 comprises elongate hollow section 54 and a pair of opposingly-disposed, parallel, elongate, substantially flat dynamic bars 56 integrally extending from an extremity of the hollow section 54. The hollow section 54 comprises a cylindrical chamber disposed therewithin wherein, the chamber is adapted to snugly receive a helical compression bias spring 58 therewithin. The free ends of the dynamic bars 56 are adapted to be hingedly secured to the gear shaft of the first gear 40 such that, the first gear 40 and the pair of layer members are disposed between the dynamic bars 56. The dynamic bars 56 extend through the pair of openings 24 as the dynamic handle 18 hingedly extends from within the housing 12. The dynamic handle 18 is configured such that, each dynamic bar 56 abuts the free end portion of the projection member 52 projecting through the slide track 26 at any given time. The dynamic handle 18, about the gear shaft of the first gear 40, is rotably movable between a first handle open position (FIG. 16), which is at one extremity of the openings 24, a mid handle closed position (FIG. 17), which is between the stationary bars 38 of the stationary handle 16, and a second handle open position (FIG. 18), which is at another extremity of the openings 24. In other words, the handle closed position (FIG. 17) bifurcates the first and second handle open positions (FIG. 16 and FIG. 18).


Referring to FIGS. 3 through 5, the wrench 10 further comprises a bias rod 60 that hingedly extends from a portion of the circumferential wall 22 between the pair of stationary bars 38. The other extremity of the bias rod 60 is hingedly secured to an extremity of the bias spring 58 whereby, the dynamic handle 18 is biased towards either the first handle open position (FIG. 16) or the second handle open position (FIG. 18).


Referring to FIGS. 3 through 5, and 16 through 18, the pawls 50 and the dynamic handle 18 are arranged such that, when the dynamic handle 18 is at the first handle open position (FIG. 16), the projection member 52 of the first pawl 50 is disposed within the engagement track 28 (FIG. 8) engaging the first gear 40 while the projection member 52 of the oppositely-disposed second pawl 50 is disposed within the disengagement track 30 (FIG. 8) of the opposingly-disposed slide track 26. As the dynamic handle 18 is rotated from the first handle open position (FIG. 16) to the handle closed position (FIG. 17), the first pawl 50, as propelled by the dynamic handle 18 and owing to the engagement thereof to the first gear 40 rotates the first gear 40 causing the drive hole 14 to rotate consequentially. Notably, as the dynamic handle 18 is rotated from the first handle open position (FIG. 16) to the handle closed position (FIG. 17), the second pawl 50 slides within the disengagement track 30 (FIG. 8). As the dynamic handle 18 is released, the dynamic handle 18 returns to the first handle open position (FIG. 16), which causes the first pawl 50 to slide towards the pawl open position (FIG. 13). Along the way, the ratchet of the first pawl 50, owing to the first pawl 50 being hinged, slides or ratchets against the teeth of the first gear 40 thereby not rotating the first gear 40, and consequentially the drive hole 14 in the opposite direction.


Referring to FIGS. 3 through 5, and 16 through 18, once the dynamic handle 18 is rotated to the second handle open position (FIG. 18) from the handle closed position (FIG. 17), the first pawl 50 is propelled by the dynamic handle 18 into the disengagement track 30 (FIG. 8) at which point, the second pawl 50 is simultaneously propelled into the engagement track 28 (FIG. 8) of the opposing the slide track 26. Similar to what is discussed earlier, as the dynamic handle 18 is rotated from the second handle open position (FIG. 18) to the handle closed position (FIG. 17), the second pawl 50 as propelled by the dynamic handle 18 and owing to the engagement thereof to the first gear 40 rotates the first gear 40 causing the drive hole 14 to rotate consequentially, but in the opposite direction. Notably, as the dynamic handle 18 is rotated from the second handle open position (FIG. 18) to the handle closed position (FIG. 17), the first pawl 50 slides within the disengagement track 30 (FIG. 8) thereof. As the dynamic handle 18 is released, the dynamic handle 18 returns to the second handle open position (FIG. 18), which causes the second pawl 50 to slide towards the pawl open position (FIG. 14). Along the way, the ratchet of the second pawl 50, owing to the second pawl 50 being hinged, slides or ratchets against the teeth of the first gear 40 thereby not rotating the first gear 40, and consequentially the drive hole 14 in the other direction.


The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the appended claims.


Although the embodiments herein are described with various specific embodiments, it will be obvious for a person skilled in the art to practice the invention with modifications. However, all such modifications are deemed to be within the scope of the claims.

Claims
  • 1. A ratchet wrench comprising: (a) a housing;(b) at least one gear supported within the housing, one of the at least one gear comprising either a drive hole or a drive head accessible through or via the housing respectively;(c) an elongated stationary handle fixedly extending from the housing;(d) an elongated dynamic handle hingedly extending from the housing such that, the dynamic handle is rotatable between at least one handle open position and a handle closed position, the dynamic handle biased towards one of the at least one handle open position at a time; and(e) at least one pawl, each of the at least one pawl adapted to slide between a pawl open position and a pawl closed position, each of the at least one pawl biased towards the pawl closed position, the tooth of one of the at least one pawl adapted to be in engagement with one of the at least one gear at a time, each of the at least one pawl propelled to the pawl closed position by the dynamic handle as the dynamic handle is rotated towards the handle closed position from one of the at least one handle open position;wherein, as a result of the engagement between one of the at least one gear and one of the at least one pawl, rotating the dynamic handle towards the handle closed position causes the at least one gear rotate in one direction and wherein, releasing the dynamic handle causes pawl to return to the pawl open position without causing the at least one gear to rotate in the opposite direction.
  • 2. The wrench of claim 1 wherein, the housing comprises: (a) a pair of opposingly-disposed side walls, the side walls being parallel to one another, the at least one gear supported between the pair of side walls, the drive hole or the drive head accessible through or via the at least one of the side walls respectively; and(b) a circumferential wall extending between the side walls so as to form a substantially closed enclosure.
  • 3. The wrench of claim 2 wherein, each of the at least one gear is supported by a gear shaft that perpendicularly extends between the pair of side walls; the dynamic handle hingedly extending from a gear shaft such that, the dynamic handle rotates thereabout.
  • 4. The wrench of claim 2 wherein, each side wall comprises a substantially flat planar member.
  • 5. The wrench of claim 2 wherein, the stationary handle comprises a pair of opposingly-disposed elongate bars, each of which extending from an extremity of a side wall; the elongate bars joined at the free ends thereof.
  • 6. The wrench of claim 5 further comprising: (a) a bias rod hingedly connected to the circumferential wall between the pair of elongate bars; and(b) a bias spring disposed within the dynamic handle, one end of the bias spring hingedly secured to the free end of the bias rod, the bias spring and the bias rod mechanism for biasing the dynamic handle towards the each of the at least one handle open position at a time.
  • 7. The wrench of claim 1 wherein, the at least one gear comprises three gears viz., a first gear, a second gear, and a drive gear, which comprises either the drive hole or the drive head, the first gear adapted to mesh with the second gear and the second gear adapted to mesh with the drive gear; the at least one pawl adapted to engage the first gear.
  • 8. The wrench of claim 7 wherein, the second gear comprises a compound gear; the smaller compound gear adapted to mesh with the first gear, while the larger compound gear adapted to mesh with the drive gear.
  • 9. The wrench of claim 1 wherein, the at least one pawl comprises a pair of opposingly-disposed pawls, viz., a first and a second pawl.
  • 10. The wrench of claim 9 wherein, the at least one handle open position comprises a pair handle open positions viz., a first and a second handle open position wherein, the dynamic handle is configured to propel the first pawl from the corresponding pawl open position to the pawl closed position thereof as the dynamic handle is rotated from first handle open position to handle closed position and wherein, the dynamic handle is configured to propel the second pawl from the corresponding pawl open position to the pawl closed position thereof as the dynamic handle is rotated from the second handle open position to handle closed position; the direction of the movement of the pawls from the respective pawl open to pawl closed positions being opposite to one another.
  • 11. The wrench of claim 10 wherein, the first and second handle open positions are angularly bifurcated by the handle closed position.
  • 12. The wrench of claim 10 wherein, the dynamic handle is received within the stationary handle in the handle closed position.
  • 13. The wrench of claim 10 configured such that, the first pawl is disengaged with one of the at least one gear as the second pawl is engaged therewith.
  • 14. The wrench of claim 1 wherein, each of the at least one pawl comprises a projection member extending laterally therefrom, the projection member adapted to be received within an angular engagement track that extends between the pawl open position and the pawl closed position thereby enabling the pawl to slide between the pawl open position and the pawl closed position as propelled by the dynamic handle; the dynamic handle configured to be in contact with a projection member so as to propel the projection member and thereby the corresponding pawl.
  • 15. The wrench of claim 15 further comprises a curved disengagement track that integrally extends from a engagement track wherein, a projection member is adapted to be received within the disengagement track when not disposed within the engagement track; a pawl within the disengagement track configured to be disengaged with the one of the at least one gear.
  • 16. A ratchet wrench comprising: (a) a housing;(b) three gears viz., a first gear, a second gear, and a drive gear, the drive gear comprising either the drive hole or the drive head accessible through or via the housing respectively, the first gear adapted to mesh with the second gear and the second gear adapted to mesh with the drive gear;(c) an elongated stationary handle fixedly extending from the housing;(d) an elongated dynamic handle hingedly extending from the housing such that, the dynamic handle is rotatable between a first handle open position, a mid handle closed position, and a second handle open position, the dynamic handle biased towards one of the handle open positions at a time; and(e) two pawls, viz., a first and a second pawl, each pawl adapted to slide between a pawl open position and a pawl closed position, each pawl biased towards the pawl closed position, one of the two pawls adapted to be in engagement with the first gear at a time, a pawl engaged to the first gear is slid from the pawl open position to the pawl closed position as propelled by the rotation of the dynamic handle from the handle open position to the handle closed position;wherein, as a result of the engagement between the first gear and a pawl, rotating the dynamic handle towards the handle closed position causes the first gear, and thereby, the drive gear, to rotate in one direction and wherein, releasing the dynamic handle causes the pawl to return to the corresponding pawl open position without causing the first gear, and thereby, the drive gear, to rotate in the opposite direction.