1. Field
The present invention relates generally to communication, and more specifically to techniques for selecting rates for data transmission in a communication system.
2. Background
In a communication system, a transmitter may transmit multiple streams of data via multiple transmission channels to a receiver. The transmission channels may be formed in the spatial domain, frequency domain, time domain, or a combination thereof. For example, the multiple transmission channels may correspond to different spatial channels in a multiple-input multiple-output (MIMO) communication system, different frequency subbands in an orthogonal frequency division multiplex (OFDM) communication system, or different time slots in a time division multiplex (TDM) communication system.
The transmission channels may experience different channel conditions (e.g., different fading, multipath, and interference effects) and may achieve different signal-to-noise ratios (SNRs). The SNR of a transmission channel determines its transmission capability, which is typically quantified by a particular data rate that may be reliably transmitted on the transmission channel. If the SNR varies from transmission channel to transmission channel, then the supported data rate would also vary from channel to channel. Furthermore, if the channel conditions vary with time, then the data rates supported by the transmission channels would also vary with time.
A major challenge in a coded communication system is selecting the appropriate rates to use for the multiple data streams based on the channel conditions. As used herein, a “rate” may indicate a particular data rate or information bit rate, a particular coding scheme, a particular modulation scheme, and so on to use for a data stream. The rate selection should maximize the overall throughput for the multiple transmission channels while meeting certain quality objectives, which may be quantified by a target packet error rate (PER).
There is therefore a need in the art for techniques to select suitable rates for data transmission on multiple transmission channels.
Techniques for performing rate selection with margin sharing are described herein. According to an embodiment of the invention, a method is provided in which SNR estimates are initially determined for multiple data streams. Rates are then selected for the data streams based on the SNR estimates and such that at least one data stream has negative SNR margin, each remaining data stream has a non-negative SNR margin, and the total SNR margin for all data streams is non-negative.
According to another embodiment, an apparatus is described which includes a channel estimator and a controller. The channel estimator determines SNR estimates for multiple data streams. The controller selects rates for the data streams based on the SNR estimates and such that at least one data stream has negative SNR margin, each remaining data stream has a non-negative SNR margin, and the total SNR margin for all data streams is non-negative.
According to yet another embodiment, an apparatus is described which includes means for determining SNR estimates for multiple data streams and means for selecting rates for the data streams based on the SNR estimates and such that at least one data stream has negative SNR margin, each remaining data stream has a non-negative SNR margin, and the total SNR margin for all data streams is non-negative.
According to yet another embodiment, processor readable media is provided for storing instructions operable in an apparatus to obtain SNR estimates for multiple data streams and to select rates for the data streams based on the SNR estimates and such that at least one data stream has negative SNR margin, each remaining data stream has a non-negative SNR margins, and the total SNR margin for all data streams is non-negative.
According to yet another embodiment, a method is provided in which an SNR estimate is initially determined for each of multiple transmission channels usable for data transmission. The total SNR margin is then determined for each of multiple rate combinations based on the SNR estimates for the transmission channels. Each rate combination is associated with a specific number of data streams to transmit, a specific rate for each data stream, and a specific overall throughput. A rate combination is selected from among the multiple rate combinations based on the total SNR margins and the overall throughputs for these rate combinations.
According to yet another embodiment, an apparatus is described which includes a channel estimator and a controller. The channel estimator determines an SNR estimate for each of multiple transmission channels usable for data transmission. The controller determines the total SNR margin for each of multiple rate combinations based on the SNR estimates for the transmission channels and selects a rate combination from among the multiple rate combinations based on the total SNR margins and the overall throughputs for these rate combinations.
According to yet another embodiment, an apparatus is described which includes means for determining an SNR estimate for each of multiple transmission channels usable for data transmission, means for determining the total SNR margin for each of multiple rate combinations based on the SNR estimates for the transmission channels, and means for selecting a rate combination from among the multiple rate combinations based on the total SNR margins and the overall throughputs for these rate combinations.
Various aspects and embodiments of the invention are described in further detail below.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
The rate selection with margin sharing techniques described herein may be used for various communication systems with multiple transmission channels. For example, these techniques may be used for a MIMO system, an OFDM-based system, a TDM system, a MIMO system that utilizes OFDM (i.e., a MIMO-OFDM system), and so on. A MIMO system employs multiple (T) transmit antennas at a transmitter and multiple (R) receive antennas at a receiver for data transmission. A MIMO channel formed by the T transmit antennas and R receive antennas may be decomposed into S spatial channels, where S≦min {T, R}. S transmission channels may be formed with the S spatial channels. An OFDM system effectively partitions the overall system bandwidth into multiple (K) orthogonal subbands, which are also called tones, subcarriers, bins, and frequency channels. Each subband is associated with a respective carrier that may be modulated with data. K transmission channels may be formed with the K subbands. A MIMO-OFDM system has S spatial channels for each of the K subbands. Up to S·K transmission channels may be formed with the spatial channels of the subbands in the MIMO-OFDM system. A TDM system may transmit data in frames, where each frame may have multiple (Q) time slots. Q transmission channels may be formed for the Q time slots in each frame.
In general, multiple transmission channels may be formed in various manners. For clarity, much of the following description is for a MIMO-OFDM system, and each transmission channel may correspond to a wideband spatial channel (described below). Each transmission channel may be used to send one data stream.
A transmitter unit (TMTR) 132 processes the T transmit symbol streams and generates T modulated signals, which are transmitted from T antennas and via a first communication link 148. Communication link 148 distorts the modulated signals with a channel response and further degrades the modulated signals with additive white Gaussian noise (AWGN) and possibly interference from other transmitters.
At receiver 150, R antennas receive the transmitted signals and provide R received signals to a receiver unit (RCVR) 160. Receiver unit 160 conditions and digitizes the R received signals and further processes the samples in a manner complementary to the processing performed by transmitter unit 132. Receiver unit 160 provides received pilot symbols to a channel estimator 172 and R streams of received data symbols to a receive (RX) spatial processor 170. Channel estimator 172 derives a channel estimate for communication link 148 and provides the channel estimate to RX spatial processor 170. RX spatial processor 170 performs receiver spatial processing (or spatial matched filtering) on the R received data symbol streams with the channel estimate and provides M detected symbol streams, which are estimates of the M data symbol streams sent by transmitter 110. An RX data processor 180 processes (e.g., symbol demaps, deinterleaves, and decodes) the M detected symbol streams in accordance with the M rates selected for these streams and provides decoded data, which is an estimate of the traffic data sent by transmitter 110. RX data processor 180 may further provide decoding results (e.g., the status of each received packet and/or decoder metrics) to a rate selector 182.
For rate control, channel estimator 172 may process the received pilot symbols (and possibly the detected data symbols) and determine SNR estimates for the M streams. Rate selector 182 receives the SNR estimates and the decoding results, selects a suitable rate for each stream, and provides M selected rates for the M streams to a controller 190. Controller 190 sends rate information (e.g., the M selected rates) and possibly other information (e.g., acknowledgments for received packets) via a second communication link 152 to transmitter 110. Controller 140 at transmitter 110 receives the rate information and provides the M rates to TX data processor 120.
For the MIMO-OFDM system, the MIMO channel between the transmitter and the receiver may be characterized by a set of K channel response matrices, H(k) for k=1, . . . , K. Each channel response matrix H(k) has a dimension of R×T and contains a complex gain between each transmit antenna and each receive antenna for subband k. Each matrix H(k) includes S spatial channels, where S≦min {T, R}. S orthogonal spatial channels (or eigenmodes) may be obtained for each subband k by decomposing H(k), as described below. In any case, up to S wideband spatial channels may be formed for the MIMO channel, where each wideband spatial channel includes one spatial channel for each of the K subbands. For example, each wideband spatial channel may correspond to the K subbands of one transmit antenna. As another example, each wideband spatial channel may include one eigenmode for each of the K subbands. Each wideband spatial channel may be used as a transmission channel.
The frequency response of each transmission channel m may be given by hm(k) for k=1, . . . , K, where hm(k) is the complex channel gain for subband k of transmission channel m. For simplicity, it is assumed that hm(k) is constant across subband k. The received SNR for each subband of each transmission channel may be expressed as:
where Pm(k) is the transmit power used for subband k of transmission channel m;
N0 is the noise variance at the receiver; and
γm(k) is the received SNR for subband k of transmission channel m.
Equation (1) shows a simple expression for received SNR. In general, a received SNR expression may include terms for various factors. For example, in a MIMO system, the received SNR is dependent on the spatial processing performed by the transmitter and the receiver, as described below. For simplicity, the noise variance N0 is assumed to be constant across the K subbands. The received SNR in equation (1) is given in units of decibel (dB). All of the SNR computation described below is also in units of dB unless noted otherwise.
The transmitter may transmit one data stream on each of M transmission channels, where S≧M≧1. The number of data streams to transmit may be selected based on various factors such as the channel conditions, the achievable overall throughput, and so on. The rates for the M data streams may be selected in various manners. In general, the rate control with margin sharing techniques may be used for (1) a system with independent rate per stream, whereby the rate for each stream can be independently selected, and (2) a system with a vector-quantized rate set, whereby only certain combinations of rates are allowed.
The rate for each data stream may be selected based on the received SNRs for the transmission channel used to send that data stream. An embodiment for selecting the rate for each data stream (for blocks 310 and 312) is described below. For this embodiment, the received SNRs for all of the subbands of each transmission channel are first determined, e.g., based on the received pilot symbols.
The average SNR for each data stream/transmission channel may be computed as:
where γavg,m is the average SNR for data stream m, in units of dB.
The variance of the received SNRs for each data stream may be computed as:
where σsnr,m2 is the SNR variance for data stream m.
The effective SNR for each data stream may be computed as:
SNReff(m)=γavg,m−γbo,m for m=1, . . . , M, Eq (4)
where γbo,m is a back-off factor for data stream m; and
SNReff(m) is the effective SNR (or SNR estimate) for data stream m.
The back-off factor γbo,m is used to account for various factors such as variability in the received SNRs across a transmission channel. The back-off factor may be a function of the average SNR and the SNR variance, or γbo,m=F(γavg,m, σsnr,m2). For example, the back-off factor may be defined as: γos,m=Kbo·σsnr,m2, where Kbo is a constant. The back-off factor may also be defined based on system specific factors such as the diversity, coding schemes, interleaving schemes, packet sizes, and so on used for the data streams.
The system may support a specific set of rates. Each supported rate is associated with a particular minimum SNR required to achieve the desired level of performance (e.g., 1% PER for a non-fading, AWGN channel). A look-up table may store the supported rates and the required SNR for each supported rate. The effective SNR for each data stream may be compared against the required SNRs for the supported rates. The supported rate with the highest data rate and a required SNR that is less than or equal to the effective SNR is then selected for the data stream.
Table 1 lists an exemplary set of 14 rates supported by the system, which are given rate indices 0 through 13. Each rate is associated with a specific spectral efficiency, a specific code rate, a specific modulation scheme, and a specific required SNR. The spectral efficiency refers to the data rate (or information bit rate) normalized by the system bandwidth, and is given in units of bits per second per Hertz (bps/Hz). The code rate and the modulation scheme for each rate in Table 1 are for a specific system design. The null rate with index 0 has a zero data rate (or no data transmission). For each non-null rate with a non-zero data rate, the required SNR is obtained based on the specific system design (i.e., the code rate, interleaving scheme, modulation scheme, and so on used by the system for that rate) and for an AWGN channel. The required SNR may be obtained by computation, computer simulation, empirical measurements, and so on, as is known in the art. For each non-null rate, the SNR gap is the difference between the required SNR for that rate and the required SNR for the next higher rate. Since the rate with index 13 is the highest supported rate, its SNR gap is set to infinity or some other large value.
M rates may be initially selected for the M data streams as described above and denoted as Rm for m=1, . . . , M. In the following description, rate Rm and rate index Rm are used interchangeably. The required SNR for the rate initially selected for each data stream is less than or equal to the effective SNR for that stream. Each data stream thus has a non-negative SNR margin, which may be expressed as:
SNRmargin(m)=SNReff(m)−SNRreg(Rm), for m=1, . . . , M Eq (5)
where
Rm is the rate initially selected for data stream m;
SNRreg(Rm) is the required SNR for rate Rm; and
SNRmargin(m) is the SNR margin for data stream m.
The total SNR margin for all M data streams may be expressed as:
The amount of SNR margin that may be passed from any one stream to other stream(s) may be limited to a predetermined maximum value, e g, SNRmargin(m)≦SNRmarginmax=2 dB. This may be achieved by limiting SNRmargin(m) for each stream m in equation (6) to be within SNRmarginmax. SNRmarginmax may be fixed for all streams or may be a function of rate, code rate, modulation scheme, stream index, and so on, which may be different for each stream. Limiting SNRmargin(m) can reduce the variation in the SNR margins for the M streams. The total SNR margin may also be limited to another predetermined maximum value, e.g., SNRtotal
The transmitter may encode the traffic data using a single base code to generate code bits, then parse the code bits into M streams, and further process (e.g., puncture and symbol map) the code bits for each stream in accordance with the rate selected for that stream, as described below. The receiver may perform the complementary processing, reassemble the detected symbols for the M streams, and decode the reassembled detected symbols. A sequence/packet of detected symbols to be decoded at the receiver may consist of groups of detected symbols that are generated with different rates. The outcome of each decoded bit is typically affected by the received SNRs for adjacent and nearby detected symbols. If the detected symbols for the M streams are decoded together, then the SNR margins for these streams may be shared among the streams in order to achieve a higher overall throughput. The margin sharing reallocates the total SNR margin with the goal of achieving a higher rate on at least one stream. Several embodiments of margin sharing are described below.
Stream m, which is the stream with the highest effective SNR that has not been considered, is selected (block 416). The SNR needed to promote stream m to the next higher rate is determined (block 418), as follows:
where Rmin is the lowest supported rate, which is rate index 0 in Table 1;
Rmax is the highest supported rate, which is rate index 13 in Table 1; and
SNRpromote(m) is the SNR needed to promote stream m to the next higher rate assuming that the SNR margin on stream m has been removed.
If the effective SNR for stream m is less than −1.8 dB, then the null rate Rmin is initially selected for stream m. The SNR to promote stream m to the lowest non-null rate with index 1 is equal to the difference between the required SNR for rate index 1 and the effective SNR for stream m. If the highest supported rate Rmax is initially selected for stream m, then setting SNRpromote(m) to infinity or a large value ensures that the total SNR margin will not be sufficient to promote stream m.
A determination is then made whether the total SNR margin is greater than or equal to the SNR needed to promote stream m to the next higher rate (block 420). If the answer is ‘Yes’, then the next higher rate is selected for stream m (block 422), and the total SNR margin is updated (block 424), as follows:
SNRtotal
After block 424, and also if the answer is ‘No’ for block 420, a determination is made whether all M streams have been considered (block 426). If the answer is ‘No’, then stream index m is incremented (block 428), and the process returns to block 416 to consider the stream with the next lower effective SNR. Otherwise, if all M streams have been considered, then the process terminates. Although not shown in
For the first embodiment of margin sharing shown in
The SNR needed to initially select a higher rate for each stream in block 312 of
If the null rate Rmin is initially selected for stream m, then SNRdiff(m) is equal to the SNR needed to promote stream m to the lowest non-null rate. If the highest supported rate Rmax is initially selected for stream m, then setting SNRdiff(m) to infinity or a large value ensures that stream m will be selected last for margin sharing. The amount of SNR that may be reallocated to any one stream may be limited to SNRre-allomax, as described above. In this case, if the differential SNR for any stream is greater than SNRre-allomax, then the differential SNR may be set to infinity so that the stream will not be promoted.
The M streams are then sorted based on their differential SNRs, with the first stream having the lowest differential SNR and the last stream having the highest differential SNR (block 512). The stream index m is initialized to 1 (block 514).
Stream m, which is the stream with the lowest differential SNR that has not been considered, is selected (block 516). The SNR needed to promote stream m to the next higher rate is then determined as shown in equation (7) (block 518). The total SNR margin is computed with the assumption that rate Rm is initially selected for stream m, and the SNR margin for stream m is included in the total SNR margin. Thus, SNRpromote(m) and not SNRdiff(m) is needed to select the next higher rate Rm+1 for stream m. A determination is then made whether the total SNR margin is greater than or equal to the SNR needed to promote stream m to the next higher rate (block 520). If the answer is ‘Yes’, then the next higher rate is selected for stream m (block 522), and the total SNR margin is updated as shown in equation (8) (block 524).
After block 524, and also if the answer is ‘No’ for block 520, a determination is made whether all M streams have been considered (block 526). If the answer is ‘No’, then stream index m is incremented (block 528), and the process returns to block 516 to consider the stream with the next lower differential SNR. Otherwise, if all M streams have been considered, then the process terminates. The process may also terminate if the total SNR margin is zero or a small value (not shown in
In a fourth embodiment of margin sharing for a system with independent rate per stream, the SNR needed to promote each stream to the next higher rate is initially computed as shown in equation (7). The M streams are then ordered based on their promote SNRs, with the first stream having the lowest promote SNR and the last stream having the highest promote SNR. The M streams are then considered one at a time and in a sequential order starting with the stream having the lowest promote SNR. The fourth embodiment attempts to promote streams having smaller promote SNRs first, which may allow more streams to be promoted.
The margin sharing embodiments described above are for a system in which the rate for each stream can be independently selected. This allows the total SNR margin to be reallocated to any stream. The rate for each stream is adjusted to the next higher rate index Rm+1 if allowed by the total SNR margin.
The rate for a stream may also be promoted more than one rate index higher. In an embodiment, the rate for each stream may be promoted as much as possible based on the total SNR margin. For example, instead of calculating SNRpromote(m) for stream m, the highest rate with a required SNR that is smaller than SNReff(m)+SNRtotal
A system may allow only certain combinations of rates, e.g., in order to reduce the amount of rate information to send back to the transmitter. The set of rate combinations allowed by the system is often called a vector-quantized rate set. Table 2 shows an exemplary vector-quantized rate set for a system in which the transmitter can transmit up to four data streams. For this rate set, rate identifiers (IDs) 0 through 13 are for transmission of one data stream and are given in Table 1 as rate indices 0 through 13, respectively, rate IDs 14 through 24 are for transmission of two data streams, rate IDs 25 through 35 are for transmission of three data streams, and rate IDs 36 through 43 are for transmission of four data streams. For each rate ID, the number of streams to transmit (Num Str), the rate to use for each stream, and the overall throughput (OTP)/overall spectral efficiency are given in Table 2. As an example, for rate ID 31, the overall throughput is 12.0 bps/Hz, three streams are transmitted, rate 12 (256 QAM and code rate ¾) is used for stream 1, rate 9 (64 QAM and code rate ⅔) is used for stream 2, and rate 5 (16 QAM and code rate ½) is used for stream 3.
Rate control with margin sharing may be performed in various manners in a system with a vector-quantized rate set. Several embodiments are described below.
The rate combination(s) with the highest overall throughput and non-negative total SNR margins are identified (block 614). Multiple rate combinations may be identified in block 614 if the rate set has more than one rate combination with the same overall throughput. For example, the rate set shown in Table 2 has five rate combinations with an overall throughput of 12.0 bps/Hz. The identified rate combination with the largest total SNR margin is selected for use (block 616). Data is then transmitted using the selected rate combination (block 618).
The effective SNR for each of l transmission channels used to transmit l data streams is determined (block 714). As noted above, the effective SNR computation may be dependent on the spatial processing performed by the transmitter and the receiver for the l streams. The total SNR margin for each rate combination with l streams and an overall throughput greater than or equal to max_otp is determined (block 716), e.g., as described above for block 612 in
The rate combination with the highest overall throughput and the largest positive total SNR margin is then selected from among all evaluated rate combinations with l streams (block 718), e.g., as described above for blocks 614 and 616 in
If the answer is ‘No’ for block 720, then a determination is made whether (1) the highest overall throughput for l streams is equal to the current maximum overall throughput and (2) the total SNR margin for rate combination RC(l) exceeds the current max margin by a predetermined amount, which is denoted as Δmargin (block 722). If rate combination RC(l) for l streams and another rate combination RC(j) for fewer than l streams can achieve the same overall throughput, then rate combination RC(l) may be selected if it has a higher total SNR margin by the predetermined amount. Otherwise, rate combination RC(j) with fewer streams may be selected in order to (1) reduce the processing at the transmitter and the receiver and (2) increase protection from crosstalk among the streams. If the answer is ‘Yes’ for block 722, then the rate combination RC(l), the overall throughput for RC(l), and the total SNR margin for RC(l) are saved as max_RC, max_otp, and max_margin, respectively, in block 724.
If the answer is ‘No’ for block 722, and also after block 724, a determination is made whether all different numbers of streams have been evaluated (block 726). If the answer is ‘No’, then index l is incremented (block 728), and the process returns to block 714 to evaluate the next higher number of streams. Otherwise, if all different numbers of streams have been evaluated, then rate combination max_RC is selected for use, and data is transmitted using this selected rate combination (block 730).
Although not shown in
In a third embodiment for selecting rates in a system with a vector-quantized rate set, a total required SNR is computed for each rate combination as the sum of the required SNRs for the specified rates for all of the streams in that rate combination. The total required SNRs and the overall throughputs for all rate combinations in the rate set may be stored in a look-up table. For rate selection, a total effective SNR is computed as the sum of the effective SNRs for all of the transmission channels that may be used for data transmission. The rate combination with the highest overall throughput and a total required SNR that is less than or equal to the total effective SNR is then selected for use. This embodiment does not limit the amount of SNR margin that may be re-allocated to each stream.
As noted above, the rate selection with margin sharing techniques may be used for various systems and for various types of transmission channels. In a MIMO system, different transmission channels may be formed with the transmitter performing different spatial processing such as, e.g., eigensteering, no steering, and spatial spreading.
For eigensteering, the channel response matrix H(k) for each subband may be diagonalized via eigenvalue decomposition, as follows:
R(k)=HH(k)·H(k)=E(k)·Λ(k)·EH(k), Eq (10)
where E(k) is a unitary matrix of eigenvectors, Λ(k) is a diagonal matrix, and “H” denotes the conjugate transpose. The transmitter may transmit data on up to S orthogonal spatial channels (or eigenmodes) of each subband k using the steering matrix E(k). The diagonal matrix Λ(k) for each subband k contains the power gains for the S eigenmodes of H(k). The channel response matrix H(k) for each subband may also be diagonalized via singular value decomposition as H(k)=U(k)·Σ(k)·EH(k), where U(k) is a unitary matrix of left singular vectors, E(k) is a unitary matrix of right singular vectors (which is also the matrix of eigenvectors), and Σ(k) is a diagonal matrix of channel gains for the S eigenmodes of H(k).
For no steering, the transmitter transmits data without any spatial processing, e.g., transmits one data stream from each transmit antenna. For spatial spreading, the transmitter transmits data with different steering matrices V(k) that vary over the frequency band, so that the data transmission observes an ensemble of effective channels.
Table 3 shows the spatial processing performed by the transmitter for eigensteering, no steering, and spatial spreading. In Table 3, subscript “es” denotes eigensteering, “ns” denotes no steering, and “ss” denotes spatial spreading. The processing shown in Table 3 is for a given subband, and thus, the subband index k is omitted for clarity. s is a vector with up to S data symbols to be sent on one subband in one symbol period. xx is a vector with up to T transmit symbols to be sent from the T transmit antennas on one subband in one symbol period for mode x, where “x” may be “es”, “ns” or “ss”. Hx is an effective channel response matrix observed by the data vector s for mode x.
x
es = E · s
x
ns = s
x
ss = V · s
H
es = H · E
H
ns = H
H
ss = H · V
The received symbols obtained by the receiver may be expressed as:
r=H·xx+n=Hx·s+n, Eq(11)
where rx is a vector of received symbols for mode x and n is a vector of noise, which may be assumed to be AWGN with a variance of σn2.
Table 4 shows the spatial processing performed by the receiver to obtain detected symbols ŝ, which are estimates of the transmitted data symbols in s. The full channel state information (full-CSI) technique may be used for eigensteering. The channel correlation matrix inversion (CCMI) and minimum mean square error (MMSE) techniques may be used for eigensteering, no steering, and spatial spreading. For each technique, the receiver derives a spatial filter matrix M for each subband based on the actual or effective channel response matrix for that subband. The receiver then performs spatial matched filtering on the received symbols with the spatial filter matrix.
Table 4 also shows the received SNR for each subband k of transmission channel m. For the full-CSI technique, λm(k) is the m-th diagonal element of Λ(k). For the CCMI technique, rm(k) is the m-th diagonal element of Rx(k)=HxH(k)·Hx(k). For the MMSE technique, qm(k) is the m-th diagonal element of Mmmse(k)·Hx(k).
At receiver 850, R antennas 858a through 858r receive the modulated signals from transmitter 810, and each antenna provides a received signal to a respective receiver unit (RCVR) 860. Each receiver unit 860 performs processing complementary to the processing performed by transmitter units 832 and provides received symbols. An RX spatial processor 870 performs spatial matched filtering on the received symbols from all R receiver units 860 (e.g., with a spatial filter matrix derived using the full-CSI, CCMI, or MMSE technique) and provides M detected symbol streams. An RX data processor 880 processes (e.g., symbol demaps, deinterleaves, and decodes) the detected symbols and provides decoded data to a data sink 886.
Channel estimators 838 and 888 perform channel estimation for transmitter 810 and receiver 850, respectively. Controllers 840 and 890 control the operation of various processing units at transmitter 810 and receiver 850, respectively. Memory units 842 and 892 store data and program codes used by controllers 840 and 890, respectively.
For rate selection with margin sharing, channel estimator 888 estimates the response of the MIMO channel from transmitter 810 to receiver 850 and determines the received SNRs for the spatial channels of the MIMO channel. Controller 890 selects the rates for the M data streams based on the received SNRs, adjusts one or more of the rates upward with margin sharing, and provides rate information. The rate information is processed by a TX data processor 894 and a TX spatial processor 896, conditioned by transmitter units 860, and sent via antennas 858 to transmitter 810. At transmitter 810, the modulated signals from receiver 850 are received by T antennas 834, conditioned by T receiver units 832, and further processed by an RX spatial processor 844 and an RX data processor 846 to obtain the rate information from receiver 850. Controller 840 receives the rate information and provides the selected rates to TX data processor 820.
M stream processors 930a through 930m receive the M streams of code bits from parser 920. Each stream processor 930 includes a puncturing unit 932, an interleaver 934, and a symbol mapping unit 936. Puncturing unit 932 punctures (or deletes) as many code bits in its stream as necessary to achieve a selected code rate for the stream. Interleaver 934 interleaves (or reorders) the code bits from puncturing unit 932 based on an interleaving scheme. Symbol mapping unit 936 maps the interleaved bits in accordance with a selected modulation scheme and provides modulation symbols. The code rate and modulation scheme for each stream are determined by the rate selected for the stream, e.g., as shown in Table 1. M stream processors 930a through 930m provide M streams of data symbols to TX spatial processor 830.
The rate selection with margin sharing techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the processing units used to perform rate selection with margin sharing may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
For a software implementation, the rate selection with margin sharing may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit (e.g., memory units 142 and/or 192 in
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel feature disclosed herein.
This application is a divisional application of, and claims the benefit of priority from, U.S. patent application Ser. No. 11/128,698, entitled “Rate Selection with Margin Sharing” and filed May 12, 2005, which is assigned to the assignee of this application and which is fully incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4736371 | Tejima et al. | Apr 1988 | A |
4750198 | Harper | Jun 1988 | A |
4797879 | Habbab et al. | Jan 1989 | A |
5239677 | Jasinski | Aug 1993 | A |
5241544 | Jasper et al. | Aug 1993 | A |
5295159 | Kerpez | Mar 1994 | A |
5404355 | Raith | Apr 1995 | A |
5422733 | Merchant et al. | Jun 1995 | A |
5471647 | Gerlach et al. | Nov 1995 | A |
5479447 | Chow et al. | Dec 1995 | A |
5491837 | Haartsen | Feb 1996 | A |
5493712 | Ramesh et al. | Feb 1996 | A |
5506861 | Bottomley | Apr 1996 | A |
5509003 | Snijders et al. | Apr 1996 | A |
5528581 | De Bot | Jun 1996 | A |
5606729 | Damico et al. | Feb 1997 | A |
5638369 | Ayerst et al. | Jun 1997 | A |
5677909 | Heide | Oct 1997 | A |
5729542 | Dupont | Mar 1998 | A |
5790550 | Peeters et al. | Aug 1998 | A |
5818813 | Saito et al. | Oct 1998 | A |
5822374 | Levin | Oct 1998 | A |
5832387 | Bae et al. | Nov 1998 | A |
5859875 | Kato et al. | Jan 1999 | A |
5867478 | Baum et al. | Feb 1999 | A |
5867539 | Koslov | Feb 1999 | A |
5883887 | Take et al. | Mar 1999 | A |
5886988 | Yun et al. | Mar 1999 | A |
5959965 | Ohkubo et al. | Sep 1999 | A |
5973638 | Robbins et al. | Oct 1999 | A |
5982327 | Vook et al. | Nov 1999 | A |
6005876 | Cimini, Jr. et al. | Dec 1999 | A |
6011963 | Ogoro | Jan 2000 | A |
6049548 | Bruno et al. | Apr 2000 | A |
6067290 | Paulraj et al. | May 2000 | A |
6072779 | Tzannes et al. | Jun 2000 | A |
6084915 | Williams | Jul 2000 | A |
6097771 | Foschini | Aug 2000 | A |
6115354 | Weck | Sep 2000 | A |
6122247 | Levin et al. | Sep 2000 | A |
6131016 | Greenstein et al. | Oct 2000 | A |
6141388 | Servais et al. | Oct 2000 | A |
6141542 | Kotzin et al. | Oct 2000 | A |
6141567 | Youssefmir et al. | Oct 2000 | A |
6144711 | Raleigh et al. | Nov 2000 | A |
6154661 | Goldburg | Nov 2000 | A |
6163296 | Lier et al. | Dec 2000 | A |
6167031 | Olofsson et al. | Dec 2000 | A |
6175588 | Visotsky et al. | Jan 2001 | B1 |
6178196 | Naguib et al. | Jan 2001 | B1 |
6192256 | Whinnett | Feb 2001 | B1 |
6205410 | Cai | Mar 2001 | B1 |
6222888 | Kao et al. | Apr 2001 | B1 |
6232918 | Wax et al. | May 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6275543 | Petrus et al. | Aug 2001 | B1 |
6278726 | Mesecher et al. | Aug 2001 | B1 |
6292917 | Sinha et al. | Sep 2001 | B1 |
6298035 | Heiskala | Oct 2001 | B1 |
6298092 | Heath, Jr. et al. | Oct 2001 | B1 |
6308080 | Burt et al. | Oct 2001 | B1 |
6314113 | Guemas | Nov 2001 | B1 |
6314289 | Eberlein et al. | Nov 2001 | B1 |
6317612 | Farsakh | Nov 2001 | B1 |
6330277 | Gelblum et al. | Dec 2001 | B1 |
6330293 | Klank et al. | Dec 2001 | B1 |
6330462 | Chen | Dec 2001 | B1 |
6333953 | Bottomley et al. | Dec 2001 | B1 |
6339399 | Andersson et al. | Jan 2002 | B1 |
6345036 | Sudo et al. | Feb 2002 | B1 |
6346910 | Ito | Feb 2002 | B1 |
6347234 | Scherzer | Feb 2002 | B1 |
6351499 | Paulraj et al. | Feb 2002 | B1 |
6363267 | Lindskog et al. | Mar 2002 | B1 |
6369758 | Zhang | Apr 2002 | B1 |
6377812 | Rashid-Farrokhi et al. | Apr 2002 | B1 |
6385264 | Terasawa et al. | May 2002 | B1 |
6426971 | Wu et al. | Jul 2002 | B1 |
6452981 | Raleigh et al. | Sep 2002 | B1 |
6463290 | Stilp et al. | Oct 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6478422 | Hansen | Nov 2002 | B1 |
6492942 | Kezys | Dec 2002 | B1 |
6510184 | Okamura | Jan 2003 | B1 |
6512737 | Agee | Jan 2003 | B1 |
6515617 | Demers et al. | Feb 2003 | B1 |
6532225 | Chang et al. | Mar 2003 | B1 |
6532255 | Gunzelmann et al. | Mar 2003 | B1 |
6532562 | Chou et al. | Mar 2003 | B1 |
6545997 | Bohnke et al. | Apr 2003 | B1 |
6574211 | Padovani et al. | Jun 2003 | B2 |
6574267 | Kanterakis et al. | Jun 2003 | B1 |
6574271 | Mesecher et al. | Jun 2003 | B2 |
6594473 | Dabak et al. | Jul 2003 | B1 |
6594798 | Chou et al. | Jul 2003 | B1 |
6597682 | Kari | Jul 2003 | B1 |
6608874 | Beidas et al. | Aug 2003 | B1 |
6611231 | Crilly, Jr. et al. | Aug 2003 | B2 |
6615024 | Boros et al. | Sep 2003 | B1 |
6631121 | Yoon | Oct 2003 | B1 |
6636496 | Cho et al. | Oct 2003 | B1 |
6636568 | Kadous | Oct 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654613 | Maeng et al. | Nov 2003 | B1 |
6668161 | Boros et al. | Dec 2003 | B2 |
6683916 | Sartori et al. | Jan 2004 | B1 |
6690660 | Kim et al. | Feb 2004 | B2 |
6693992 | Jones et al. | Feb 2004 | B2 |
6694155 | Chin et al. | Feb 2004 | B1 |
6697346 | Halton et al. | Feb 2004 | B1 |
6711121 | Gerakoulis et al. | Mar 2004 | B1 |
6728233 | Park et al. | Apr 2004 | B1 |
6731668 | Ketchum | May 2004 | B2 |
6735188 | Becker et al. | May 2004 | B1 |
6738020 | Lindskog et al. | May 2004 | B1 |
6744811 | Kantschuk | Jun 2004 | B1 |
6751187 | Walton et al. | Jun 2004 | B2 |
6751444 | Meiyappan | Jun 2004 | B1 |
6751480 | Kogiantis et al. | Jun 2004 | B2 |
6757263 | Olds | Jun 2004 | B1 |
6760313 | Sindhushayana et al. | Jul 2004 | B1 |
6760388 | Ketchum et al. | Jul 2004 | B2 |
6760882 | Gesbert et al. | Jul 2004 | B1 |
6763244 | Chen et al. | Jul 2004 | B2 |
6768727 | Sourour et al. | Jul 2004 | B1 |
6771706 | Ling et al. | Aug 2004 | B2 |
6785341 | Walton et al. | Aug 2004 | B2 |
6785513 | Sivaprakasam | Aug 2004 | B1 |
6788948 | Lindskog et al. | Sep 2004 | B2 |
6792041 | Kim et al. | Sep 2004 | B1 |
6795424 | Kapoor et al. | Sep 2004 | B1 |
6798738 | Do et al. | Sep 2004 | B1 |
6801790 | Rudrapatna | Oct 2004 | B2 |
6802035 | Catreux et al. | Oct 2004 | B2 |
6804191 | Richardson | Oct 2004 | B2 |
6821535 | Nurmi et al. | Nov 2004 | B2 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6847828 | Miyoshi et al. | Jan 2005 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6850498 | Heath et al. | Feb 2005 | B2 |
6859503 | Pautler et al. | Feb 2005 | B2 |
6862271 | Medvedev et al. | Mar 2005 | B2 |
6862440 | Sampath | Mar 2005 | B2 |
6868079 | Hunt | Mar 2005 | B1 |
6873651 | Tesfai et al. | Mar 2005 | B2 |
6879578 | Pan et al. | Apr 2005 | B2 |
6879579 | Myles et al. | Apr 2005 | B1 |
6882868 | Shattil | Apr 2005 | B1 |
6885708 | Thomas et al. | Apr 2005 | B2 |
6888809 | Foschini et al. | May 2005 | B1 |
6888899 | Raleigh et al. | May 2005 | B2 |
6891858 | Mahesh et al. | May 2005 | B1 |
6920192 | Laroia et al. | Jul 2005 | B1 |
6920194 | Stopler et al. | Jul 2005 | B2 |
6927728 | Vook et al. | Aug 2005 | B2 |
6937592 | Heath, Jr. et al. | Aug 2005 | B1 |
6940917 | Menon et al. | Sep 2005 | B2 |
6950632 | Yun et al. | Sep 2005 | B1 |
6952426 | Wu et al. | Oct 2005 | B2 |
6952454 | Jalali et al. | Oct 2005 | B1 |
6956813 | Fukuda | Oct 2005 | B2 |
6956906 | Tager et al. | Oct 2005 | B2 |
6959171 | Tsien et al. | Oct 2005 | B2 |
6963742 | Boros et al. | Nov 2005 | B2 |
6965762 | Sugar et al. | Nov 2005 | B2 |
6970722 | Lewis | Nov 2005 | B1 |
6980601 | Jones | Dec 2005 | B2 |
6980800 | Noerpel et al. | Dec 2005 | B2 |
6985434 | Wu et al. | Jan 2006 | B2 |
6985534 | Meister | Jan 2006 | B1 |
6987819 | Thomas et al. | Jan 2006 | B2 |
6990059 | Anikhindi et al. | Jan 2006 | B1 |
6992972 | Van Nee | Jan 2006 | B2 |
6996380 | Dent | Feb 2006 | B2 |
7002900 | Walton et al. | Feb 2006 | B2 |
7006464 | Gopalakrishnan et al. | Feb 2006 | B1 |
7006483 | Nelson, Jr. et al. | Feb 2006 | B2 |
7006848 | Ling et al. | Feb 2006 | B2 |
7009931 | Ma et al. | Mar 2006 | B2 |
7012978 | Talwar | Mar 2006 | B2 |
7020110 | Walton et al. | Mar 2006 | B2 |
7020482 | Medvedev et al. | Mar 2006 | B2 |
7020490 | Khatri | Mar 2006 | B2 |
7023826 | Sjoberg et al. | Apr 2006 | B2 |
7024163 | Barratt et al. | Apr 2006 | B1 |
7031671 | Mottier | Apr 2006 | B2 |
7035359 | Molnar | Apr 2006 | B2 |
7039125 | Friedman | May 2006 | B2 |
7042858 | Ma et al. | May 2006 | B1 |
7054378 | Walton et al. | May 2006 | B2 |
7058367 | Luo et al. | Jun 2006 | B1 |
7062294 | Rogard et al. | Jun 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7072381 | Atarashi et al. | Jul 2006 | B2 |
7072410 | Monsen | Jul 2006 | B1 |
7072413 | Walton et al. | Jul 2006 | B2 |
7088671 | Monsen | Aug 2006 | B1 |
7095709 | Walton et al. | Aug 2006 | B2 |
7095722 | Walke et al. | Aug 2006 | B1 |
7099377 | Berens et al. | Aug 2006 | B2 |
7103325 | Jia et al. | Sep 2006 | B1 |
7110378 | Onggosanusi et al. | Sep 2006 | B2 |
7110463 | Wallace et al. | Sep 2006 | B2 |
7113499 | Nafie et al. | Sep 2006 | B2 |
7116652 | Lozano | Oct 2006 | B2 |
7120199 | Thielecke et al. | Oct 2006 | B2 |
7127009 | Berthet et al. | Oct 2006 | B2 |
7130362 | Girardeau et al. | Oct 2006 | B2 |
7133459 | Onggosanusi et al. | Nov 2006 | B2 |
7137047 | Mitlin et al. | Nov 2006 | B2 |
7149239 | Hudson | Dec 2006 | B2 |
7149254 | Sampath | Dec 2006 | B2 |
7151809 | Ketchum et al. | Dec 2006 | B2 |
7155171 | Ebert et al. | Dec 2006 | B2 |
7158563 | Ginis et al. | Jan 2007 | B2 |
7164649 | Walton et al. | Jan 2007 | B2 |
7164669 | Li et al. | Jan 2007 | B2 |
7184713 | Kadous et al. | Feb 2007 | B2 |
7187646 | Schramm | Mar 2007 | B2 |
7190749 | Levin et al. | Mar 2007 | B2 |
7191381 | Gesbert et al. | Mar 2007 | B2 |
7194237 | Sugar et al. | Mar 2007 | B2 |
7197084 | Ketchum et al. | Mar 2007 | B2 |
7200404 | Panasik et al. | Apr 2007 | B2 |
7206354 | Wallace et al. | Apr 2007 | B2 |
7218684 | Bolourchi et al. | May 2007 | B2 |
7221956 | Medvedev et al. | May 2007 | B2 |
7224704 | Lu et al. | May 2007 | B2 |
7231184 | Eilts et al. | Jun 2007 | B2 |
7233625 | Ma et al. | Jun 2007 | B2 |
7238508 | Lin et al. | Jul 2007 | B2 |
7242727 | Liu et al. | Jul 2007 | B2 |
7248638 | Banister | Jul 2007 | B1 |
7248841 | Agee et al. | Jul 2007 | B2 |
7254171 | Hudson | Aug 2007 | B2 |
7260153 | Nissani (Nissensohn) | Aug 2007 | B2 |
7260366 | Lee et al. | Aug 2007 | B2 |
7263119 | Hsu et al. | Aug 2007 | B1 |
7274734 | Tsatsanis | Sep 2007 | B2 |
7277679 | Barratt et al. | Oct 2007 | B1 |
7280467 | Smee et al. | Oct 2007 | B2 |
7280625 | Ketchum et al. | Oct 2007 | B2 |
7283508 | Choi et al. | Oct 2007 | B2 |
7289570 | Schmidl et al. | Oct 2007 | B2 |
7292854 | Das et al. | Nov 2007 | B2 |
7298778 | Visoz et al. | Nov 2007 | B2 |
7298805 | Walton et al. | Nov 2007 | B2 |
7308035 | Rouquette et al. | Dec 2007 | B2 |
7310304 | Mody et al. | Dec 2007 | B2 |
7317750 | Shattil | Jan 2008 | B2 |
7324429 | Walton et al. | Jan 2008 | B2 |
7327800 | Oprea et al. | Feb 2008 | B2 |
7333556 | Maltsev et al. | Feb 2008 | B2 |
7342912 | Kerr et al. | Mar 2008 | B1 |
7356004 | Yano et al. | Apr 2008 | B2 |
7356089 | Jia et al. | Apr 2008 | B2 |
7379492 | Hwang | May 2008 | B2 |
7386076 | Onggosanusi et al. | Jun 2008 | B2 |
7392014 | Baker et al. | Jun 2008 | B2 |
7403748 | Keskitalo et al. | Jul 2008 | B1 |
7421039 | Malaender et al. | Sep 2008 | B2 |
7453844 | Lee et al. | Nov 2008 | B1 |
7466749 | Medvedev et al. | Dec 2008 | B2 |
7480278 | Pedersen et al. | Jan 2009 | B2 |
7486740 | Inanoglu | Feb 2009 | B2 |
7492737 | Fong et al. | Feb 2009 | B1 |
7548506 | Ma et al. | Jun 2009 | B2 |
7551546 | Ma et al. | Jun 2009 | B2 |
7551580 | du Crest et al. | Jun 2009 | B2 |
7573805 | Zhuang et al. | Aug 2009 | B2 |
7599443 | Ionescu et al. | Oct 2009 | B2 |
7603141 | Dravida | Oct 2009 | B2 |
7606296 | Hsu et al. | Oct 2009 | B1 |
7606319 | Zhang et al. | Oct 2009 | B2 |
7623871 | Sheynblat | Nov 2009 | B2 |
7636573 | Walton et al. | Dec 2009 | B2 |
7646747 | Atarashi et al. | Jan 2010 | B2 |
7653142 | Ketchum et al. | Jan 2010 | B2 |
7653415 | van Rooyen | Jan 2010 | B2 |
7822140 | Catreux et al. | Oct 2010 | B2 |
7986742 | Ketchum et al. | Jul 2011 | B2 |
8145179 | Walton et al. | Mar 2012 | B2 |
8170513 | Walton et al. | May 2012 | B2 |
8254246 | Ma et al. | Aug 2012 | B2 |
8260210 | Esteve et al. | Sep 2012 | B2 |
8325836 | Tong et al. | Dec 2012 | B2 |
8358714 | Walton et al. | Jan 2013 | B2 |
8406118 | Zhu et al. | Mar 2013 | B2 |
8462643 | Walton et al. | Jun 2013 | B2 |
8483188 | Walton et al. | Jul 2013 | B2 |
20010017881 | Bhatoolaul et al. | Aug 2001 | A1 |
20010031014 | Subramanian et al. | Oct 2001 | A1 |
20010031621 | Schmutz | Oct 2001 | A1 |
20010033623 | Hosur | Oct 2001 | A1 |
20010046205 | Easton et al. | Nov 2001 | A1 |
20020003774 | Wang et al. | Jan 2002 | A1 |
20020004920 | Cho et al. | Jan 2002 | A1 |
20020018310 | Hung | Feb 2002 | A1 |
20020018453 | Yu et al. | Feb 2002 | A1 |
20020027951 | Gormley et al. | Mar 2002 | A1 |
20020041632 | Sato et al. | Apr 2002 | A1 |
20020044591 | Lee et al. | Apr 2002 | A1 |
20020044610 | Jones | Apr 2002 | A1 |
20020057659 | Ozluturk et al. | May 2002 | A1 |
20020062472 | Medlock et al. | May 2002 | A1 |
20020064214 | Hattori et al. | May 2002 | A1 |
20020075830 | Hartman, Jr. | Jun 2002 | A1 |
20020085620 | Mesecher | Jul 2002 | A1 |
20020085641 | Baum | Jul 2002 | A1 |
20020098872 | Judson | Jul 2002 | A1 |
20020105928 | Kapoor et al. | Aug 2002 | A1 |
20020115473 | Hwang et al. | Aug 2002 | A1 |
20020122381 | Wu et al. | Sep 2002 | A1 |
20020122393 | Caldwell et al. | Sep 2002 | A1 |
20020150182 | Dogan et al. | Oct 2002 | A1 |
20020154705 | Walton et al. | Oct 2002 | A1 |
20020183010 | Catreux et al. | Dec 2002 | A1 |
20020184453 | Hughes et al. | Dec 2002 | A1 |
20020191535 | Sugiyama et al. | Dec 2002 | A1 |
20020193146 | Wallace et al. | Dec 2002 | A1 |
20020196842 | Onggosanusi et al. | Dec 2002 | A1 |
20030002450 | Jalali et al. | Jan 2003 | A1 |
20030007463 | Li et al. | Jan 2003 | A1 |
20030012308 | Sampath et al. | Jan 2003 | A1 |
20030039317 | Taylor et al. | Feb 2003 | A1 |
20030045288 | Luschi et al. | Mar 2003 | A1 |
20030048856 | Ketchum et al. | Mar 2003 | A1 |
20030072395 | Jia et al. | Apr 2003 | A1 |
20030076812 | Benedittis | Apr 2003 | A1 |
20030078024 | Magee et al. | Apr 2003 | A1 |
20030095197 | Wheeler et al. | May 2003 | A1 |
20030099306 | Nilsson et al. | May 2003 | A1 |
20030103584 | Bjerke et al. | Jun 2003 | A1 |
20030112745 | Zhuang et al. | Jun 2003 | A1 |
20030119452 | Kim et al. | Jun 2003 | A1 |
20030123389 | Russell et al. | Jul 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030128656 | Scarpa | Jul 2003 | A1 |
20030139194 | Onggosanusi et al. | Jul 2003 | A1 |
20030142732 | Moshavi et al. | Jul 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030157954 | Medvedev et al. | Aug 2003 | A1 |
20030162519 | Smith et al. | Aug 2003 | A1 |
20030165189 | Kadous | Sep 2003 | A1 |
20030185311 | Kim | Oct 2003 | A1 |
20030186650 | Liu | Oct 2003 | A1 |
20030190897 | Lei et al. | Oct 2003 | A1 |
20030202492 | Akella et al. | Oct 2003 | A1 |
20030202612 | Halder et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030235149 | Chan et al. | Dec 2003 | A1 |
20030235255 | Ketchum et al. | Dec 2003 | A1 |
20040005887 | Bahrenburg et al. | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040037257 | Ngo | Feb 2004 | A1 |
20040042556 | Medvedev et al. | Mar 2004 | A1 |
20040052228 | Tellado et al. | Mar 2004 | A1 |
20040062192 | Liu et al. | Apr 2004 | A1 |
20040071104 | Boesel et al. | Apr 2004 | A1 |
20040071107 | Kats et al. | Apr 2004 | A1 |
20040076224 | Onggosanusi et al. | Apr 2004 | A1 |
20040081131 | Walton et al. | Apr 2004 | A1 |
20040082356 | Walton et al. | Apr 2004 | A1 |
20040085939 | Wallace et al. | May 2004 | A1 |
20040120411 | Walton et al. | Jun 2004 | A1 |
20040121730 | Kadous et al. | Jun 2004 | A1 |
20040136349 | Walton et al. | Jul 2004 | A1 |
20040151108 | Blasco Claret et al. | Aug 2004 | A1 |
20040151122 | Lau et al. | Aug 2004 | A1 |
20040156328 | Walton et al. | Aug 2004 | A1 |
20040160987 | Sudo et al. | Aug 2004 | A1 |
20040176097 | Wilson et al. | Sep 2004 | A1 |
20040179627 | Ketchum et al. | Sep 2004 | A1 |
20040184398 | Walton et al. | Sep 2004 | A1 |
20040198276 | Tellado et al. | Oct 2004 | A1 |
20040252632 | Bourdoux et al. | Dec 2004 | A1 |
20050002326 | Ling et al. | Jan 2005 | A1 |
20050047384 | Wax et al. | Mar 2005 | A1 |
20050047515 | Walton et al. | Mar 2005 | A1 |
20050088959 | Kadous | Apr 2005 | A1 |
20050099974 | Kats et al. | May 2005 | A1 |
20050120097 | Walton et al. | Jun 2005 | A1 |
20050128953 | Wallace et al. | Jun 2005 | A1 |
20050135284 | Nanda et al. | Jun 2005 | A1 |
20050135295 | Walton et al. | Jun 2005 | A1 |
20050135318 | Walton et al. | Jun 2005 | A1 |
20050147177 | Seo et al. | Jul 2005 | A1 |
20050174981 | Heath et al. | Aug 2005 | A1 |
20050185575 | Hansen et al. | Aug 2005 | A1 |
20050195915 | Raleigh et al. | Sep 2005 | A1 |
20050208959 | Chen et al. | Sep 2005 | A1 |
20050220211 | Shim et al. | Oct 2005 | A1 |
20050245264 | Laroia et al. | Nov 2005 | A1 |
20050276343 | Jones | Dec 2005 | A1 |
20060018247 | Driesen et al. | Jan 2006 | A1 |
20060018395 | Tzannes | Jan 2006 | A1 |
20060039275 | Walton et al. | Feb 2006 | A1 |
20060067417 | Park et al. | Mar 2006 | A1 |
20060072649 | Chang et al. | Apr 2006 | A1 |
20060077935 | Hamalainen et al. | Apr 2006 | A1 |
20060104196 | Wu et al. | May 2006 | A1 |
20060104340 | Walton et al. | May 2006 | A1 |
20060114858 | Walton et al. | Jun 2006 | A1 |
20060153237 | Hwang et al. | Jul 2006 | A1 |
20060159120 | Kim | Jul 2006 | A1 |
20060176968 | Keaney et al. | Aug 2006 | A1 |
20060183497 | Paranchych et al. | Aug 2006 | A1 |
20060209894 | Tzannes et al. | Sep 2006 | A1 |
20060209937 | Tanaka et al. | Sep 2006 | A1 |
20070177681 | Choi et al. | Aug 2007 | A1 |
20070274278 | Choi et al. | Nov 2007 | A1 |
20080069015 | Walton et al. | Mar 2008 | A1 |
20080267098 | Walton et al. | Oct 2008 | A1 |
20080267138 | Walton et al. | Oct 2008 | A1 |
20080285488 | Walton et al. | Nov 2008 | A1 |
20080285670 | Walton et al. | Nov 2008 | A1 |
20090291642 | Cozzo et al. | Nov 2009 | A1 |
20100067401 | Medvedev et al. | Mar 2010 | A1 |
20100119001 | Walton et al. | May 2010 | A1 |
20100142636 | Heath, Jr. et al. | Jun 2010 | A1 |
20100183088 | Inanoglu | Jul 2010 | A1 |
20100208841 | Walton et al. | Aug 2010 | A1 |
20100260060 | Abraham et al. | Oct 2010 | A1 |
20100271930 | Tong et al. | Oct 2010 | A1 |
20110096751 | Ma et al. | Apr 2011 | A1 |
20110235744 | Ketchum et al. | Sep 2011 | A1 |
20120140664 | Walton et al. | Jun 2012 | A1 |
20120176928 | Wallace et al. | Jul 2012 | A1 |
20120219093 | Jia et al. | Aug 2012 | A1 |
20130235825 | Walton et al. | Sep 2013 | A1 |
20130279614 | Walton et al. | Oct 2013 | A1 |
20140036823 | Ma et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2002259221 | Nov 2002 | AU |
2690245 | Oct 2001 | CA |
2690247 | Oct 2001 | CA |
1086061 | Apr 1994 | CN |
1234661 | Nov 1999 | CN |
1298266 | Jun 2001 | CN |
1308794 | Aug 2001 | CN |
1314037 | Sep 2001 | CN |
1347609 | May 2002 | CN |
1469662 | Jan 2004 | CN |
1489836 | Apr 2004 | CN |
1537371 | Oct 2004 | CN |
19951525 | Jun 2001 | DE |
0755090 | Jan 1997 | EP |
0762701 | Mar 1997 | EP |
0772329 | May 1997 | EP |
0805568 | Nov 1997 | EP |
0869647 | Oct 1998 | EP |
0895387 | Feb 1999 | EP |
0929172 | Jul 1999 | EP |
0951091 | Oct 1999 | EP |
0991221 | Apr 2000 | EP |
0993211 | Apr 2000 | EP |
1061446 | Dec 2000 | EP |
1075093 | Feb 2001 | EP |
1087545 | Mar 2001 | EP |
1117197 | Jul 2001 | EP |
1126673 | Aug 2001 | EP |
1133070 | Sep 2001 | EP |
1137217 | Sep 2001 | EP |
1143754 | Oct 2001 | EP |
1170879 | Jan 2002 | EP |
1175022 | Jan 2002 | EP |
1182799 | Feb 2002 | EP |
1185001 | Mar 2002 | EP |
1185015 | Mar 2002 | EP |
1185048 | Mar 2002 | EP |
1207635 | May 2002 | EP |
1207645 | May 2002 | EP |
1223702 | Jul 2002 | EP |
1241824 | Sep 2002 | EP |
1265411 | Dec 2002 | EP |
1315311 | May 2003 | EP |
1379020 | Jan 2004 | EP |
1387545 | Feb 2004 | EP |
1416688 | May 2004 | EP |
1447934 | Aug 2004 | EP |
1556984 | Jul 2005 | EP |
2300337 | Oct 1996 | GB |
2373973 | Oct 2002 | GB |
1132027 | May 1989 | JP |
03104430 | May 1991 | JP |
06003956 | Jan 1994 | JP |
6501139 | Jan 1994 | JP |
8274756 | Oct 1996 | JP |
9135230 | May 1997 | JP |
9266466 | Oct 1997 | JP |
9307526 | Nov 1997 | JP |
09327073 | Dec 1997 | JP |
9512156 | Dec 1997 | JP |
10028077 | Jan 1998 | JP |
10051402 | Feb 1998 | JP |
10084324 | Mar 1998 | JP |
10209956 | Aug 1998 | JP |
10303794 | Nov 1998 | JP |
10327126 | Dec 1998 | JP |
1141159 | Feb 1999 | JP |
11069431 | Mar 1999 | JP |
11074863 | Mar 1999 | JP |
11163823 | Jun 1999 | JP |
11205273 | Jul 1999 | JP |
11252037 | Sep 1999 | JP |
11317723 | Nov 1999 | JP |
2991167 | Dec 1999 | JP |
2000068975 | Mar 2000 | JP |
2000078105 | Mar 2000 | JP |
2000092009 | Mar 2000 | JP |
2001044930 | Feb 2001 | JP |
200186045 | Mar 2001 | JP |
2001103034 | Apr 2001 | JP |
2001186051 | Jul 2001 | JP |
2001510668 | Jul 2001 | JP |
2001217896 | Aug 2001 | JP |
2001231074 | Aug 2001 | JP |
2001237751 | Aug 2001 | JP |
200264879 | Feb 2002 | JP |
2002504283 | Feb 2002 | JP |
200277098 | Mar 2002 | JP |
200277104 | Mar 2002 | JP |
2002111627 | Apr 2002 | JP |
2002118534 | Apr 2002 | JP |
2002510932 | Apr 2002 | JP |
2002514033 | May 2002 | JP |
2002164814 | Jun 2002 | JP |
2002176379 | Jun 2002 | JP |
2002204217 | Jul 2002 | JP |
2002232943 | Aug 2002 | JP |
2003504941 | Feb 2003 | JP |
2003198442 | Jul 2003 | JP |
2003530010 | Oct 2003 | JP |
2004266586 | Sep 2004 | JP |
2004297172 | Oct 2004 | JP |
2004535694 | Nov 2004 | JP |
2005519520 | Jun 2005 | JP |
2006504336 | Feb 2006 | JP |
2006504372 | Feb 2006 | JP |
200011799 | Feb 2000 | KR |
20010098861 | Nov 2001 | KR |
1020020003370 | Jan 2002 | KR |
20030085040 | Nov 2003 | KR |
20060095576 | Aug 2006 | KR |
2015281 | Jun 1994 | RU |
2111619 | May 1998 | RU |
2134489 | Aug 1999 | RU |
2139633 | Oct 1999 | RU |
2141168 | Nov 1999 | RU |
2146418 | Mar 2000 | RU |
2149509 | May 2000 | RU |
2152132 | Jun 2000 | RU |
2157592 | Oct 2000 | RU |
2158479 | Oct 2000 | RU |
2168277 | May 2001 | RU |
2168278 | May 2001 | RU |
2197781 | Jan 2003 | RU |
2201034 | Mar 2003 | RU |
2335852 | Oct 2008 | RU |
419912 | Jan 2001 | TW |
496620 | Jul 2002 | TW |
503347 | Sep 2002 | TW |
200300636 | Jun 2003 | TW |
545006 | Aug 2003 | TW |
567689 | Dec 2003 | TW |
567701 | Dec 2003 | TW |
583842 | Apr 2004 | TW |
I230525 | Apr 2005 | TW |
I263449 | Oct 2006 | TW |
I267251 | Nov 2006 | TW |
WO9857472 | Dec 1998 | WF |
WO8607223 | Dec 1986 | WO |
WO9307684 | Apr 1993 | WO |
WO9507578 | Mar 1995 | WO |
WO-9516319 | Jun 1995 | WO |
9521501 | Aug 1995 | WO |
WO9530316 | Nov 1995 | WO |
WO9532567 | Nov 1995 | WO |
WO9622662 | Jul 1996 | WO |
WO9635268 | Nov 1996 | WO |
9702667 | Jan 1997 | WO |
WO9719525 | May 1997 | WO |
WO9736377 | Oct 1997 | WO |
WO9809381 | Mar 1998 | WO |
WO9809395 | Mar 1998 | WO |
WO9824192 | Jun 1998 | WO |
WO9826523 | Jun 1998 | WO |
WO9830047 | Jul 1998 | WO |
WO9903224 | Jan 1999 | WO |
WO9914878 | Mar 1999 | WO |
WO9916214 | Apr 1999 | WO |
9929049 | Jun 1999 | WO |
WO9944379 | Sep 1999 | WO |
9952224 | Oct 1999 | WO |
WO9957820 | Nov 1999 | WO |
WO0011823 | Mar 2000 | WO |
WO0036764 | Jun 2000 | WO |
WO0062456 | Oct 2000 | WO |
WO0105067 | Jan 2001 | WO |
WO0126269 | Apr 2001 | WO |
0163775 | Aug 2001 | WO |
WO0169801 | Sep 2001 | WO |
WO0171928 | Sep 2001 | WO |
WO0176110 | Oct 2001 | WO |
WO0180510 | Oct 2001 | WO |
WO0182521 | Nov 2001 | WO |
0195531 | Dec 2001 | WO |
WO0197400 | Dec 2001 | WO |
WO0201732 | Jan 2002 | WO |
WO0203557 | Jan 2002 | WO |
WO-0205506 | Jan 2002 | WO |
WO02015433 | Feb 2002 | WO |
WO02025853 | Mar 2002 | WO |
WO02060138 | Aug 2002 | WO |
WO02062002 | Aug 2002 | WO |
WO02065664 | Aug 2002 | WO |
WO02069523 | Sep 2002 | WO |
WO02069590 | Sep 2002 | WO |
WO02073869 | Sep 2002 | WO |
WO02078211 | Oct 2002 | WO |
WO02082689 | Oct 2002 | WO |
WO02088656 | Nov 2002 | WO |
WO02093784 | Nov 2002 | WO |
WO02099992 | Dec 2002 | WO |
WO03010984 | Feb 2003 | WO |
WO03010994 | Feb 2003 | WO |
WO03019984 | Mar 2003 | WO |
WO03028153 | Apr 2003 | WO |
WO03034646 | Apr 2003 | WO |
WO03004714 | Jun 2003 | WO |
WO03075479 | Sep 2003 | WO |
WO0402011 | Dec 2003 | WO |
WO0402047 | Dec 2003 | WO |
WO2004038985 | May 2004 | WO |
WO2004038986 | May 2004 | WO |
WO2004039011 | May 2004 | WO |
WO2004039022 | May 2004 | WO |
WO2005041515 | May 2005 | WO |
WO2005043855 | May 2005 | WO |
WO2005046113 | May 2005 | WO |
Entry |
---|
Wyglinski Physical Layer Loading Algorithms for Indoor Wireless Multicarrier Systems, p. 109 Nov. 2004. |
Wyglinski “Physical Layer Loading Algorithms for Indoor Wireless Multicarrier Systems” p. 109, Nov. 2004. |
International Search Report and Written Opinion—PCT/US2006/017992, International Search Authority—European Patent Office—Aug. 24, 2007. |
Co-pending U.S. Appl. No. 60/421,309, filed Oct. 25, 2002. |
Co-pending U.S. Appl. No. 60/421,428, filed Oct. 25, 2002. |
G. Bauch, J. Hagenauer, “Smart Versus Dumb Antennas—Capacities and FEC Performance,” IEEE Communications Letters, vol. 6, No. 2, pp. 55-57, Feb. 2002. |
Partial European Search Report—EP10012069—Search Authority—The Hague—Nov. 29, 2011. |
Supplementary European Search Report—EP06759443—Search Authority—Hague—Nov. 24, 2011. |
3GPP2 TIA/EIA/IS-2000.2-A, “Physical Layer Standard for cdma2000: Standards for Spread Spectrum Systems,” (Mar. 2000), Telecommunications Industry Association, pp. 1-446. |
Alamouti, S.M., “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE Journal on Select Areas in Communications, vol. 16, No. 8, Oct. 1998, pp. 1451-1458. |
Bingham, John A.C.: “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come,” IEEE Communications Magazine, pp. 5-14 (May 1990). |
Chen, K.C. et al., “Novel Space-Time Processing of DS/CDMA Multipath Signal,” IEEE 49th, Vehicular Technolgy Conference, Houston, Texas, May 16-20, 1999, pp. 1809-1813. |
Choi, R. et al, “MIMO Transmit Optimization for Wireless Communication Systems,” Proceedings of the First IEEE International workshops on Electronic Design, pp. 1-6, Piscataway, New Jersey, Jan. 29-31 (2002). |
Chung, J. et al: “Multiple antenna systems for 802.16 systems.” IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/l6>, IEEE 802,16abc-01/31, Sept. 7, 2001, pp. 1-5. |
Deneire, Luc, et al.: “A Low Complexity ML Channel Estimator For OFDM,” Proc IEEE ICC (Jun. 2001), pp. 1461-1465. |
Diggavi, S. et., “Intercarrier Interference in MIMO OFDM,” IEEE International Conference on Communications, (Aug. 2002), Vol. 1, pp. 485-489, doi: 10.1109/ICC.2002.996901. |
ETSI TS 101 761-1 v1.3.1, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1; Basic Data Transport Functions,” ETSI Standards, European Telecommunications Standards institute BR (V131), pp. 1-88 (Dec. 2001). |
European Search Report—EP11173875—Search Authority—Hague—Oct. 25, 2011. |
Fujii, M.: “Pseudo-Orthogonal Multibeam-Time Transmit Diversity for OFDM-CDMA” pp. 222-226 (2002). |
Gao, J. et al. “On implementation of Bit-Loading Algorithms for OFDM Systems with Multiple-Input Multiple Output,” VTC 2002-Fall. 2002 IEEE 56th. Vehicular Technology Conference Proceedings. Vancouver, Canada, (Sep. 24-28, 2002), IEEE Vehicular Technology Conference, pp. 199-203. |
Gore, D. A., et al.: “Selecting an optimal set of transmit antennas for a low rank matrix channel,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. (ICASSP). Istanbul, Turkey, June 5-9, 2000, New York, NY; IEEE, US, vol. 5 of 6, (Jun. 5, 2000), pp. 2785-2788, XP001035763, abstract. |
Grunheid, R. et al., “Adaptive Modulation and Multiple Access for the OFDM Transmission Technique,” Wireless Personal Communications 13: May 13, 2000, 2000 Kluwer Academic Publishers, pp. 4-13, XP000894156. |
Hassibi, B. et al., “High Rate Codes That Are Linear in Space and Time,” Lucent Technologies, 2002, pp. 1-55. |
Haustein, T. et al.: “Performance of Mimo Systems with Channel Inversion,” IEEE} 55th Vehicular Technology Conference, Birmingham, Alabama, May 6-9 (2002), pp. 35-39. |
Hayashi, K. et al.: “A New Spatio-Temporal Equalization Method Based On Estimated Channel Response,” Sep. 2001, IEEE Transactions on Vehicular Technology, vol. 50, No. 5, pp. 1250-1259. |
Hong, D. K. et al.: “Robust Frequency Offset Estimation for Pilot Symbol Assisted Packet CDMA with MIMO Antenna Systems,” IEEE Communications Letters, vol. 6, No. 6, pp.262-264, XP-001133262 (Jun. 2002). |
IEEE Std 802.11a-1999 (Supplement to IEEE Std 801.11-1999) “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-Speed physical Layer in the 5GHZ Band”, pp. 1-90, Sep. 1999. |
Iserte, P., et al,, “Joint beamforming strategies in OFDM-MIMO systems,” Acoustics, Speech, and Signal Processing, 1993. ICASSP-93. 1993 IEEE International Conference on , vol. 3, sections 2-3, Apr. 27-30, 1993, doi: 10.1109/ICASSP.2002.1005279. |
Joham, M, et al.: “Symbol Rate Processing for the Downlink of DS-CDMA Systems”, IEEE Journal on Selected Areas in Communications, vol. 19, No. 1, paragraphs 1, 2; IEEE Service Center, Piscataway, US, (Jan. 1, 2001), XP011055296, ISSN: 0733-8716. |
Jongren, G. et al.: “Utilizing Quantized Feedback Information In Orthogonal Space-Time Block Coding,” 2000 IEEE Global Telecommunications Conference, 2(4): 955-999, Nov. 27, 2000. |
Kiessling, M. et al., “Short-term and long-term diagonalization of correlated MIMO channels with adaptive modulation” IEEE International Symposium on Personal, Indoor and Mobile Radio Communicatiors, vol. 2, Sep. 15, 2002, pp. 593-597. |
Kousa M. et al., “Multichannel Adaptive System”, IEEE Proceedings I. Solid-State & Electron Devices, Institution of Electrical Engineers. Stevenage, GB, vol. 140, No. 5, Part 1, Oct. 1, 1993, pp. 357-364, XP000403498, ISSN: 0956-3776. |
Le Goff, S. et al; “Turbo-codes and high spectral efficiency modulation,” IEEE International Conference on Communications, 1994. ICC '94, Supercomm/ICC '94, Conference Record, ‘Serving Humanity Through Communications.’ pp. 645-649, vol. 2, May 1-5, 1994, XP010126658, doi: 10.1109/ICC.1994.368804. |
Lebrun G., et al., “MIMO transmission over a time varying TDD channel using SVD,” Electronics Letters, 2001, vol. 37, pp. 1363-1364. |
Li, Lihua, et al., “A practical space-frequency block coded OFDM scheme for fast fading broadband channels,” 2002. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio communications, vol. 1, Sep. 15-18, 2002. pp. 212-216 vol. 1. |
Li, Ye et. al., Simplified Channel Estimation for OFDM Systems with Multiple Transmit. |
Antennas, IEEE Transactions on Wireless Communications, Jan. 2002, vol. 1, No. 1, pp. 67-75. |
Miyashita, K. et al: “High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel,” VTC 2002-Fall. 2002 IEEE 56th. Vehicular Technology Conference Proceedings. Vancouver, Canada, Sep. 24-28, 2002, IEEE Vehicular Technology Conference, New York, NY: IEEE, US, vol. vol. 1 of 4. Conf. 56, (Sep. 24, 2002), pp. 1302-1306, XP010608639. |
Office Action dated Aug. 13, 2008 for Australian Application Serial No. 2004223374, 2 pages. |
Office Action dated Jun. 27, 2008 for Chinese Application Serial No. 200480011307.6, 3 pages. |
Pautler, J. et al.; “On Application of Multiple-Input Multiple-Output Antennas to CDMA. Cellular Systems,” IEEE 54th Vehicular Technology Conference Proceedings, Atlantic City, New Jersey, Oct. 7-11 (2001), pp. 1508-1512. |
Sampath, H., et al., “Joint transmit and receive optimization for high data rate wireless communication using multiple antennas,” Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference, Oct. 24, 1999, XP010373976, pp. 215-219, IEEE, Piscataway, NJ, US. |
Song, Bong-Gee et al., “Prefilter design using the singular value decomposition for MIMO equalization,” 1996 Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 34-38, Nov. 3-6, 1996, XP010231388, DOI: 10.1109/ACSSC.1996.600812, p. 35, col. 2, paragraph 4 through p. 36, col. 1. |
Tarighat, A. et al. “Performance Analysis of Different Algorithms for cdma2000 Antenna Array System and a New Multi User Beamforming (MUB) Algorithm”, Wireless Communications and Networking Conference, vol. 1, pp. 409-414, Sep. 23, 2000. |
The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, IEEE Press: New York (Dec. 2000), p. 902. |
Theon, S. et al.: “Improved Adaptive Downlink for OFDM/SDMA-Based Wireless Networks,” IEEE VTS 53rd Vehicular Technology Conference, pgs. 707-711, Rhodes, Greece, May 6-9, (2001). |
Tujkovic, D.: “High bandwidth efficiency space-time turbo coded modulation”, Institute of Electrical and Electronics Engineers, ICC 2001. 2001 IEEE International Conference on Communications, Conference Record, pp. 1104-1109, Helsinki, Finland, Jun. 11-14 (2001). |
Van Zelst, A. et al.: “Space Division Multiplexing (SDM) for OFDM Systems,” IEEE 51st Vehicular Technology Conference Proceedings, pp. 1070-1074, Tokyo, Japan, May 15-18 (2000). |
Vook F W et al., “Adaptive antennas for OFDM”, Vehicular Technology Conference, vol. 1, May 18, 1998 (1998-05-181, - May 21, 1998, pp. 606-610, XP010287858, New York, NY, USA, IEEE, US DOI: 10.1109/VETEC.1998.686646 ISBN: 978-0-7803-4320-7. |
Wales, S.W. “A mimo technique within the UTRA TDD standard,” MIMO: Communications Systems from Concept to Implementations (Ref. No. 2001/175), IEE Seminar on, (Dec. 12, 2001), pp. 1-8., London, UK. |
Warner, W. et al,: “OFDM/FM Frame Synchronization for Mobile Radio Data Communication”, IEEE Transactions on Vehicular Technology, Aug. 1993, vol. 42, No. 3, pp. 302-313. |
Wolniansky, P.W.; Foschini, G.J.; Golden, G.D.; Valenzuela, R.A.; “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium, pp. 295-300, (Sep. 29-Oct. 2, 1998), doi: 10.1109/ISSSE,1998.738086. |
Wong, et al., “Multiuser OFDM With Adaptive Subcarrier, Bit, and Power Allocation,” Oct. 1999, IEEE Journal on Selected Areas in Communications, vol. 17, No. 10, pp. 1747-1758. May 14, 2013. |
Wong K. K,, et al., “Optimizing time and space MIMO antenna system for frequency selective fading channels,” IEEE Journal on Selected Areas in Communications, vol. 19, No. 7, Jul. 2001, Sections II and III and V, 1396, pp. 1395-1407. |
Yoshiki, T., et al., “A Study on Subcarrier Adaptive Demodulation System using Multilevel Transmission Power Control for OFDM/FDD System,” The Institute of Electronics, Information and Communications Engineers general meeting, lecture collection, Japan, Mar. 7, 2000, Communication 1, p. 400. |
3 rd Generation Partnership Project (3GPP); Technical Specification Group (TSG); Radio Access Network (RAN); RF requirements f o r 1.28Mcps UTRA TDD option, 3GPP Standard; 3G TR 25.945, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V2.0.0, Dec. 20, 2000, pp. 1-144, XP050400193, [retreived on Dec. 20, 2000], p. 126. |
3rd Generation Parthership Project; Technical Specification Group Radio Access Network; Radio Resource Control (RRC); Protocol Specifiation (Release 5 ), 3GPP Standard; 3GPP TS 25.331, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V5.2.0, Sep. 1, 2002, pp. 1-938, XP050367950, pp. 124, 358-p. 370. |
“3rd Generation Partnership Project; Technical Specification Group Radio Access 6-18, Network; Physical channels and mapping of 21-24 transport channels onto physical channels (TDD) (Release 5 )” , 3GPP Standard; 3GPP TS 25.221, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. V5.2.0, Sep. 1, 2002, pp. 1-97, XP050366967. |
Catreux S., et al., “Simulation results for an interference-limited multiple input multiple output cellular system”. Global Telecommmunications letters. IEEE: U.S.A. Novermber, 2000. vol. 4(11), pp. 334-336. |
Coleri, S. et al: “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, Sep. 1, 2002, pp. 223-229, vol. 48, No. 3, IEEE Service Center, XP011070267, ISSN: 0018-9316. |
Co-pending U.S. Appl. No. US07/624,118, filed Dec. 7, 1990. |
Harada H., et al., “An OFDM-Based Wireless ATM Transmission System Assisted by a Cyclically ExtendedPN Sequence for Future Broad-BandMobile Multimedia Communications”, IEEE Transactions on Vehicular Technology, IEEE Service Center, Piscataway, NJ, US, vol. 50, No. 6, Nov. 1, 2001, XP011064321, ISSN: 0018-9545. |
Heath et al., “Multiuser diversity for MIMO wireless systems with linear receivers”, Conference Record of the 35th Asilomar Conference on Signals, Systems, & Computers, Nov. 4, 2001, pp. 1194-1199, vol. 2, IEEE, XP010582229, DOI: 10.1109/ACSSC.2001.987680, ISBN: 978-0-7803-7147-7. |
Louvigne J.C., et al., “Experimental study of a real-time calibration procedure of a CDMA/TDD multiple antenna terminal,” IEEE Antennas and Propagation Society International Symposium, 2002 Digest.Aps.San Antonio, TX, Jun. 16-21, 2002, vol. 2, Jun. 16, 2002, pp. 644-647, XP010591780, DOI: 10.1109/Aps.2002.1016729, ISBN: 978-0-7803-7330-3. |
Nogueroles R., et al., “Performance of a random OFDMA system for mobile communications”, Broadband Communications, 1998. Accessing, Transmission, Networking. Proceedings. 1998 International Zurich Seminar on Zurich, Switzerland Feb. 17-19, 1998, New York , NY, USA, IEEE, US, Feb. 17, 1998, pp. 37-43, XP010277032 , DOI: 10.1109/IZSBC.1998.670242 ISBN: 978-0-7803-3893-7, p. 1 - p. 2. |
Sakaguchi et al, “Comprehensive Calibration for MIMO System”, International Symposium on Wireless Personal Multimedia Communications, IEEE, vol. 2, Oct. 27, 2002, pp. 440-443. |
Sampath et al., “A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance and Field Trial Results”, IEEE Communications Magazine, Sep. 1, 2002, pp. 143-149, vol. 40, No. 9, IEEE Service Center, XP011092922, ISSN: 0163-6804, DOI: 10.1109/MCOM.2002.1031841. |
Varanasi M.K, et al., “Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel”, Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on Pacific Grove, CA, USA Nov. 2-5, 1997, Los Alamitos, CA, USA, IEEE Comput. Soc, US, vol. 2, Nov. 2, 1997, pp. 1405-1409 , XP010280667, DOI: 10.1109/ACSSC.1997. 679134 ISBN: 978-0-8186-8316-9 * pp. 1,3,5; figures 1,3 *. |
Yamamura, T et al., “High Mobility OFDM transmission system by a new channel estimation and ISI cancellation scheme using characteristics of pilot symbol inserted OFDM signal”., Vehicular Technology Conference, vol. 1, Sep. 19, 1999-Sep. 22, 1999, pp. 319-323, XP010352958 IEEE, Piscataway, NJ, USA, ISBN: 0-7803-5435-4. |
Editor: 3GPP Draft; 3rd Generation Partnership Project (3GPP), Technical Specification Group (TSG) Radio Access Network (RAN); Working Group 4(WG4); base Station conformance and testing“, TS 25.141 V0.1.1 (May 1999)”, R4-99349, Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG4, no.Miami; 20011024, Oct. 24, 2001, XP050166323. |
EPO Communication pursuant to Article 94(3) EPC issued by the European Patent Orifice for Application No. 10174926.5 dated Aug. 1, 2013. |
EPO Communication pursuant to Article 94(3) EPC issued by the European Patent Orffice for Application No. 10174932.3 dated Jul. 30, 2013. |
Lal D et al: “A novel MAC layer protocol for space division multiple access in wireless ad hoc networks”, Computer Communications and Networks, 2002 Proceedings, Eleventh International Conference on Oct. 14, 2002, pp. 614-619. |
Technical Search Report issued by the Taiwan Patent Office for TW Application No. 098143050, dated Aug. 2, 2013. |
Japanese Office Action; Application No. 2013-097793; May 7, 2014. |
Japanese Office Action Translation; Application No. 2013-097793; May 7, 2014 (provided by JPO Counsel). |
Number | Date | Country | |
---|---|---|---|
20090129454 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11128698 | May 2005 | US |
Child | 12270842 | US |