Field of the Invention
This disclosure relates generally to razor treatment systems and, more particularly, to a razor configured to interact with a razor treatment system.
Description of Related Art
Razors have become ubiquitous and are used by both men and women for their personal shaving needs. Straight-blade razors, which are made of high carbon or stainless steel, exemplify the early modern popular style of shaving implements. These razors can be used for many shaving sessions over a long period of time, but must be maintained by regular sharpening and stropping. The process of sharpening, or honing, the blade uses an abrasive material that removes material from the blade's edge. Stropping, which must be done with each use of a straight-blade razor, straightens and re-aligns the blade, which tends to bend and pit under use, preventing a close shave if not straightened.
Double-edged safety razors replaced the straight edge in popularity in the early part of the twentieth century. The disposal of blades after limited use was made popular and economical by the arrival of blades made of low-cost, thin steel, thereby eliminating the need for stropping or honing. The safety feature of these razors, protecting the user from all but the very edge of the blade, appealed to users. The orientation of the handle and the blade required the user to develop the proper technique to achieve an optimal shave. The next evolution combined the safety of small, thin blades exposed only at the edge, with the proper angle-of-attack and a pivoting head to adjust to the contours of the face. The disposable razor embodied the ease and simplicity of shaving, sacrificing longevity of product by providing disposable blades with limited life. This incarnation of men's and women's personal shaver remains the most popular and widely used, contributing a sizeable negative global economic impact.
While the convenience and ease of use of current disposable razor technology is attractive to users, improvements to certain aspects of the technology may be desirable. A razor that incorporates the safety and usability aspects of the safety razor and the longevity of the straight blade razor would be a desirable improvement to razor technology.
Several different razor sharpening systems are known in the art, however, many of these sharpening systems fail to provide simplified sharpening and stropping of a razor. The razor blade disclosed in U.S. Pat. No. 1,805,895 is used in a stropping device to bend the blade of the razor. However, the razor head remains stationary within the stropping device and fails to work in concert with the stropping device to expose the blade for stropping. Likewise, the razor sharpening system disclosed in U.S. Patent Application Publication No. 2013/0237134 fails to provide a razor with a head that works in concert with the sharpening system. This sharpening system does not use drums with an abrasive material to sharpen the blade nor is the blade sharpened by rotational movement of the drums. Further, the razor does not open and extend into the sharpening device through the use of a cam track to expose the blade of the razor. Similarly, U.S. Pat. No. 7,104,874 discloses a razor sharpening system. However, this sharpening apparatus does not use drums with an abrasive material directly attached on an outer diameter of the drums nor does the razor open and extend the razor blades upon insertion into the sharpening apparatus. This sharpening apparatus is directed towards prolonging the use of a disposable razor, rather than a razor that is specifically designed to operate in concert with the sharpening device. The sharpening apparatus is used to resharpen existing cartridge razors but does not expose the underside of the razor blade.
In one embodiment, a razor treatment system is provided. The razor treatment system generally comprises a razor having a head and a razor treatment device including a drum rotationally supported within the razor treatment device, at least two cam members supported within the razor treatment device, at least two guide members configured to cooperate with the cam members to expose the blade, and a first actuating member configured to effect rotation of the guide members. The head includes a cover for housing a blade and the cover is configured to expose the blade. The razor interfaces with the razor treatment device to move the cover of the razor to expose the blade.
Each cam member may define a cam track that guides linear retraction of the blade, rotational movement of the blade and cover, and linear extension of the blade into a position on the drum. The blade of the razor may be spring-biased in the cover. At least a portion of the drum may comprise an abrasive material. The razor may further include a pair of pins. Each pin may extend from an end of a longitudinal axis of the blade and extends out of the cover of the razor. The pins may be movable along the cam path of each cam member by each guide member in order to expose the blade in the razor treatment device.
Each guide member may be arcuate-shaped and define at least two recesses with surfaces configured to guide the pins along the cam path of each cam member. At least one latching mechanism may be positioned on at least one of a top surface of the cover and a bottom surface of the cover. At least one cradle member may be positioned on the head of the razor and configured to hold the spring-biased blade within the cover of the razor, wherein the blade may be spring-biased against the cradle member and may contact the cradle member at a portion that is abraded to position a cutting edge of the blade in a same position after each use of the treatment system. The abrasive material may be provided in a spiral configuration around the outer surface of the drum.
The razor treatment system may include a second drum having at least a portion of a surface thereof comprising an abrasive material. The razor treatment device may include a stropping portion. The stropping portion may include another rotatably mounted drum comprising a surface thereof comprising a material used to strop the blade.
In another embodiment, a shaving razor is provided. The shaving razor generally comprises a handle and a head. The head comprises a blade and a cover. The head is pivotally connected to the handle. The cover is configured to house the blade. The cover is rotatable relative to the handle to extend the blade from the cover.
In another embodiment, a razor treatment device is provided. The razor treatment device generally comprises a drum rotationally supported within a housing, at least two cam members supported within the housing, at least two guide members configured to cooperate with the cam members to interact with a shaving razor, and a first actuating member configured to effect rotation of the guide members.
Further details and advantages will be understood from the following detailed description read in conjunction with the accompanying drawings.
For purposes of the description hereinafter, spatial orientation terms, as used, shall relate to the referenced embodiment as it is oriented in the accompanying drawings, figures, or otherwise described in the following detailed description. However, it is to be understood that the embodiments described hereinafter may assume many alternative variations and configurations. It is also to be understood that the specific components, devices, features, and operational sequences illustrated in the accompanying drawings, figures, or otherwise described herein are simply exemplary and should not be considered as limiting. Further, unless otherwise stated, all other components within the sharpener and razor hereinbelow are duplicated on each side of the sharpener and razor so, although they may be discussed herein as a single component, the discussion applies equally to the analogous component on the opposite side of the sharpener or razor. Therefore, in the drawings several reference characters are used multiple times.
An embodiment of a razor 100A shown in
The blade 102 is biased forward within the frame 104 by springs 120 received on pins 122. A cutting edge of blade 102 is retained within pockets 123 defined in cradles 124 positioned on the frame 104. Spring-loading the blade 102 forward ensures that the blade 102 is in a desirable shaving position. This may be of particular importance since the process of honing the blade removes material from the edge of the blade 102. Therefore, slight adjustment of the blade 102 position within the frame 104 may be necessary after honing in order to retain the proper shaving position when the blade 102 is returned to its location within the frame 104. As shown in
Cover pins 130 are positioned on an inside surface of cover 110, optionally extending from tabs 131. The cover 110 is pivotable around an axis extending through cover pins 130 such that cover 110 can open to expose the blade 102. Opening of the cover 110 is accomplished by movement of the blade pins 114 in a direction toward the cover pins 130 such that the springs 120 are compressed and the blade 102 is retracted. Upon retraction of the blade 102 (
Another embodiment of the invention includes a razor treatment device 200 for maintenance of the razor 100A, 100B. Referring now to
Within the housing 202 is a portion 228 for honing the blade 102 of the razor 100A, 100B. Honing portion 228 includes an upper sharpening drum 230 and a lower sharpening drum 232 rotationally supported within the housing 202. As detailed below, blade 102 is received in between drums 230, 232. It is also contemplated that only one drum may be used to sharpen and/or strop the blade 102. As shown in
The helical aspect of the design accommodates sharpening of substantially the entire length of blade 102. As the drums 230, 232 rotate, the portions of the sharpening surfaces 234, 238 in contact with the blade 102 move down the entire length of the blade surface on both sides thereof. The sharpening surfaces 234, 238 of the sharpening drums 230, 232 may include a very hard material such as stone or a diamond coating, as is typically used for sharpening purposes.
As shown in
Also within the housing 202 are rotatably mounted gears 244, 246 and 248 (received on respective axles mounted to housing 202) and linkage 250 extending between gears 244 and a drum gear 254, which together compose a gear train that moves the lower drum 232 forward and into place for sharpening of the blade 102. Drum gears 252 and 254 are mounted on common axles with respective upper sharpening drum 230 and lower sharpening drum 232, with the drum axles mounted to housing 202.
Unless otherwise stated, all other components within the housing 202 are duplicated on each side of the razor treatment device 200 so, although they may be discussed herein as a single component, the discussion applies equally to the analogous component on the opposite side of the razor treatment device 200. Also contained in the housing 202 are two forked guide members 256, one on either side of the pair of drums 230, 232. Each forked guide member 256 is associated with a cam track 258. As will be discussed in further detail, the forked guide member 256, when biased in a forward position, engages the pin 114 on the blade 102 within a forked end 260 of the forked guide member 256 when the razor 100A, 100B is inserted in the razor treatment device 200. As the forked end of the forked guide member 256 is moved rearward, the associated blade pin 114 is pushed along with the forked guide member 256. The blade pin 114 rides on a surface of the cam track 258 as it moves rearward. This arrangement results in the opening of the cover 110 and release of the blade 102 for sharpening, as described in more detail below. The cam track 258 includes a first run 262 and a second run 264. The forked guide members 256 are biased forward via a coil spring or the like incorporated into an actuating member 268, configured such that rotation of the actuating member 268 rotates the forked guide members 256. When the razor 100A, 100B is removed from the razor treatment device 200, the forked guide members 256 move forward automatically and are in place and available to receive the blade pins 114 the next time the razor 100A, 100B is inserted in the razor treatment device 200.
The razor treatment device 200 includes two actuating members 266, 268 which may be located on a side of the razor treatment device 200. The actuating members 266, 268 are shown as knobs, but may be replaced by levers or any other mechanism to impart movement from the user to the appropriate components within the razor treatment device 200, and/or they may be positioned in any location on the razor treatment device 200 provided they are able to perform the appropriate functions as described herein. One actuating member 268 connected to forked guide members 256 by rod member 270 may be turned by the user after the razor 100A, 100B has been latched into the razor treatment device 200. Movement of actuating member 268 is converted to movement of the forked guide members 256 by rotation of rod member 270, which engages and moves the blade pins 114, and also to movement of the lower drum 232 into the correct position for sharpening.
The second actuating member 266 may be turned by the user once the blade 102 is extended and in place for sharpening. This actuating member 266 turns the drums 230, 232 so that the blade 102 is sharpened by the movement of the sharpening surfaces 234, 238 along each side of the blade 102. This process will be discussed in further detail hereinbelow. In some embodiments, the actuating member 266 may include a slip clutch to prevent the actuating member 266 from being turned in the wrong direction, which could damage the blade.
In some embodiments, as shown in
The honing of the blade 102 and the stropping of the blade 102 are performed in opposite directions. When the blade 102 is honed, the sharpening drums 230, 232 are rotated “into” the blade 102. When the blade 102 is stropped, the drums 230, 232 are rotated “away” from the blade 102. This opposite direction of rotation lends itself to having only one user input actuating member to rotate both sets of drums in their respective directions, even if the razor 100A, 100B is only engaged in one side of the razor treatment device 200. This reduces the number of actuating members needed for rotating the drums and reduces the cost of manufacturing such device. This also helps to eliminate user confusion as to which actuating member is used to rotate which set of drums. In order to ensure the user rotates the actuating member in the correct direction, a slip clutch (or similar anti-rotational device) may be incorporated so the actuating member 266 can only be turned in one direction.
It should be noted that, while the actuating members 312, 314 are shown as being located on the right side 318 of the razor treatment device 300, the actuating members 312, 314 may alternatively be located on the left side 322. This alternative location of the actuating members 312, 314 would require suitable alteration of the gear train associated with these actuating members 312, 314 and the stropping drums 308, 310, as would be known to one skilled in the art, in order to produce the proper rotation of the stropping drums 308, 310 required to straighten the blade edge (i.e., clockwise rotation of the upper stropping drum 308 and counterclockwise rotation of the lower stropping drum 310 as viewed from the right side 318).
In another alternative embodiment, as shown in
In an alternative embodiment, shown in
It is desirable to have a limited number of user inputs (or user actions) to operate the system. One action engages/disengages the blade 102 into the sharpening drums 230, 232 and one action rotates the sharpening drums 230, 232. By using the arcuate guide members 402 with offset stable positions, a complex motion with a single user input is achieved. The offset stable positions from the hardstops 420 are created by using springs 422 to bias the linear rack 412 to the middle of the stroke and spring plungers 426 (or similar “catches”) that keep the rack 412 in place when it reaches the stable position.
It is contemplated that this razor treatment device 200 may be used on a horizontal surface or mounted vertically on wall, such as a wall in a shower. The razor treatment device 200 may be waterproof and may use water as a sharpening lubricant. The razor treatment device 200 may be cleaned with common household products (rubbing alcohol, vinegar, dish soap, etc.). The razor treatment device 200 may have a storage portion for the razor 100A, 100B to be housed in when not in use. The razor 100A, 100B may also have a separate blade protector that may be stored in the razor treatment device 200 or used to protect the blade 102 when not in use.
Turning now to one process for sharpening the blade 102 of the razor 100A, 100B, all movement will be described as viewed from the left side 206 of the housing 202. It is also to be understood that a similar process is used to strop the blade 102 of the razor 100A, 100B. First, the razor 100A, 100B is inserted into the razor treatment device 200. With the front of the razor head 108 facing the opening 218 on the front side 214 of the razor treatment device 200, a lever 116 on the back of the razor frame 104 is aligned in the hook 222 of the crossbar 220 above the opening 218. Once the lever 116 is engaged in the hook 222, the razor head 108 can be pivoted downward so that the cover 110 is aligned within the opening 218. The ball spring plungers 224 engage the lower edge 134 of the razor head 108 and lock it into place within the opening 218 as the razor head 108 is pivoted fully forward. When the razor head 108 is locked in place, the forked end 260 of each forked guide member 256 receives a respective blade pin 114.
With the razor head 108 in place, the user may initiate the process to sharpen the blade 102. In the resting position, the forked guide members 256 receive their respective blade pin 114 and the lower drum 232 is biased in a rearward position. As the user turns the lower actuating member 268 in a counterclockwise direction to initiate the honing process, the forked guide member 256 is likewise rotated in a counterclockwise direction around an axis perpendicular to the forked guide member 256. As this rotation occurs, the forked guide member 256 moves its associated blade pin 114. Each blade pin 114 moves along an associated cam track 258 surface. As the blade pin 114 moves along a first run 262 of the cam track 258, the blade pin 114 is moved toward the cover pin 130 of the razor head 108. The movement of the blade pins 114 toward the cover pin 130 compresses the springs 120 and the blade 102 is retracted from the pockets 132 of the cradles 124. As the forked guide member 256 pushes the blade pin 114 along a second run 264 of the cam track 258, the razor cover 110 is moved to an open position as it pivots around the cover pin 130. As a result of the spring-loading of the blade 102 within the cover 110 and the absence of the cradles 124 in its direct path, the blade 102 is then extended to a forward position as it moves into place against the upper sharpening drum 230.
During this movement of the forked guide member 256, counterclockwise rotation of the actuating member 268 causes the gear 244 also to rotate in a counterclockwise direction. As the teeth of the gear 244 engage the teeth of the gear 246, the gear 246 is rotated in a clockwise direction. A portion of the circumference of the gear 246 does not contain teeth. Consequently, as a toothless portion 247 of the gear 246 moves past the gear 248, there is no movement imparted to the gear 248. Once the forked guide member 256 reaches the end of its counterclockwise movement, the first tooth of the gear 246 engages the teeth of the gear 248 and the gear 248 is rotated in a counterclockwise direction. The counterclockwise rotation of the gear 248 is imparted to the linkage 250 and swings the linkage 250 in a forward direction (toward the razor 100A, 100B). The linkage 250 is attached to the lower sharpening drum 232, which is consequently swung into place against the upper sharpening drum 230 and the extended blade 102.
With the razor blade 102 and the sharpening drums 230, 232 in place, the user may turn the upper actuating member 266 to rotate the sharpening drums 230, 232 and sharpen the blade 102. The user may rotate the upper actuating member 266 in a counterclockwise direction, which results in the counterclockwise rotation of the upper sharpening drum 230. The drum gear 252 rotates counterclockwise with the upper sharpening drum 230 and imparts a clockwise rotation to the drum gear 254. The drum gear 254 is operatively connected to the lower sharpening drum 232, which consequently rotates in a clockwise direction. This coordinated rotation results in the sharpening of the blade 102 following a limited (for example, three or four) number of rotations of the actuating member 266, depending on the gear ratio used.
Once the sharpening process is complete, the lower actuating member 268 may be rotated in the opposite direction as previously described (clockwise, as viewed from the left side 206 of the housing 202) and the previous actions initiated with counterclockwise rotation of this actuating member 268 are reversed to retract the blade 102 and close the cover 110. Clockwise rotation of lower actuating member 268 results in the movement of the forked guide member 256 toward the front side 214 of the razor treatment device 200. As the forked guide member 256 moves forward, it pushes against the blade pin 114 and moves the blade pin 114 in the forward direction along the second run 264 of the cam track 258. The force against the blade pin 114 pushes the blade 102 back against the springs 120 and pulls the cover 110 into a closed position. When the forked guide member 256 moves the blade pin 114 along the reverse path of the first run 262 of the cam track 258, the blade pin 114 is released resulting in forward movement of the blade 102 within the cover 110. Since the cover 110 has been closed, the extension of the spring-loaded blade 102 is received into the pockets 123 of the cradles 124, locking the cover 110 closed and positioning the blade 102 for a close shave. The razor 100A, 100B may then be removed from the razor treatment device 200 by pulling on the handle 106 to release the razor head 108 from the ball spring plungers 108. The razor 100A, 100B may then be swung upward to release the lever 116 from the hook 222.
In an alternative embodiment, a different process uses the arcuate guide members 402 to sharpen the blade 102, wherein the razor 100A, 100B and blade 102 move through a similar motion. In an initial position, the actuating member 418 is in a first stable position. The actuating member 418 is linearly actuated in a downward position to the second stable position (where the blade 102 is retracted and fully rotated). The actuating member 418 is then released and pushed up into the first position by the springs 422. This allows the arcuate guide members 402 to rotate to allow the blade 102 to linearly extend in between the drums 230, 232. To release the razor 100A, 100B and blade 102 from the sharpening drums 230, 232, the actuating member 418 is pushed from the first stable position upward to a second stable position. This allows the blade pins 114 to move along the cam track 257, which allows the blade 102 to linearly retract into the cover 110, rotate about the handle 106, and linearly extend in the cover 110 to return the razor 100A, 100B to its normal operating condition.
As stated above, the blade 102 moves through a three phase motion to engage and disengage from the sharpening drums 230, 232. The cam track 257 provides the trajectory for this motion and the arcuate guide member 402 supplies the force to move the blade pins 114 along the track. However, the arcuate guide member 402 only moves the blade 102 through the first two stages. The third stage is achieved by the blade springs 120 extending the blade 102 along the remaining portion of the cam track 257. An additional “catch” may be needed to keep the blade in position when it transitions from phase 2 (rotation) to phase 3 (linear extension). Without the “catch”, the blade 102 may rotate in the opposite direction rather than extend linearly. Therefore, the magnets 118 may be used to keep the blade 102 in a linearly extending motion, rather than rotating in an opposite direction. The magnets 118 interact with cross member 424 to keep the blade 102 in the correct position. In the reverse motion (disengaging the blade 102 from the sharpening drums 230, 232), the same motion is achieved, but in the opposite direction. The magnets 118 also help to keep the cover 110 closed in the shaving position as well.
The foregoing embodiments are not to be construed as limiting of the present invention but are illustrative thereof. Although exemplary embodiments of this invention have been described, it will be clear to those skilled in the art that many modifications in the exemplary embodiments are possible without materially departing from the novel teachings and advantages of this invention. For example, the locations of the actuating members 266, 268, 312, 314, 418 and/or the location of the opening 218 on the device 200 can be varied, provided that their relationship and interaction with the associated components of the device that are critical for the function of the device are properly maintained. Also, different mechanisms may be used to move the pins 114 so as to retract the blade 102 to expose the blade 102 for sharpening; similarly, other mechanisms may be used to retract the blade 102. Other variations and modifications will be understood by one of skill in the art. Accordingly, all such modifications are intended to be included within the scope of this invention.
While an embodiment of a razor and treatment system is shown in the accompanying figures and described hereinabove in detail, other embodiments will be apparent to, and readily made by, those skilled in the art without departing from the scope and spirit of the invention. Accordingly, the foregoing description is intended to be illustrative rather than restrictive. The invention described hereinabove is defined by the appended claims and all changes to the invention that fall within the meaning and the range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of U.S. Provisional Application No. 61/750,079, filed Jan. 8, 2013, the disclosure of which is hereby incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1060657 | Alter | May 1913 | A |
1159487 | Fuller | Nov 1915 | A |
1205187 | Fuller | Nov 1916 | A |
1206315 | Ehrlich | Nov 1916 | A |
1220837 | Fuller | Mar 1917 | A |
1367158 | McAuliffe | Feb 1921 | A |
1411287 | McAuliffe | Apr 1922 | A |
1482371 | Witter | Jan 1924 | A |
1492246 | Gaisman | Apr 1924 | A |
1497030 | Salerni | Jun 1924 | A |
1522716 | Frank | Jan 1925 | A |
1550861 | Wolcott | Aug 1925 | A |
1552234 | Roebuck | Sep 1925 | A |
1581469 | Oskin | Apr 1926 | A |
1635827 | Frank | Jul 1927 | A |
1710548 | Minahan | Apr 1929 | A |
1719675 | Sirch | Jul 1929 | A |
1734524 | Kohlmiller | Nov 1929 | A |
1735751 | Green | Nov 1929 | A |
1744752 | Crespo | Jan 1930 | A |
1805895 | Watson | May 1931 | A |
1826410 | Aronson | Oct 1931 | A |
1853839 | Wolcott | Apr 1932 | A |
1859555 | De Haven | May 1932 | A |
1871789 | Green | Aug 1932 | A |
1887911 | Aronson | Nov 1932 | A |
1901591 | Godshalk | Mar 1933 | A |
1905331 | Aronson | Apr 1933 | A |
1907783 | Gaisman | May 1933 | A |
1914630 | Aronson | Jun 1933 | A |
1920711 | Pelizzola | Aug 1933 | A |
1929463 | Wolcott | Oct 1933 | A |
1932386 | Aronson | Oct 1933 | A |
1952253 | Hoff | Mar 1934 | A |
1954259 | Norviel | Apr 1934 | A |
1959841 | Sage | May 1934 | A |
1965348 | Lucia | Jul 1934 | A |
1966425 | Aronson | Jul 1934 | A |
1966426 | Aronson | Jul 1934 | A |
1978988 | Cook et al. | Oct 1934 | A |
2001155 | Peters | May 1935 | A |
2026125 | Godshalk et al. | Dec 1935 | A |
2048868 | Johnston | Jul 1936 | A |
2090968 | Testi | Aug 1937 | A |
2113772 | Steinmetz | Apr 1938 | A |
2125135 | Trippe | Jul 1938 | A |
2252499 | Flaws, Jr. | Aug 1941 | A |
2252569 | Kennison | Aug 1941 | A |
2290964 | Hill | Jul 1942 | A |
2319488 | Burchett | May 1943 | A |
2397555 | Lotthamer | Apr 1946 | A |
2429334 | Smith | Oct 1947 | A |
2458257 | Donovan | Jan 1949 | A |
2565281 | Thomas | Aug 1951 | A |
2581214 | Stegner | Jan 1952 | A |
2602220 | Ewing | Jul 1952 | A |
2602221 | Ewing et al. | Jul 1952 | A |
2640258 | Eckert | Jun 1953 | A |
2666982 | Schroder | Jan 1954 | A |
2769232 | Leonard, Sr. | Nov 1956 | A |
2780866 | Borden | Feb 1957 | A |
2787921 | Blankenship | Apr 1957 | A |
2839829 | Knapp | Jun 1958 | A |
2911712 | Choclin et al. | Nov 1959 | A |
3057062 | Mashiba | Oct 1962 | A |
3080651 | La Cas | Mar 1963 | A |
3101536 | Bringewald | Aug 1963 | A |
3167888 | Shanley | Feb 1965 | A |
3199252 | Hanchey | Aug 1965 | A |
3653123 | King et al. | Apr 1972 | A |
3909942 | Ciaffone | Oct 1975 | A |
4265055 | Cartwright et al. | May 1981 | A |
4345374 | Jacobson | Aug 1982 | A |
4485554 | Bergamaschi | Dec 1984 | A |
4608782 | Chylinski | Sep 1986 | A |
4807401 | Atwater | Feb 1989 | A |
4860449 | Duncan | Aug 1989 | A |
5036731 | Fletcher | Aug 1991 | A |
5074042 | Althaus | Dec 1991 | A |
5139138 | Isaksen | Aug 1992 | A |
5253420 | Althaus | Oct 1993 | A |
6449849 | Hackerman | Sep 2002 | B1 |
6694618 | de Villiers | Feb 2004 | B1 |
7104874 | Gussack et al. | Sep 2006 | B1 |
8074535 | Martell | Dec 2011 | B2 |
20090000426 | Andersen et al. | Jan 2009 | A1 |
20100139103 | Miyazaki | Jun 2010 | A1 |
20100223792 | Martell | Sep 2010 | A1 |
20120317820 | McGushion | Dec 2012 | A1 |
20130237134 | Worthington | Sep 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140190014 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61750079 | Jan 2013 | US |