This application is a National Stage application of International Application No. PCT/EP2018/061496, filed on May 4, 2018, now published as WO/2018/202848 and which claims priority to European Application No. 17169741.0, filed May 5, 2017.
The present disclosure relates to razors, and more specifically to razors of the type comprising a razor handle and an exchangeable razor blade cartridge. The razors, which may be specifically adapted for shaving facial, head and/or body hair, may allow for replacement of the exchangeable razor blade cartridge. Replacement of the exchangeable razor blade cartridge may occur particularly when a razor blade or blades of the razor blade cartridge have been blunted and may be facilitated without discarding the razor handle.
Razors comprising a razor handle and an exchangeable razor blade cartridge are commonly known in the art. In such razors, the razor handle may comprise an elongated body extending in a longitudinal direction from a front end to a rear end, a connector for connecting an exchangeable razor blade cartridge to the razor handle, and a release mechanism for releasing the exchangeable razor blade cartridge from the razor handle, and a release trigger, located at the front end of the razor handle, in close proximity to the release mechanism and connector, to trigger the release of the exchangeable razor blade cartridge from the connector.
A drawback of this configuration is that, because the release trigger is located near the front end of the razor handle, release of the exchangeable razor cartridge may be inadvertently triggered by a user moving his grip closer to the front end of the razor handle when trying to achieve a more precise shave.
A first aspect of the disclosure concerns providing a more convenient and safer razor handle and in particular a razor handle having an elongated body, a connector for connecting an exchangeable razor blade cartridge to the razor handle, a release mechanism for releasing the exchangeable razor blade cartridge from the razor handle, and a release trigger, wherein the risk of inadvertent release of an exchangeable razor blade cartridge may be decreased.
Accordingly, in at least one aspect, the release trigger may be rotatable around a longitudinal axis of the razor handle relative to the connector to actuate the release mechanism.
The release trigger may comprise a rear part of the razor handle and the connector may be located at a front end of the razor handle. By allowing the rear part of the razor handle to comprise the release trigger and by locating the connector at the front end of the razor handle, inadvertent operation of the release trigger may be prevented when the user holds the razor handle close to the connector. Thus, positioning the release trigger apart from the connector, may decrease the overall risk of inadvertent operation of the release mechanism.
The razor handle may further comprise a cam mechanism for converting a rotation of the release trigger about the longitudinal axis, relative to the connector, into a motion along the longitudinal axis to actuate the release mechanism. Operation of the release trigger may be facilitated by this cam mechanism. In particular, the cam mechanism may comprise first and second cam surfaces that may be inclined in opposite directions. Inclining the cam surfaces in opposing directions facilitates the conversion of opposite rotational movements of the release trigger into longitudinal movement in the same direction for actuation of the release mechanism. Consequently, release of the exchangeable razor blade cartridge may be triggered by turning the release trigger in either direction about the longitudinal axis, relative to the connector, from a central starting position. However, the conversion of a rotation of the release trigger around the longitudinal axis into a motion along the longitudinal axis may also be carried out by other means than a cam mechanism, such as, for example, magnetic mechanism.
The razor handle may be simply and reliably connected to the exchangeable razor blade cartridge by a snap-fit connection in which a latching surface of the exchangeable blade cartridge engages an opposite surface of the connector to retain the exchangeable razor blade cartridge relative to the connector. The release mechanism may be configured to deflect the latching surface of the exchangeable blade cartridge out of engagement with the connector, so as to release the snap-fit connection between the razor handle and the exchangeable razor blade cartridge.
The razor handle may further comprise a spring-loaded pusher for urging a pivotable head of the exchangeable razor blade cartridge in one pivoting direction. The spring-loaded pusher may provide for closer contact and better alignment of the razor blades with the skin during shaving. The release mechanism may then be formed as a fork-shaped ejector comprising two front prongs, and the spring-loaded pusher be located between the two front prongs. This structure may allow for a more compact arrangement. Alternatively, however, the release mechanism may be analogous to those disclosed in international patent application publications WO 2016/087007, WO2015/158382 and WO2010/037418.
A second aspect of the disclosure concerns a razor comprising a razor handle and an exchangeable razor blade cartridge connected by the connector to the razor handle.
The exchangeable razor blade cartridge may comprise an interconnecting member configured to engage the connector, and a pivotable head. The interconnecting member may facilitate engagement of the exchangeable razor blade cartridge with the connector. The pivotable head may comprise at least one razor blade and may be supported so as to be pivotable around at least one transverse axis with respect to the interconnecting member. The exchangeable razor blade cartridge and pivotable head may provide for a closer contact and better alignment of the razor blades with the skin during shaving. The exchangeable razor blade cartridge may be snap-fitted to the connector. The snap-fit connection may ensure a reliable and simple connection of the razor handle to the exchangeable razor blade cartridge. The pivotable head may provide closer contact and better alignment of the razor blades with the skin during shaving.
A third aspect concerns a method for releasing an exchangeable razor blade cartridge from a razor handle. This method may comprise a step of rotating a release trigger about a longitudinal axis of the razor handle, relative to a connector which connects the exchangeable razor blade cartridge to the razor handle, to actuate a release mechanism so as to release the exchangeable razor blade cartridge from the connector.
The above summary is not intended to describe each aspect or every implementation of the disclosed concept. In particular, selected features of illustrative embodiments within this disclosure may easily be incorporated into additional embodiments unless clearly stated to the contrary.
The disclosure may be more completely understood in consideration of the following detailed description of various aspects of the disclosure in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure.
As used in this disclosure and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this disclosure and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following detailed description should be read with reference to the drawings. The detailed description and the drawings, which are not necessarily to scale, depict illustrative aspects of the disclosure and are not intended to limit the scope. The illustrative aspects depicted are intended only as exemplary.
A razor 1 according to an aspect is shown in
According to further aspects, the razor handle 2 may be elongated and extend along longitudinal axis Y from a front end 12 to a rear end 14. As shown on
As shown in
The interconnecting member 4 of the exchangeable razor blade cartridge 3 may be snap-fit onto connector 11 of the actuation assembly 11. As shown in
The release mechanism 18 of the actuation assembly 11 may be configured to facilitate release of the exchangeable razor blade cartridge 3 from the razor handle 2. According to further aspects, the release mechanism 18 may be, a fork-shaped ejector, comprising two front prongs 18a extending from and spaced by a central block 18b. The pusher 9 may be positioned between the two front prongs 18a of the release mechanism 18. The pusher spring 20 may be interposed between the pusher 9 and the central body 13.
According to further aspects, the interconnecting member 4 may comprise ears 21 adjacent to the protruding lips 15. Upon assembly, the pusher 9 and the two front prongs 18a of the release mechanism 18 may be received within the connector 11, which may be open at front and rear parts 11a, 11b. The two front prongs 18a may be aligned with respective ears 21 of the interconnecting member 4 of exchangeable razor blade cartridge 3 thereby facilitating disconnection of the connector 11 and razor handle 2 with the interconnecting member 4 of the exchangeable razor blade cartridge 3.
According to further aspects, the central block 18b of the release mechanism 18 may comprise at least one and in particular two pairs of oppositely inclined cam surfaces 35, although higher numbers of pairs can also be considered. The oppositely inclined cam surfaces 35 may be disposed at an end opposite to the two front prongs 18a of the release mechanism 18 and each pair may form one V-shaped concavity. The rear part 23 may comprise a pair of pins forwardly protruding therefrom. Each V-shaped concavity may be configured to receive a respective pin 34 protruding forwardly from the rear part 23. The release mechanism 18 may comprise a shaft 32 protruding from the back thereof. The shaft 32, protruding from the back of release mechanism 18 may be received within a central orifice 33 formed in rear part 23, between the two pins 34 of rear part 23. The oppositely inclined cam surfaces 35 and pins 34 form a cam mechanism 36 for converting rotation of the rear part 23, relative to the connector 11, clockwise and/or counter-clockwise from a central position and about the longitudinal axis Y, into a forward longitudinal and linear motion of the release mechanism 18. The razor handle 2 may further comprise a return mechanism 24, which may for instance be shaped as a spring interposed between the central body 13 and the central block 18b of the release mechanism 18 so as to urge the release mechanism 18 backwards and the rear part 23, through cam mechanism 36, which may be reversible, back into the central position. Although the return force may be provided elastically, as illustrated in
According to further aspects, the exchangeable razor blade cartridge 3 may be connected to the razor handle 2 by inserting connector 11 into interconnecting member 4 as shown in
To then trigger the release of exchangeable razor blade cartridge 3 from razor handle 2, rear part 23 may be twisted either way, clockwise and/or counter-clockwise from the starting position as shown on
Further aspects may comprise that, apart from the razor blades 8 and springs, which are usually metallic, a majority of the parts of the razor 1 may be produced from organic polymeric material. Additional aspects may comprise injection molding techniques such as co-injection. Co-injection techniques may be used to produce parts with multiple colors and/or textures. For example, the razor handle 2 may comprise an elastomer for providing a good grip, co-injected on a more rigid thermoplastic polymer providing structural integrity. However, alternatively or complementarily to organic polymeric materials, other materials, such as for instance metal, glass or wood, and in particular moldable materials, may be used. Higher-density materials may for instance be used within the razor handle 2 in order to locate the center of gravity of the razor 1 at an ergonomically optimal location.
Furthermore, it is also possible to replace the cam mechanism 36 with alternative means, such as for example a magnetic mechanism, to convert the rotation of the release trigger into a longitudinal movement of the release mechanism. Such an alternative magnetic mechanism 136, replacing both the cam mechanism 36 and the return mechanism 24, is schematically illustrated in
In operation, as the user rotates the release trigger, that is, rear part 23, around the longitudinal axis Y, the magnet 18m on release mechanism 18 will alternatively repel and be attracted to magnets 23m on the rear part 23. When this rotation opposes a rear pole of magnet 18m to a front pole, of a magnet 23m, with the same sign, the magnetic repulsion force between the opposing magnets may actuate the release mechanism 18, moving it forward to release the exchangeable blade cartridge 3 from the connector 11 at the front of the razor handle 2, as shown in
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific aspects described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope of the present disclosure as described in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
17169741 | May 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/061496 | 5/4/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/202848 | 11/8/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1848078 | Jansson | Mar 1932 | A |
2033307 | Schuster | Mar 1936 | A |
2143276 | Martin | Jan 1939 | A |
2582041 | Kaplan | Jan 1952 | A |
3435521 | Kuhnl | Apr 1969 | A |
4253235 | Jacobson | Mar 1981 | A |
4797998 | Motta | Jan 1989 | A |
4922609 | Grange | May 1990 | A |
4987634 | Weihrauch | Jan 1991 | A |
5600887 | Olson | Feb 1997 | A |
5953824 | Ferraro | Sep 1999 | A |
20050066465 | Minkler et al. | Mar 2005 | A1 |
20090159487 | Tacoma | Jun 2009 | A1 |
20130047449 | Zakuskin | Feb 2013 | A1 |
20170113363 | Lopez | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
102271876 | Dec 2011 | CN |
440382 | Dec 1935 | GB |
2078589 | Jan 1982 | GB |
2362849 | Dec 2001 | GB |
WO 2010037418 | Apr 2010 | WO |
WO 2015158382 | Oct 2015 | WO |
WO 2016087007 | Jun 2016 | WO |
Entry |
---|
International Search Report issued in related International Application No. PCT/EP2018/061496 dated Aug. 10, 2018 (3 pages). |
Office Action issued in Chinese Patent Application No. 201880025326.6, dated Dec. 29, 2020 (5 pages). |
Search Report issued in Chinese Patent Application No. 201880025326.6, dated Dec. 19, 2020 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20200156274 A1 | May 2020 | US |