The present disclosure relates to providing isolation with downhole valves during wellbore operations.
Production of hydrocarbon material from subterranean formation typically is effected via a wellbore that extends into the subterranean formation from the earth's surface. Often, such production is stimulated by treatment operations, such as hydraulic fracturing, involving the injection of treatment material into predetermined zones within the subterranean formation. In order to controllably inject the treatment material into the subterranean formation, valve apparatuses are installed within the wellbore and are controllably opened and closed as required to effect or seal flow communication, as required. In order to seal flow communication, sealing members are installed. The sealing members co-operate with moveable valve elements with the intent of sealing the flow communication. To seal flow communication, the sealing members are disposed in sealing, or substantially sealing, engagement with the valve elements. To enable flow communication, such sealing, or substantially sealing, engagement is defeated such that the valve elements become spaced art from the sealing members. While the valve elements are spaced apart from the sealing members, the sealing members are exposed to wellbore conditions, and are susceptible to exposure to flowing solids or jetting operations, which could compromise their sealing functionality.
In one aspect, there is provided a flow control apparatus comprising: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member for effecting opening and closing of the flow communicator; an uphole-disposed flow interference effector that is disposed uphole relative to the flow communicator, wherein the uphole-disposed flow interference effector includes a first uphole-disposed flow interference-effecting member and a second uphole-disposed flow interference-effecting member, wherein the second uphole-disposed flow interference-effecting member is disposed in a defeatable occluded condition; and a downhole-disposed flow interference effector that is disposed downhole relative to the flow communicator; wherein: the flow control member, the uphole-disposed flow interference effector, the downhole-disposed flow interference-effector, and the flow communicator are co-operatively configured such that: while each one of the uphole-disposed flow interference effector and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, the flow communicator is disposed in the closed condition; displacement of the flow control member, relative to the flow communicator, in the downhole direction, effects opening of the flow communicator; and while there is an absence of occlusion of the second uphole-disposed flow interference-effecting member, the flow control member is disposable, relative to the flow communicator, such that each one of the second-uphole disposed flow interference-effecting member and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, such that the closed condition of the flow communicator is established.
In another aspect, there is provided a flow control apparatus comprising: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member, displaceable, relative to the flow communicator, for effecting opening and closing of the flow communicator; an uphole-disposed flow interference effector that is disposed uphole relative to the flow communicator, wherein the uphole-disposed flow interference effector includes a first uphole-disposed flow interference-effecting member and a second occluded uphole-disposed flow interference-effecting member, wherein the occlusion of the second uphole-disposed flow interference-effecting member is defeatable; a downhole-disposed flow interference effector that is disposed downhole relative to the flow communicator; wherein: the uphole-disposed flow interference effector, the downhole-disposed flow interference effector, the flow control member, and the flow communicator are co-operatively configured such that: while each one of the uphole-disposed flow interference effector and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, the flow communicator is disposed in the closed condition; while: (i) each one of the first uphole-disposed flow interference-effecting member and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member for establishing the closed condition of the flow communicator, and (ii) the second uphole-disposed flow interference-effecting member is disposed in the occluded condition, the flow control member is displaceable, relative to the flow communicator, in the downhole direction, with effect that: the flow communicator becomes disposed in an open condition; the contact engagement between the first uphole-disposed flow interference-effecting member and the flow control member is defeated such that there is an absence of occlusion of the first uphole-disposed flow interference-effecting member by the flow control member; and there is an absence of defeating of the occlusion of the second uphole-disposed flow interference-effecting member; while there is an absence of occlusion of the second uphole-disposed flow interference-effecting member in response to the defeating of the occlusion of the second uphole-disposed flow interference-effecting member, the flow control member is disposable such that each one of the second-uphole disposed flow interference-effecting member and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, with effect that the flow communicator becomes disposed in the closed condition.
In another aspect, there is provided a method of controlling flow communication between a wellbore and a subterranean formation with a flow control apparatus that is disposed within a wellbore and includes: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member, displaceable, relative to the flow communicator, for effecting opening and closing of the flow communicator; an uphole-disposed flow interference effector that is disposed uphole relative to the flow communicator, wherein the uphole-disposed flow interference effector includes a first uphole-disposed flow interference-effecting member and a second occluded uphole-disposed flow interference-effecting member, wherein the occlusion of the second uphole-disposed flow interference-effecting member is defeatable; and a downhole-disposed flow interference effector that is disposed downhole relative to the flow communicator; wherein the method comprises: while the flow control member is disposed in contact engagement with both of the first uphole-disposed flow interference-effecting member and the downhole-disposed flow interference effector, displacing the flow control member, relative to the flow communicator, in a downhole direction, with effect that the flow control apparatus becomes disposed in an open condition orientation, wherein, in the open condition orientation: the flow communicator becomes disposed in an open condition; the contact engagement between the first uphole-disposed flow interference-effecting member and the flow control member is defeated such that there is an absence of occlusion of the first uphole-disposed flow interference-effecting member by the flow control member; and there is an absence of defeating of the occlusion of the second uphole-disposed flow interference-effecting member; after the flow control member becomes disposed in the open condition orientation, defeating the occlusion of the second uphole-disposed flow interference-effecting member such that there is an absence of occlusion of the second uphole-disposed flow interference-effecting member; while there is an absence of occlusion of the second uphole-disposed flow interference-effecting member, positioning the flow control member, relative to the second-uphole disposed flow interference-effecting member and the downhole-disposed flow interference-effector, such that each one of the second-uphole disposed flow interference-effecting member and the downhole-disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, with effect that the flow communicator becomes disposed in the closed condition.
In another aspect, there is provided a flow control apparatus comprising: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member for effecting opening and closing of the flow communicator; a first flow interference effector that is disposed, relative to the flow communication, in one of an uphole position and a downhole position, wherein the first flow interference effector includes a first flow interference-effecting member and a second flow interference-effecting member, wherein the second flow interference-effecting member is disposed in a defeatable occluded condition; and a second flow interference effector that is disposed, relative to the flow communicator, in the other one of an uphole position and a downhole position; wherein: the flow control member, the first flow interference effector, the second flow interference-effector, and the flow communicator are co-operatively configured such that: while each one of the first flow interference effector and the second flow interference-effector, independently, is disposed in contact engagement with the flow control member, the flow communicator is disposed in the closed condition; when the first flow interference effector is disposed uphole relative to the flow communicator, displacement of the flow control member, relative to the flow communicator, in the downhole direction, effects opening of the flow communicator; when the first flow interference effector is disposed downhole relative to the flow communicator, displacement of the flow control member, relative to the flow communicator, in the downhole direction, effects opening of the flow communicator; while there is an absence of occlusion of the second flow interference-effecting member, the flow control member is disposable, relative to the flow communicator, such that each one of the second flow interference-effecting member and the second flow interference-effector, independently, is disposed in contact engagement with the flow control member, such that the closed condition of the flow communicator is established.
In another aspect, there is provided a flow control apparatus comprising: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member, displaceable, relative to the flow communicator, for effecting opening and closing of the flow communicator; a first flow interference effector that is disposed, relative to the flow communication, in one of an uphole position and a downhole position, wherein the first flow interference effector includes a first flow interference-effecting member and a second flow interference-effecting member, wherein the second flow interference-effecting member is disposed in a defeatable occluded condition; and a second flow interference effector that is disposed, relative to the flow communicator, in the other one of an uphole position and a downhole position; wherein: the first flow interference effector, the second flow interference effector, the flow control member, and the flow communicator are co-operatively configured such that: while each one of the first flow interference effector and the second flow interference-effector, independently, is disposed in contact engagement with the flow control member, the flow communicator is disposed in the closed condition; while: (i) each one of the first flow interference-effecting member and the second flow interference-effector, independently, is disposed in contact engagement with the flow control member for establishing the closed condition of the flow communicator, and (ii) the second flow interference-effecting member is disposed in the occluded condition, the flow control member is displaceable, relative to the flow communicator, in the downhole direction, with effect that: the flow communicator becomes disposed in an open condition; the contact engagement between the first flow interference-effecting member and the flow control member is defeated such that there is an absence of occlusion of the first flow interference-effecting member by the flow control member; and there is an absence of defeating of the occlusion of the second flow interference-effecting member; while there is an absence of occlusion of the second flow interference-effecting member in response to the defeating of the occlusion of the second flow interference-effecting member, the flow control member is disposable such that each one of the second flow interference-effecting member and the second disposed flow interference-effector, independently, is disposed in contact engagement with the flow control member, with effect that the flow communicator becomes disposed in the closed condition.
In another aspect, there is provided a method of controlling flow communication between a wellbore and a subterranean formation with a flow control apparatus that is disposed within a wellbore and includes: a housing; a fluid passage disposed within the housing; a flow communicator extending through the housing for effecting flow communication between the fluid passage and an environment external to the housing; a flow control member, displaceable, relative to the flow communicator, for effecting opening and closing of the flow communicator; a first flow interference effector that is disposed, relative to the flow communication, in one of an uphole position and a downhole position, wherein the first flow interference effector includes a first flow interference-effecting member and a second flow interference-effecting member, wherein the second flow interference-effecting member is disposed in a defeatable occluded condition; and a second flow interference effector that is disposed, relative to the flow communicator, in the other one of an uphole position and a downhole position; wherein the method comprises: while the flow control member is disposed in contact engagement with both of the first flow interference-effecting member and the second flow interference effector, displacing the flow control member, relative to the flow communicator, in a downhole direction, with effect that the flow control apparatus becomes disposed in an open condition orientation, wherein, in the open condition orientation: the flow communicator becomes disposed in an open condition; the contact engagement between the first flow interference-effecting member and the flow control member is defeated such that there is an absence of occlusion of the first flow interference-effecting member by the flow control member; and there is an absence of defeating of the occlusion of the second flow interference-effecting member; after the flow control member becomes disposed in the open condition orientation, defeating the occlusion of the second flow interference-effecting member such that there is an absence of occlusion of the second flow interference-effecting member; while there is an absence of occlusion of the second flow interference-effecting member, positioning the flow control member, relative to the second flow interference-effecting member and the second flow interference-effector, such that each one of the second flow interference-effecting member and the second flow interference-effector, independently, is disposed in contact engagement with the flow control member, with effect that the flow communicator becomes disposed in the closed condition.
Other aspects will be apparent from the description and drawings provided herein.
Preferred embodiments will now be described with reference to the following accompanying drawings, in which:
Referring to
The wellbore 102 can be straight, curved, or branched. The wellbore 102 can have various wellbore sections. A wellbore section is an axial length of a wellbore 102. A wellbore section can be characterized as “vertical” or “horizontal” even though the actual axial orientation can vary from true vertical or true horizontal, and even though the axial path can tend to “corkscrew” or otherwise vary. The term “horizontal”, when used to describe a wellbore section, refers to a horizontal or highly deviated wellbore section as understood in the art, such as, for example, a wellbore section having a longitudinal axis that is between 70 and 110 degrees from vertical.
The wellbore 102 is provided for conducing reservoir fluid from the subterranean formation 100 to the surface 10. In some embodiments, for example, the wellbore 102 is provided for conducting treatment material from the surface 10 to the subterranean formation 100 for stimulating the subterranean formation 100 for production of the reservoir fluid.
In some embodiments, for example, the conducting (such as, for example, by flowing) treatment material to the subterranean formation 100 via the wellbore 102 is for effecting selective stimulation of the subterranean formation 100, such as a subterranean formation 100 including a hydrocarbon material-containing reservoir. The stimulation is effected by supplying the treatment material to the subterranean formation 100. In some embodiments, for example, the treatment material includes a liquid, such as a liquid including water. In some embodiments, for example, the liquid includes water and chemical additives. In other embodiments, for example, the stimulation material is a slurry including water and solid particulate matter, such as proppant. In some embodiments, for example the treatment material includes chemical additives. Exemplary chemical additives include acids, sodium chloride, polyacrylamide, ethylene glycol, borate salts, sodium and potassium carbonates, glutaraldehyde, guar gum and other water soluble gels, citric acid, and isopropanol. In some embodiments, for example, the treatment material is supplied to effect hydraulic fracturing of the reservoir.
In some embodiments, for example, the conducting of fluid, to and from the wellhead, is effected by a wellbore string 104. The wellbore string 104 may include pipe, casing, or liner, and may also include various forms of tubular segments. The wellbore string 104 includes a wellbore string passage 106.
In some embodiments, for example, the wellbore 102 includes a cased-hole completion, in which case, the wellbore string 104 includes a casing 104A.
A cased-hole completion involves running casing down into the wellbore 102 through the production zone. The casing 104A at least contributes to the stabilization of the subterranean formation 100 after the wellbore 102 has been completed, by at least contributing to the prevention of the collapse of the subterranean formation 100 that is defining the wellbore 102. In some embodiments, for example, the casing 104A includes one or more successively deployed concentric casing strings, each one of which is positioned within the wellbore 102, having one end extending from the well head 108. In this respect, the casing strings are typically run back up to the surface. In some embodiments, for example, each casing string includes a plurality of jointed segments of pipe. The jointed segments of pipe typically have threaded connections.
The annular region between the deployed casing 104A and the subterranean formation 100 may be filled with zonal isolation material for effecting zonal isolation. The zonal isolation material is disposed between the casing 104A and the subterranean formation 100 for the purpose of effecting isolation, or substantial isolation, of one or more zones of the subterranean formation from fluids disposed in another zone of the subterranean formation. Such fluids include formation fluid being produced from another zone of the subterranean formation 100 (in some embodiments, for example, such formation fluid being flowed through a production string disposed within and extending through the casing 104A to the surface), or injected stimulation material. In this respect, in some embodiments, for example, the zonal isolation material is provided for effecting sealing, or substantial sealing, of flow communication between one or more zones of the subterranean formation and one or more other zones of the subterranean formation via space between the casing 104A and the subterranean formation 100. By effecting the sealing, or substantial sealing, of such flow communication, isolation, or substantial isolation, of one or more zones of the subterranean formation 100, from another subterranean zone (such as a producing formation), via space between the casing 104A and the subterranean formation 100, is achieved. Such isolation or substantial isolation is desirable, for example, for mitigating contamination of a water table within the subterranean formation by the formation fluids (e.g. oil, gas, salt water, or combinations thereof) being produced, or the above-described injected fluids.
In some embodiments, for example, the zonal isolation material is disposed as a sheath within an annular region between the casing 104A and the subterranean formation 100. In some embodiments, for example, the zonal isolation material is bonded to both of the casing 104A and the subterranean formation 100. In some embodiments, for example, the zonal isolation material also provides one or more of the following functions: (a) strengthens and reinforces the structural integrity of the wellbore, (b) prevents, or substantially prevents, produced formation fluids of one zone from being diluted by water from other zones. (c) mitigates corrosion of the casing 104A, and (d) at least contributes to the support of the casing 104A. The zonal isolation material is introduced to an annular region between the casing 104A and the subterranean formation 100 after the subject casing 104A has been run into the wellbore 102. In some embodiments, for example, the zonal isolation material includes cement.
For wells that are used for producing reservoir fluid, few of these actually produce through wellbore casing. This is because producing fluids can corrode steel or form undesirable deposits (for example, scales, asphaltenes or paraffin waxes) and the larger diameter can make flow unstable. In this respect, a production string is usually installed inside the last casing string. The production string is provided to conduct reservoir fluid, received within the wellbore, to the wellhead 108. In some embodiments, for example. the annular region between the last casing string and the production tubing string may be sealed at the bottom by a packer.
In some embodiments, for example, the conduction of fluids between the surface 10 and the subterranean formation 100 is effected via the passage 106 of the wellbore string 104.
In some embodiments, for example, the conducting of the treatment material to the subterranean formation 100 from the surface 10 via the wellbore 102, or of hydrocarbon material from the subterranean formation 100 to the surface 10 via the wellbore 102, is effected via one or more flow communication stations (three flow communication stations 110, 112, 114 are illustrated) that are disposed at the interface between the subterranean formation 100 and the wellbore 102. Successive flow communication stations 110, 112, 114 may be spaced from each other along the wellbore 102 such that each one of the flow communication stations 110, 112, 114, independently, is positioned adjacent a zone or interval of the subterranean formation 100 for effecting flow communication between the wellbore 102 and the zone (or interval).
For effecting the flow communication, each one of the flow communication stations 110, 112, 114 includes a subterranean formation flow communicator 210 through which the conducting of the material is effected. In some embodiments, for example, the subterranean formation flow communicator 210 is disposed within an apparatus that has been integrated within the wellbore string 104, and is pre-existing, in that the subterranean formation flow communicator 210 exists before the apparatus, along with the wellbore string 104, has been installed downhole within the wellbore 102.
Each one of the flow communication stations 110, 112, 114, independently, includes a flow control apparatus 200.
Referring to
The flow control apparatus 200 includes a subterranean formation flow communicator 210 extending through the housing 202. In some embodiments, for example, the subterranean formation flow communicator 210 is in the form of one or more ports 210A. The flow control apparatus 200 further includes a flow control member 214 configured for controlling flow of material, via the subterranean formation flow communicator 210, between the passage 204 and an environment external to the flow control apparatus. In this respect, the flow control member 214 is configured for controlling the material flow through the subterranean formation flow communicator 210.
In some embodiments, for example, the flow control member 214 includes a flow control member 214 for opening and closing the flow communicator 210. The flow control member 214 is displaceable relative to the subterranean formation flow communicator 210. In this respect, in some embodiments, for example, the flow control member 214 is in the form of a sleeve that is slideably disposed within the passage 204. The flow control member 214 and the subterranean formation flow communicator are co-operatively configured such that the flow control member 214 is displaceable relative to the flow communicator 210 for effecting opening and closing of the flow communicator 210.
The flow control apparatus 200 includes an uphole-disposed flow interference effector 230 that is disposed uphole relative to the flow communicator 210 and a downhole-disposed flow interference effector 232 that is disposed downhole relative to the flow communicator 210. In this respect, the uphole-disposed flow interference effector 230 and the downhole-disposed flow interference effector 232 are disposed on either side of the flow communicator 210. In some embodiments, for example, the uphole-disposed flow interference effector 230 includes one or more sealing members. In some embodiments, for example, the downhole-disposed flow interference effector 232 includes one or more sealing members.
Referring to
As a corollary, while the uphole-disposed flow interference effector 230 is disposed in contact engagement with the flow control member 214, the uphole-disposed flow interference effector 230 is occluded (such as, for example, shielded) by the flow control member 214, and while the downhole-disposed flow interference effector 232 is disposed in contact engagement with the flow control member 214, the downhole-disposed flow interference effector 232 is occluded (such as, for example, shielded) by the flow control member 214
Referring to
(i) there is an absence of contact engagement between the uphole-disposed flow interference effector 230 and the flow control member 214; and
(ii) less than the entirety of the flow communicator 210 is occluded by the flow control member 214 (in some of these embodiment, for example, there is an absence, or substantial absence of occlusion of any portion, or substantially any portion, of the flow communicator 210).
In some embodiments, for example, the uphole-disposed flow interference effector 230, the downhole-disposed flow interference effector 232, and the flow control member 214 are further co-operatively, configured such that, while the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in an open condition, there is an absence of an uphole-disposed sealed interface with effect that flow communication, between the housing passage 204 and the flow communicator 210 is established.
In some embodiments, for example, while the flow control apparatus 200 is being run-in-hole, the flow control member 214 is releasably retained relative to the housing by one or more frangible interlocking members 203 (such as, for example, one or more shear pins). In some of these embodiments, for example, while releasably secured relative to the housing 202, the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in the closed condition.
In such embodiments, both of: (i) release of the flow control member 214 from the releasable retention relative to the housing 202, and, upon such release, (ii) displacement of the flow control member 214 relative to the subterranean formation flow communicator 210, is effectible in response to urging of displacement of the flow control member 214, relative to the subterranean formation flow communicator 210, in a first direction (in the illustrated embodiments, this is the downhole direction). In some embodiments, for example, a stop (in the illustrated embodiment, this is the downhole-disposed stop 222) is provided for limiting the displacement of the flow control member 214 such that, when the flow control member 214 becomes engaged to the stop 222, further displacement of the flow control member 214, remotely from the flow communicator 210 (in the illustrated embodiment, this is in the downhole direction), is prevented or substantially prevented, with effect that the flow control member becomes disposed relative to the flow communicator 210 such that the flow communicator is disposed in the open condition. In some embodiments, for example, the downhole-disposed stop 222 is defined by a shoulder 224 defined by the housing 202.
In some embodiments, for example, after the flow control member 214 has been released and displaced in a first direction such that the flow control member 214 becomes engaged to the stop 222 (see
In some embodiments, for example, a collet retainer 203 extends from the lower cross-over sub 202C for releasably retaining the flow control member 214 while the flow control member 214 is disposed relative to the flow communicator 210 while the flow communicator 210 is disposed in the closed condition, and also for releasably retaining the flow control member 214 while the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in the open condition. Such releasable retention mitigates inadvertent displacement of the flow control member 214 relative to the flow communicator 210, which can cause unintended opening or closing of the flow communicator, as the case may be.
For effecting opening of the subterranean formation flow communicator 210 so as to enable a stimulation operation (such as, for example, hydraulic fracturing) to be performed, release of the first flow control member 214 from retention relative to the housing 202 (retention by the frangible interlocking members) is effected by a force in a downhole direction (such as, for example, in response to fluid pressure that is translated via a shifting tool while the shifting tool is disposed in gripping engagement with the first flow control member 214). Once released from the retention, the first flow control member 214 can be displaced relative to the subterranean formation flow communicator 210 in a first direction (in the illustrated embodiment, this is the downhole direction) such that the flow control member 214 becomes disposed in abutting engagement with the downhole-disposed stop 222. As a result of this displacement of the flow control member 214, contact engagement between the flow control member 214 and at least the uphole-disposed flow interference effector 230 is defeated such that the subterranean formation flow communicator 210 becomes disposed in the open condition (i.e. the subterranean formation flow communicator 210 is no longer occluded by the flow control member 214).
After the opening of the subterranean formation flow communicator 210, treatment material can be injected from the surface and into the subterranean formation 100 via the wellbore 102 and the opened subterranean formation flow communicator 210 over a time interval of at least 20 minutes, such as, for example, at least one hour, such as, for example, at least 12 hours, such as, for example, at least 24 hours. After sufficient injecting, the first flow control member 214 is displaced in a direction opposite to the first direction (in the illustrated embodiment, this is the uphole direction) such that flow control member 214 becomes disposed in contact engagement with both of the uphole-disposed flow interference effector 230 and the downhole-disposed flow interference effector 232, and also, in parallel, aligned with the flow communicator 110, thereby occluding the subterranean formation flow communicator 210, with effect that the flow communicator 210 becomes disposed in the re-closed condition (see
In some embodiments, for example, the uphole-disposed flow interference effector 230 includes an uphole-disposed flow interference-effecting member 234, and the downhole-disposed flow interference effector 232 includes a downhole-disposed flow interference-effecting member 236. Each one of the uphole-disposed flow interference-effecting member 234 and the downhole-disposed flow interference-effecting member 236, independently, is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202). In some embodiments, for example, each one of the uphole-disposed flow interference-effecting member 234 and the downhole-disposed flow interference-effecting member 236, independently, is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202) and in an interference fit relationship relative to the housing 202. In some embodiments, for example, the uphole-disposed flow interference-effecting member 234 is a sealing member, such as, for example, an o-ring. In some embodiments, for example, the downhole-disposed flow interference-effecting member 236 is a sealing member, such as, for example, an o-ring.
While the flow communicator 210 is disposed in the closed condition (see
While the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in the open condition, the flow control member 214 is no longer disposed in alignment with the uphole-disposed flow interference effector 230, including the first uphole-disposed flow interference-effecting member 234, and is, therefore, no longer occluded (such as, for example, shielded) by the uphole-disposed flow interference effector 230.
In this respect, in some embodiments, for example, the uphole-disposed flow interference-effecting member 234, the downhole-disposed flow interference-effecting member 236, and the flow control member 214 are co-operatively configured such that, while the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in the open condition (see
Also in this respect, in some wellbore operations, while the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in an open condition, a washing operation may be performed to remove solid debris from the vicinity of the flow communicator 210 and thereby mitigate interference to re-closing of the flow communicator 210 by the flow control member 214. The washing operation typically involves a jetting of a liquid. Being that there is an absence of occlusion of the first uphole-disposed flow interference-effecting member 234 by the flow control member 214, while the flow control member 214 is disposed in the open position, inadvertently, the jetted liquid could be directed at the exposed uphole-disposed flow interference-effecting member 234, and could damage the exposed uphole-disposed flow interference-effecting member 234, or could displace the exposed uphole-disposed flow interference-effecting member 234 from its respective recess. In either case, the sealing functionality of the exposed uphole-disposed flow interference-effecting member 234 could be compromised.
To safeguard versus a potential loss in functionality of the uphole-disposed flow interference-effecting member 234, the uphole-disposed flow interference effector 230 includes a second uphole-disposed flow interference-effecting member 235 for contact engagement (and, in some of these embodiments, for example, the contact engagement is a sealing, or substantially sealing, engagement) with the flow control member 214 while the flow communicator 210 is re-closed. In some embodiments, for example, the second uphole-disposed flow interference-effecting member 235 is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202). In some embodiments, for example, the second uphole-disposed flow interference-effecting member 235 is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202) and in an interference fit relationship relative to the housing 202.
Compromise of the sealing functionality of the second uphole-disposed flow interference-effecting member 235, while the flow control member 214 is disposed relative to the flow communicator 310 such that the flow communicator 310 is disposed in the open condition, is mitigated by occluding the second uphole-disposed flow interference-effecting member 235 while the flow communicator 210 is disposed in the open condition and wellbore operations, such as the above-described wellbore operations, are being performed. Co-operatively, such occlusion is defeated in response to displacement of the flow control member 214, relative to the flow communicator 210, in the uphole direction, such that each one of the second uphole disposed flow interference-effecting member 235 and the downhole-disposed flow interference effector 232, independently, are pre-disposed for becoming disposed in contact engagement (such as, for example, a sealing, or substantially sealing, engagement) with the flow control member 214, such that the closed condition of the flow communicator 210 is established.
In this respect, the uphole-disposed flow interference effector 230, the downhole-disposed flow interference effector 232, the flow control member 214, and the flow communicator 210 are co-operatively configured such that, while: (i) each one of the first uphole-disposed flow interference-effecting member 234 and the downhole-disposed flow interference effector 232, independently, is disposed in contact engagement with the flow control member 214 for establishing the closed condition of the flow communicator 210 (see
the flow communicator 210 becomes disposed in an open condition (see
the contact engagement (such as, for example, a sealing, or substantially sealing, engagement) between the first uphole-disposed flow interference-effecting member 234 and the flow control member 214 is defeated such that there is an absence of occlusion of the first uphole-disposed flow interference-effecting member 234 by the flow control member 214; and
there is an absence of defeating of the occlusion of the second uphole-disposed flow interference-effecting member 235.
In some of these embodiments (such as, for example, in the illustrated embodiments), for example, the displacement of the flow control member 214, relative to the flow communicator 210, in the downhole direction is with additional effect that there is an absence of defeating of the occlusion of the downhole-disposed flow interference-effecting member 236 by the flow control member 214. In this respect, contact engagement (such as, for example, a sealing, or substantially sealing, engagement) between the downhole-disposed flow interference-effecting member 236 and the flow control member 214 is maintained when the flow communicator 210 assumes the open condition.
In this respect, to mitigate versus possible loss of functionality of the uphole-disposed flow interference-effecting member 234, the uphole-disposed flow interference effector 230 further includes a second uphole-disposed flow interference-effecting member 235 for becoming disposed in contact engagement with the flow control member 214. The second uphole-disposed flow interference-effecting member 235 is disposed in a defeatable occluded condition. In some embodiments, for example, the second uphole-disposed flow interference-effecting member 235 is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202). In some embodiments, for example, the second uphole-disposed flow interference-effecting member 235 is disposed within a respective recess disposed within the housing 202 (in some embodiments, for example, the recess is defined by the housing 202) and in an interference fit relationship relative to the housing 202. In some embodiments, for example, the second uphole-disposed flow interference-effecting member 235 is a sealing member, such as, for example, an o-ring.
The second uphole disposed flow interference-effecting member 235, the downhole-disposed flow interference-effecting member 236, the flow control member 214, and the flow communicator 210 are co-operatively configured such that:
As illustrated in
Also in this respect, in some embodiments, for example, the flow control member 214, flow communicator 210, and the second uphole-disposed flow interference-effecting member 235 are further co-operatively configured such that: while the flow control member 214 is disposed relative to the flow communicator 210 such that the flow communicator 210 is disposed in the open condition (see
While there is an absence of occlusion of the second uphole-disposed flow interference-effecting member 235 in response to the defeating of the occlusion of the second uphole-disposed flow interference-effecting member 235, the flow control member 214 is displaceable, relative to the flow communicator 210 such that each one of the second-uphole disposed flow interference-effecting member and the downhole-disposed flow interference effector 232, independently, become disposed in contact engagement with the flow control member 214, with effect that the flow communicator 210 becomes disposed in the re-closed condition (see
In some embodiments, for example, the occluding of the second uphole-disposed flow interference-effecting member 235 is effected by an occluder 238. In some embodiments, for example, the occluder 238 is in the form of a sleeve that is slideably disposed within the housing 202. In some embodiments, for example, the occluder 238 is releasably retained, relative to the housing 202 for effecting occlusion of the second uphole-disposed flow interference-effecting member 235. In some embodiments, for example, the releasable retention of the occluder 238, relative to the housing 202, is effected by an interference fit relationship between an internal protruding portion 240 of the inner wall of the housing 202 and the occluder 238. In some embodiments, for example, the portion 240 is defined by an upset. In some embodiments, for example, the upset has a dimension of between 20/1000 of an inch and 40/1000 of an inch.
In some embodiments, for example, the defeating of the occlusion of the second uphole-disposed flow interference-effecting member 235 is effected in response to urging of the occluder 238 by the flow control member 214 in the uphole direction. As a corollary, the second uphole-disposed flow interference-effecting member 235 is disposed uphole relative to the first uphole-disposed flow interference-effecting member 234.
In some embodiments, for example, the urging of the occluder 238 is effected while the flow control member 214 is being displaced relative to the flow communicator 210 for effecting re-closing of the flow communicator. In this respect, and referring to
In this respect, in some embodiments, for example, while the flow communicator 210 is disposed in the closed condition, and each one of the second uphole-disposed flow interference-effecting member 235 and the downhole-disposed flow interference effector 232 (including the downhole-disposed flow interference-effecting member 236), independently, is disposed in contact engagement with the flow control member 214, and the contact engagement is a sealing, or substantially sealing, engagement with the flow control member 214, flow communication, via the flow communicator 210, between the housing passage 204 and the environment external to the housing 202, is sealed or substantially sealed.
In some embodiments, for example, the disposition of the flow control member 214 relative to the housing 202 such that each one of the second uphole-disposed flow interference-effecting member 235 and the downhole-disposed flow interference effector 232 (including the downhole-disposed flow interference-effecting member 236), independently becomes disposed in contact engagement (such as, for example, a sealing, or substantially sealing, engagement) with the flow control member 214 such that the flow communicator is disposed in the re-closed condition (see
In the above description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present disclosure. Although certain dimensions and materials are described for implementing the disclosed example embodiments, other suitable dimensions and/or materials may be used within the scope of this disclosure. All such modifications and variations, including all suitable current and future changes in technology, are believed to be within the sphere and scope of the present disclosure.
This application is a 35 U.S.C. 371 National Phase Entry of PCT/CA2019/050605 filed May 7, 2019, titled RE-CLOSEABLE DOWNHOLE VALVES WITH IMPROVED SEAL INTEGRITY, which claims the benefits of priority to U.S. Provisional Patent Application No. 62/667,918, filed May 7, 2018, titled RE-CLOSEABLE DOWNHOLE VALVES WITH IMPROVED SEAL INTEGRITY, the contents of which are hereby expressly incorporated into the present application by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2019/050605 | 5/7/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/213758 | 11/14/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3094307 | Alley | Jun 1963 | A |
3329213 | Potts | Jul 1967 | A |
4434854 | Vann | Mar 1984 | A |
5309993 | Coon | May 1994 | A |
7556102 | Gomez | Jul 2009 | B2 |
8757265 | Cuffe | Jun 2014 | B1 |
9051810 | Cuffe | Jun 2015 | B1 |
10125575 | Manera | Nov 2018 | B2 |
10253594 | Wakefield | Apr 2019 | B2 |
10465479 | Davis | Nov 2019 | B2 |
10584559 | Campbell | Mar 2020 | B2 |
10597974 | Atkins | Mar 2020 | B2 |
10597977 | Thomas | Mar 2020 | B2 |
10704362 | Themig | Jul 2020 | B2 |
11156061 | Kratochvil | Oct 2021 | B2 |
20040135075 | Hay | Jul 2004 | A1 |
20090056952 | Churchill | Mar 2009 | A1 |
20120247767 | Themig | Oct 2012 | A1 |
20130168099 | Themig | Jul 2013 | A1 |
20130233535 | Pacey | Sep 2013 | A1 |
20150034330 | Merron et al. | Feb 2015 | A1 |
20150096767 | Atilano | Apr 2015 | A1 |
20180223626 | Wakefield | Aug 2018 | A1 |
20190112896 | Andreychuk | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2557103 | Jul 2021 | GB |
2000075482 | Dec 2000 | WO |
2015034607 | Mar 2015 | WO |
2017005817 | Apr 2017 | WO |
2017058171 | Apr 2017 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/CA2019/050605, dated Jul. 11, 2019. |
International Preliminary Report on Patentability for PCT/CA2019/050605, dated Nov. 19, 2020. |
Extended European Search Report; EP 19800046.5 dated Jan. 5, 2022. |
Number | Date | Country | |
---|---|---|---|
20210230973 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62667918 | May 2018 | US |