This invention relates to apparatus and methods to reduce lock contention in storage systems such as the IBM DS8000™ enterprise storage system.
In enterprise storage systems such as the IBM DS8000™ enterprise storage system, multiple servers may be provided to ensure that data is always available to connected hosts. When one server fails, the other server may pick up the I/O load of the failed server to ensure that I/O is able to continue between hosts and backend storage volumes, which may be implemented on storage devices (e.g. hard disk drives, solid state drives, etc.) within the enterprise storage system. This process may be referred to as a “failover.” To provide the above-described functionality, each server may contain a processor complex (also known as a “central electronics complex”) that includes one or more central processing units (CPUs) and other hardware configured to process I/O requests received from host systems. During normal operation (when both servers are operational), the servers may manage I/O to different logical subsystems (LSSs) within the enterprise storage system. For example, in certain configurations, a first server may handle I/O to even LSSs, while a second server may handle I/O to odd LSSs.
Each server or processor complex in an IBM DS8000™ enterprise storage system may include several processor chips and each processor chip may contain several processor cores. Each processor chip and associated processor cores may have associated memory that can be accessed faster than the memory of other processor chips. When acquiring locks, processor cores on a chip may acquire locks on their associated memory faster than they can acquire locks on the memory of other processor chips. In the current design of the IBM DS8000™ enterprise storage system, I/O operations may be executed by any processor core within any chip and locks on memory may be acquired by any processor core for memory of any chip. However, the time needed for a processor core to acquire a lock in its associated memory versus the memory of another chip may differ significantly. This difference is the result of cache coherency operations and other overhead that needs to be performed when a processor core accesses the memory of another processor chip.
In view of the foregoing, what are needed are apparatus and methods to reduce lock contention in data storage systems such as the IBM DS8000™ enterprise storage system. Ideally, such apparatus and methods will significantly improve performance when acquiring locks in data storage systems.
The invention has been developed in response to the present state of the art and, in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available apparatus and methods. Accordingly, embodiments of the invention have been developed reduce lock contention in data storage systems. The features and advantages of the invention will become more fully apparent from the following description and appended claims, or may be learned by practice of the invention as set forth hereinafter.
Consistent with the foregoing, a method is disclosed to reduce lock contention in a data storage system. The method dispatches, on a first processor core, a task configured to acquire a lock on a data storage resource, such as memory. The method then determines whether the first processor core is associated with the data storage resource. If the first processor core is not associated with the data storage resource, the method re-dispatches the task on a second processor core that is associated with the data storage resource. In certain embodiments, the task is only re-dispatched on the second processor core if an amount of effort required to acquire the lock is above a selected threshold. If, on the other hand, the first processor core is associated with the data storage resource, the method executes the task on the first processor core.
A corresponding system and computer program product are also disclosed and claimed herein.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through use of the accompanying drawings, in which:
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the invention, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of certain examples of presently contemplated embodiments in accordance with the invention. The presently described embodiments will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout.
The present invention may be embodied as an apparatus, method, and/or computer program product. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
The computer readable storage medium may be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage system, a magnetic storage system, an optical storage system, an electromagnetic storage system, a semiconductor storage system, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage system via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
The computer readable program instructions may execute entirely on a user's computer, partly on a user's computer, as a stand-alone software package, partly on a user's computer and partly on a remote computer, or entirely on a remote computer or server. In the latter scenario, a remote computer may be connected to a user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention may be described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus, or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
Referring to
As shown, the network environment 100 includes one or more computers 102, 106 interconnected by a network 104. The network 104 may include, for example, a local-area-network (LAN) 104, a wide-area-network (WAN) 104, the Internet 104, an intranet 104, or the like. In certain embodiments, the computers 102, 106 may include both client computers 102 and server computers 106 (also referred to herein as “hosts” 106 or “host systems” 106). In general, the client computers 102 initiate communication sessions, whereas the server computers 106 wait for and respond to requests from the client computers 102. In certain embodiments, the computers 102 and/or servers 106 may connect to one or more internal or external direct-attached storage systems 112 (e.g., arrays of hard-storage drives, solid-state drives, tape drives, etc.). These computers 102, 106 and direct-attached storage systems 112 may communicate using protocols such as ATA, SATA, SCSI, SAS, Fibre Channel, or the like.
The network environment 100 may, in certain embodiments, include a storage network 108 behind the servers 106, such as a storage-area-network (SAN) 108 or a LAN 108 (e.g., when using network-attached storage). This network 108 may connect the servers 106 to one or more storage systems 110, such as arrays 110a of hard-disk drives or solid-state drives, tape libraries 110b, individual hard-disk drives 110c or solid-state drives 110c, tape drives 110d, CD-ROM libraries, or the like. To access a storage system 110, a host system 106 may communicate over physical connections from one or more ports on the host 106 to one or more ports on the storage system 110. A connection may be through a switch, fabric, direct connection, or the like. In certain embodiments, the servers 106 and storage systems 110 may communicate using a networking standard such as Fibre Channel (FC) or iSCSI.
Referring to
In selected embodiments, the storage controller 200 includes one or more servers 206a, 206b. The storage controller 200 may also include host adapters 208 and device adapters 210 to connect the storage controller 200 to host systems 106 and storage drives 204, respectively. Multiple servers 206a, 206b may provide redundancy to ensure that data is always available to connected host systems 106. Thus, when one server 206a fails, the other server 206b may pick up the I/O load of the failed server 206a to ensure that I/O is able to continue between the host systems 106 and the storage drives 204. This process may be referred to as a “failover.”
In selected embodiments, each server 206 includes one or more processors 212 and memory 214. The memory 214 may include volatile memory (e.g., RAM) as well as non-volatile memory (e.g., ROM, EPROM, EEPROM, hard disks, flash memory, etc.). The volatile and non-volatile memory may, in certain embodiments, store software modules that run on the processor(s) 212 and are used to access data in the storage drives 204. These software modules may manage all read and write requests to logical volumes in the storage drives 204.
One example of a storage system 110a having an architecture similar to that illustrated in
Referring to
As shown in
As shown in
As shown in
As previously mentioned, when acquiring locks 500, cores 302 on a chip 300 may acquire locks 500 on their associated memory 214 faster than they can acquire locks 500 on the memory 214 of other processor chips 300. Thus, a processor core 302a-d within a chip 300a may acquire a lock faster and more efficiently within the associated memory 214a than can a processor core 302e-h within the chip 300b. Thus, where possible, a lock 500 is ideally obtained in memory 214 by a processor core 302 that resides in the associated processor chip 300.
Referring to
If so, the method 600 determines 604 if the processor core 302 on which the task is running is associated with the storage resource. If so, the method 600 acquires 608 the lock 500 with the currently-used processor core 302. If, on the other hand, the processor core 302 on which the task is running is not associated with the storage resource, the method 600 re-dispatches 606 the task on a processor core 302 that is associated with the storage resource.
Referring to
If, on the other hand, the processor core 302 on which the task is running is not associated with the storage resource, the method 700 determines 706 whether effort required to acquire the lock 500 is above a threshold. This effort may be measured in terms of a number of clock cycles needed to acquire the lock 500, a number of acquisition attempts (e.g., retries) needed to acquire the lock 500, and/or an amount of time needed to acquire the lock 500. If the amount of effort required is below the threshold, the method 700 acquires 710 the lock 500 with the processor core 302 on which the task is currently running without performing a re-dispatch operation. In other words, even if the processor core 302 is not associated with the storage resource, the processor core 302 may nevertheless be used to acquire 710 the lock 500 if the amount of effort needed to acquire the lock 500 is below the threshold. If, on the other hand, the effort required to acquire the lock 500 is above the threshold, the method 700 re-dispatches 708 the task on a processor core 302 that is associated with the storage resource, as shown in
Although apparatus and methods have been disclosed herein primarily as it relates to acquiring and releasing locks 500, similar apparatus and methods may be used with other types of operations. That is, other types of operations (e.g., data access operations) performed on a storage resource may benefit from being performed by associated processor cores 302 as opposed to non-associated processor cores 302. This is due to the fact that associated processor cores 302 are closer to the storage resources in which the operations are being performed and thus may be used to perform the operations more efficiently and with less overhead.
The flowcharts and/or block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer-usable media according to various embodiments of the present invention. In this regard, each block in the flowcharts or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, may be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.