Reachability detection in trill networks

Information

  • Patent Grant
  • 8885488
  • Patent Number
    8,885,488
  • Date Filed
    Friday, November 19, 2010
    13 years ago
  • Date Issued
    Tuesday, November 11, 2014
    9 years ago
Abstract
One embodiment of the present invention provides a system for testing reachability between two nodes within a network. During operation, the system transmits a network-testing request frame from a source node to a destination node, and in response to receiving a network-testing response frame corresponding to the request frame, the system determines reachability of the destination node. The network-testing request or response frame is not processed on an Internet Protocol (IP) layer.
Description
BACKGROUND

1. Field


The present disclosure relates to network monitoring and troubleshooting. More specifically, the present disclosure relates to a method for detecting reachability in a network implementing the Transparent Interconnection of Lots of Links (TRILL) protocol.


2. Related Art


As more mission-critical applications are being implemented in data communication networks, high-availability operation is becoming progressively more important as a value proposition for network architects. It is often desirable to divide a conventional aggregated link (from one device to another) among multiple network devices, such that a node failure or link failure would not affect the operation of the multi-homed device.


Meanwhile, layer-2 (e.g., Ethernet) networking technologies continue to evolve. More routing-like functionalities, which have traditionally been the characteristics of layer-3 (e.g., IP) networks, are migrating into layer-2. Notably, the recent development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header. Like any other type of network, a TRILL network needs to be monitored and maintained to ensure its proper operation. However, at present, TRILL networks lack many of the network control and management functions available in layer-3 networks.


SUMMARY

One embodiment of the present invention provides a system for testing reachability between two nodes within a network. During operation, the system transmits a network-testing request frame from a source node to a destination node, and in response to receiving a network-testing response frame corresponding to the request frame, the system determines reachability of the destination node. The network-testing request or response frame is not processed on an Internet Protocol (IP) layer.


In a variation on this embodiment, the network-testing request or response frame includes an Ethernet frame.


In a further variation, the Ethernet frame includes a field which indicates that the Ethernet frame is an Operation, Administration, and Management (OAM) frame.


In a variation on this embodiment, the system further executes a network-testing command which includes an address of the destination node.


In a variation on this embodiment, the network-testing request or response frame is a Transparent Interconnection of Lots of Links (TRILL) frame.


In a further variation, the network-testing request or response frame includes TRILL headers comprising the address of the destination node in an outer media access control (MAC) destination address (DA) field.


In a further variation, the network-testing request or response frame includes TRILL headers and an encapsulated Ethernet frame, and the Ethertype field of the encapsulated Ethernet frame specifies that the network-testing request frame is a TRILL OAM frame.


In a further variation, the encapsulated Ethernet frame includes a TRILL OAM header field.


In a further variation, the TRILL OAM header field includes an operation code (opcode) field, and wherein the opcode field specifies whether a TRILL OAM frame is a request or response frame.


In a further variation, the TRILL OAM header field includes a transaction identifier, and a network-testing request frame and a corresponding response frame have the same transaction identifier.


In a variation on this embodiment, the system further determines a round trip time between the time when the network-testing request frame is transmitted and the time when the response frame is received.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary TRILL network (prior art).



FIG. 2 presents a diagram illustrating the format of an exemplary protocol data unit (PDU) for the Transparent Interconnection of Lots of Links (TRILL) protocol (prior art).



FIG. 3 presents a diagram illustrating the format of an exemplary TRILL PDU used for Operations, Administration, and Maintenance (OAM) purposes in accordance with an embodiment of the present invention.



FIG. 4A presents a diagram illustrating the details of the TRILL OAM (TOAM) header in accordance with an embodiment of the present invention.



FIG. 4B presents a diagram illustrating the TOAM header of an exemplary reachability-testing request packet in accordance with an embodiment of the present invention.



FIG. 4C presents a diagram illustrating the TOAM header of an exemplary reachability-testing response packet in accordance with an embodiment of the present invention.



FIG. 5 presents a time-space diagram illustrating the process of testing reachability between two TRILL nodes (RBridges) in accordance with an embodiment of the present invention.



FIG. 6 presents a diagram illustrating the architecture of an exemplary TRILL network node enabling the reachability-testing operation in accordance with an embodiment of the present invention.



FIG. 7A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention.



FIG. 7B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention.



FIG. 8A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention.



FIG. 8B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention.



FIG. 9A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention.



FIG. 9B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention.



FIG. 10 presents a state diagram of an exemplary reachability-testing finite state machine (FSM) in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of testing reachability between two TRILL nodes is solved by allowing a source node to send a reachability-test request packet to the destination node and determining whether a response packet from the destination node is received. The reachability-testing packet includes an optional source TRILL address, a destination TRILL address, and a transaction identifier which is incremented each time such a packet is sent. The transaction identifier can associate a response packet with a request packet. After receiving a valid request, the destination node converts the request packet into a response packet while keeping the same transaction identifier, and sends it back to the source node. Upon receiving a valid response that matches an outstanding request, the initiator of the reachability testing displays the successful arrival of the response, and identifies the destination along with the round trip time in the display.


Although the present disclosure is presented using examples based on the TRILL protocol, embodiments of the present invention are not limited to TRILL networks, or networks defined in a particular Open System Interconnection Reference Model (OSI reference model) layer.


In this disclosure, the term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in IETF draft “RBridges: Base Protocol Specification,” available at http://tools.ietf.org/html/draft-ietf-trill-rbridge-protocol-16, which is incorporated by reference herein. Embodiments of the present invention are not limited to the application among RBridges. Other types of switches, routers, and forwarders can also be used.


The term “end station” refers to a network device that is not TRILL-capable. “End station” is a relative term with respect to the TRILL network. However, “end station” does not necessarily mean that the network device is an end host. An end station can be a host, a conventional layer-2 switch, an IP router, or any other type of network device. Additionally, an end station can be coupled to other switches, routers, or hosts further away from the TRILL network. In other words, an end station can be an aggregation point for a number of network devices to enter the TRILL network.


The term “dual-homed end station” refers to an end station that has an aggregate link to two or more TRILL RBridges, where the aggregate link includes multiple physical links to the different RBridges. The aggregate link, which includes multiple physical links, functions as one logical link to the end station. Although the term “dual” is used here, the term “dual-homed end station” does not limit the number of physical RBridges sharing the aggregate link to two. In various embodiments, other numbers of physical RBridges can share the same aggregate link. Where “dual-homed end station” is used in the present disclosure, the term “multi-homed end station” can also be used.


The terms “frame” or “packet” refer to a group of bits that can be transported together across a network. “Frame” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “Packet” should not be interpreted as limiting embodiments of the present invention to layer-3 networks. “Frame” or “packet” can be replaced by other terminologies referring to a group of bits, such as “cell” or “datagram.”


OAM in TRILL Network



FIG. 1 illustrates an exemplary TRILL network (prior art). As illustrated in FIG. 1, a TRILL network includes six RBridges, 101, 102, 103, 104, 105, and 106. End station 113 is coupled to RBridge 102; end station 114 is coupled to RBridge 103; and end station 115 is coupled to RBridge 105. End stations 111 and 112 are both dual-homed and coupled to RBridges 104 and 105.


It is important to provide Operations, Administration, and Maintenance (OAM) services in a TRILL network. After the initialization of a TRILL network, a network administrator or a user may want to test the reachability between two RBridges within the network. However, unlike layer-3 (such as IP) networks for which a number of OAM protocols have been developed, there is no protocol available for implementing OAM in TRILL. To address such an issue, embodiments of the present invention provide a method and apparatus for implementing OAM in a TRILL environment.


Because each node within a TRILL network runs the TRILL protocol on its ports to facilitate transport of frames (which can be Ethernet or other types of frames) within and across the network, an OAM packet exchanged between the nodes also needs to conform to the TRILL protocol. FIG. 2 presents a diagram illustrating the format of an exemplary protocol data unit (PDU) for the Transparent Interconnection of Lots of Links (TRILL) protocol (prior art). For Ethernet-based TRILL, PDU 200 is an encapsulated Ethernet frame that includes an outer Ethernet header 202, a 2-byte Ethertype field 204, a TRILL header 206, an inner Ethernet header 208, an Ethernet payload 210, and a 4-byte frame check sequence (FCS) field 212.


Outer Ethernet header 202 includes a 6-byte outer MAC destination address (DA) field, a 6-byte outer MAC source address (SA) field, and a 4-byte outer virtual local area network (VLAN) tag field. The outer MAC DA field and the outer MAC SA field specify the next hop RBridge and the transmitting RBridge, respectively, and the outer VLAN tag includes an outer VLAN ID (specified by the designated RBridge for the link onto which the TRILL frame is being sent) and a priority field. Ethertype field 204 specifies that Ethertype is TRILL.


TRILL header 206 includes a 2-bit version (V) field, a 2-bit reserved (R) field, a 1-bit multi-destination (M) field, a 5-bit options length (OL) field, a 6-bit hop count (HC) field, a 2-byte egress RBridge nickname field, and a 2-byte ingress RBridge nickname field. The V field specifies the version of the TRILL-encapsulated frame. If an RBridge determines that the V field in a received TRILL frame has an unrecognized value, the RBridge can optionally discard that frame. The multi-destination field indicates whether the frame is to be delivered to a class of destination end stations via a distribution tree. The OL field specifies the length of an optional field, which indicates optional capabilities used by the TRILL frame, in units of 4 octets. If OL is zero, there are no options present. Otherwise, the options follow immediately after the ingress RBridge nickname field. The hop count field specifies the number of hops a TRILL frame has experienced. An RBridge decrements the hop count of a received frame, and drops frames received with a hop count of zero. The value of the egress Rbridge nickname field depends on the value of the M field. If M=0, the frame is a unicast frame, and the egress RBridge nickname field specifies the egress RBridge. If M=1, the frame is a multi-destination frame, and the egress RBridge nickname field contains a nickname specifying the distribution tree selected to be used to forward the frame.


Inner Ethernet header 206 includes a 6-byte inner MAC DA field, a 6-byte inner MAC SA field, and a 4-byte inner VLAN tag field. The inner MAC DA field and inner MAC SA field specify the destination and source, respectively, of the inner frame, and the inner VLAN tag field contains the VLAN tag information associated with the native frame when it was ingressed.


Ethernet payload 210 includes a 2-byte Ethertype/length field specifying the Ethertype of the original payload, and a variable-length original Ethernet payload field. FCS field 212 contains the computed FCS of the TRILL frame, which is used to detect frame corruptions due to bit errors on a link. Note that the FCS normally changes on encapsulation, decapsulation, and every TRILL hop due to changes in the outer DA and SA addresses and the decrement of the hop count.


To implement OAM in a TRILL network, embodiments of the present invention provide TRILL OAM packets that can be exchanged between two TRILL nodes, thus allowing a system administrator to check on continuity and reachability, and to measure the performance of the TRILL network. For example, in order to test the reachability between two nodes within a TRILL network, an OAM packet can be generated and transmitted from a node with a specified source MAC address to a node with a specified destination MAC address. After receiving such a packet, the destination node can return it to its initiator which facilitates measurement of the round trip time. A successful return (or response) of the OAM packet indicates a proper reachability between the source node and the destination node. Note that, although such an operation is similar to a ping operation used in an Internet Protocol (IP) network, an IP ping cannot be used in the TRILL environment because the IP ping relies on the sending and receiving of an Internet Control Message Protocol (ICMP) packet which is not compatible with TRILL. Furthermore, an IP ping command can only test reachability on the IP layer, which does not always reflect the reachability on the TRILL layer



FIG. 3 presents a diagram illustrating the format of an exemplary TRILL PDU used for Operations, Administration, and Maintenance (OAM) purposes in accordance with an embodiment of the present invention. TRILL-OAM (TOAM) PDU 300 contains fields common to a TRILL PDU, including the outer Ethernet header, the TRILL header, the inner Ethernet header, and the FCS. In addition, the Ethertype/length field of the Ethernet payload within TRILL-OAM PDU 300 is set as TOAM to specify that the TRILL PDU is a TRILL-OAM PDU. The OAM-specific information is carried in the original Ethernet payload field, including a TOAM header field and a payload field.



FIG. 4A presents a diagram illustrating the details of the TOAM header in accordance with an embodiment of the present invention. The first octet of TOAM header 400 includes information regarding level and version, with the higher 3 bits of the first octet dedicated to level information, and the lower 5 bits of the first octet dedicated to version information. The second octet of TOAM header 400 specifies the operation code (opcode) of the current TOAM PDU. The third octet of TOAM header 400 is the flag field, which is used by certain types of TOAM PDUs as specified by the opcode. The fourth octet of TOAM header 400 specifies the offset of the first type-length-value (TLV) field, in units of octets. The length of the next field varies with the opcode. In one embodiment, the next field also includes possible TLV fields. TOAM header 400 also includes an end TLV with its type set as 0, indicating the end of TOAM header 400.


As mentioned previously, to test reachability between two nodes, the system can transmit a reachability-testing request packet from a source node to a destination node, and wait for a reachability-testing response packet returned from the destination node. In one embodiment, both the request and response packets are TRILL-OAM packets, which are distinguishable from each other by the opcode.



FIG. 4B presents a diagram illustrating the TOAM header of an exemplary reachability-testing request packet in accordance with an embodiment of the present invention. TOAM header 402 includes common TOAM header fields, such as the level/version field, the opcode field, flags, the first TLV offset field, and the end TLV. Note that the opcode is set as 3, indicating this TOAM packet is a reachability-testing request packet. The first TLV offset is set as 4, indicating that the beginning of the first TLV starts 4 bytes after this field. Between the first TLV offset field and the first TLV (which, in this case, is the end TLV) is a 4-byte transaction identifier (ID) field. The transaction ID increments each time a reachability-testing request packet is sent, and can be used to associate a response with a request.



FIG. 4C presents a diagram illustrating the TOAM header of an exemplary reachability-testing response packet in accordance with an embodiment of the present invention. Similar to TOAM header 402, TOAM header 404 includes common TOAM header fields and a 4-byte transaction ID field. Note that the opcode is set as 2, indicating this TOAM packet is a reachability-testing response packet. The transaction ID of a response packet is the same as the request packet.



FIG. 5 presents a flowchart illustrating the process of testing reachability between two TRILL nodes (RBridges) in accordance with an embodiment of the present invention. During operation, the source node generates a reachability-testing request packet (also called an l2ping packet), identified by its opcode in the TOAM header (operation 502). In one embodiment, an operator command, such as a command line interface (CLI) command, is used to generate this packet. In a further embodiment, the command line for generating a reachability-testing packet has the following format: l2ping IP|FCoE|MAC <options>.


The l2ping command results in an l2ping request packet, which can be different from the ping packet used in the IP network, being sent. Selection of IP|FCoE|MAC operand indicating the type of network under tested. If IP is selected, the system will send the l2ping packet treating the network as IP over TRILL. In such a case, the l2ping command can have the following format: l2ping IP--domain<domain id>--s<packet-size>--c<packet-count>--i<interval>--p<pattern>, where domain is a 16-bit valid switch domain-id for the destination node, s specifies the size of the l2ping packet, c specifies the number of l2ping packets that will be sent (the default value is 5), i specifies the time interval between successive l2ping packets (the default value is 1 second), and p specifies the “pad” bytes used to fill the packet. If FCoE is selected, the system will send the l2ping packet treating the network as Fibre Channel over Ethernet (FCoE) over TRILL. In such a case, the l2ping command can have the following format: l2ping FCoE--domain<domain id>--s<packet-size>--c<packet-count>--i<interval>--p<pattern>.


If MAC is selected, the system will send the l2ping packet treating the network as a MAC layer, and the l2ping command can have the following format: l2ping MAC {--src_mac<src_mac>}-dst_mac<dst_mac>--vlan<vlan>--ingress_port<ingress_port>--domain<domain id>--s<packet-size>--c<packet-count>--i<interval>--p<pattern>. Src_mac specifies the MAC address of the source node, which is optional. If the source MAC address is specified, it has to be either a MAC address that has been learned by the RBridge or the RBridge's own MAC address. If the source MAC address is not specified, then the system will use the RBridge's own MAC address when constructing the l2ping packet. Dst-mac specifies the MAC address of the destination node, vlan specifies the VLAN ID, and ingress_port specifies the ingress port number. The rest of the command line is similar to that of the l2ping command used for IP and FCoE. In one embodiment, the l2ping MAC command results in a reachability-testing request TOAM packet being sent from the source node to the destination node. The opcode within the TOAM is set as 3 (as shown in FIG. 4B) indicating the packet is a reachability-testing request packet. The outer MAC DA and the outer MAC SA fields within the TOAM packet are set as the destination and source MAC addresses specified by the l2ping command, respectively. As a result, the packet will be routed to the node specified by that destination MAC address. The system also assigns a transaction ID, which increments each time a request packet is sent, to the l2ping request packet. Note that the inclusion of the source MAC address allows a user to test reachability between two remote nodes; that is, a user can instruct a remote source node to send an l2ping packet to a remote destination node.


The l2ping request packet is then transmitted from source node 500 to a destination node 530 (operation 504). Note that appropriate routing is performed by each intermediate node, such as nodes 510 and 520, before the l2ping request packet reaches destination node 530. In addition, each intermediate node decrements the hop counts of the l2ping request packet. Upon the transmission of the l2ping packet, initiating node 500 starts a timer with a predetermined value (operation 506). Note that, if the timer expires before an l2ping response packet is received by initiating node 500, an error message will be generated indicating that a response has not been received within the time window specified by the predetermined timer value (operation 508).


Once destination node 530 receives the l2ping request packet (operation 512), it generates an l2ping response packet based on the l2ping request packet (operation 514). The l2ping response packet has a similar format as the request packet. In one embodiment, the response packet is a reachability-testing response TOAM packet. The opcode within the TOAM is set as 2 (as shown in FIG. 4C) indicating the packet is a reachability-testing response packet. The transaction ID within the response packet is kept the same as that of the request packet, and the outer MAC DA and SA of the response packet are set as the outer MAC SA and DA of the request packet, respectively. In one embodiment, the inner MAC DA and SA are also switched when a request packet is converted into the response packet. Subsequently, destination node 530 sends the response packet back to source node 500 (operation 516). Upon receiving the response packet (operation 518), source node 500 matches the received response packet to one of the outstanding request packets based on the transaction ID (operation 522), and displays the successful arrival of the response packet (operation 524). The displayed result identifies the destination node along with the round trip time statistics. If the transaction ID of the received response packet does not match any of the outstanding request packets, the response packet is discarded.



FIG. 6 presents a diagram illustrating the architecture of an exemplary TRILL network node enabling the reachability-testing operation in accordance with an embodiment of the present invention. TRILL network node 600 includes a reachability-testing initiating mechanism 602 configured to initiate a reachability test and a reachability-testing response mechanism 604 configured to respond to the reachability-testing request. Reachability-testing initiating mechanism 602 includes a command-receiving mechanism 606, a request-generation mechanism 608, a request-transmission mechanism 610, a response-receiving mechanism 612, a timer 614, and a display mechanism 616. Reachability-testing response mechanism 604 includes a request-receiving mechanism 618, a response-generation mechanism 620, and a response-transmission mechanism 622.


During operation, command-receiving mechanism 606 receives a reachability-testing command, which can be from a remote host. Upon receiving the command, request-generation mechanism 608 generates a reachability-testing request packet using parameters specified by the command. Request-transmission mechanism 610 transmits the request packet to the destination node and starts timer 614. If timer 614 expires before a corresponding response packet is received by response-receiving mechanism 612, an error message is displayed by display mechanism 616. If a valid response is received by response-receiving mechanism 612, then display mechanism 616 will display the arrival of the response packet along with the round trip time statistics. Request-receiving mechanism 618 is configured to receive a reachability-testing request packet, and response-generation mechanism 620 is configured to generate a reachability-testing response packet upon the receipt of a request packet. In one embodiment, response-generation mechanism 620 generates the response packet by switching the source MAC address and the destination MAC address of the received request packet while keeping the transaction ID unchanged. The generated response packet is then transmitted to the initiating node specified by the destination MAC address included in the response packet.


Packet Flow Option 1



FIG. 7A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention. During operation, a reachability-testing request command is executed via a CLI module 702 running on a processor, invoking a configuration background process (also called a daemon) confD 704 developed by the Tail-f Systems of Round Hill, Va. ConfD 704, in turn, executes the command based on a predetermined set of rules. The confD-Gateway does the translation, creates a message, and dispatches it to a WAVE daemon, dcmD 706. In dcmD 706, a plugin 708, specific to that command, is invoked to validate the data that has been entered. Plugin 708 then sends a message to a TRILL OAM daemon, toamD 710, which runs in the user space, to execute the reachability-testing request. A reachability-testing finite state machine (FSM) 712 creates a reachability-testing request packet, starts a timer, and communicates with the kernel via a socket interface 714 using a newly created socket family, such as AF_TOAM or AF_PACKET. The created request packet makes its way through the high-speed-link (HSL) and the application-specific integrated circuit (ASIC) driver 716, and then goes out on the wire. When a reachability-response packet is received, it gets to HSL and ASIC driver 716 and the kernel, and then the response packet reaches reachability-testing FSM 712 running in toamD 710 via socket interface 714. The reachability-response packet is processed by toamD 710, and the response is sent to display 718.



FIG. 7B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention. During operation, the target of the reachability test receives a reachability-testing request packet, which makes its way to the kernel via HSL and ASIC driver 716. The request packet then reaches toamD 710 via socket interface 714. ToamD 710 processes the received request packet and generates a reachability-testing response packet based on the request packet. The response packet is sent back via socket interface 714 to the kernel. Subsequently, the response packet is sent out on the wire via HSL and ASIC driver 716.


This option generates and processes reachability-testing request and response packets using a daemon (toamD) running in the user space. Such an approach makes debugging easier. However, a new daemon needs to be invoked, and communication is needed between the dcmD plugin specified for the reachability-testing command and the newly invoked daemon; such requirements occupy resources and increase system complexity.


Packet Flow Option 2



FIG. 8A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention. During operation, a reachability-testing request command is executed via a CLI module 802 running on a processor, invoking a configuration background process (also called a daemon) confD 804. ConfD 804, in turn, executes the command based on a predetermined set of rules. The confD-Gateway does the translation, creates a message, and dispatches it to a WAVE daemon, dcmD 806. In dcmD 806, a plugin 808, specific to that command, is invoked to validate the data that has been entered. Plugin 808 invokes a worker thread, which runs in the user-space, to execute the reachability-testing request. The worker thread then communicates with the kernel via a socket interface 810 using a newly created socket family, such as AF_TOAM or AF_PACKET. The HSL module 812 in the kernel invokes reachability-testing FSM 814, which creates the reachability-testing request packet. The created request packet makes its way through HSL module 812 and ASIC driver 816, and then goes out on the wire. When a reachability-response packet is received, it gets to ASIC driver 816 and HSL module 812 in the kernel. Subsequently, the response packet gets to reachability-testing FSM 814, which processes the response and sends it to display 818.



FIG. 8B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention. During operation, the target of the reachability test receives a reachability-testing request packet, which makes its way to HSL module 812 via ASIC driver 816. HSL module 812 then invokes a reachability-testing responder module 820, which processes the request packet and generates a reachability-testing response packet. The response packet is sent back to HSL module 812 and ASIC driver 816 before it goes out on the wire.


This option does not require a new daemon to be invoked. However, generating the request and processing the response partially occur in the kernel space, which makes debugging more difficult.


Packet Flow Option 3



FIG. 9A presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that initializes the reachability test in accordance with an embodiment of the present invention. During operation, a reachability-testing request command is executed via a CLI module 902 running on a processor to invoke a configuration background process (also called a daemon), such as confD 904. ConfD 904, in turn, executes the command based on a predetermined set of rules. The confD-Gateway does the translation, creates a message, and dispatches it to a WAVE daemon, dcmD 906. In dcmD 906, a plugin 908, specific to that command, is invoked to validate the data that has been entered. Plugin 908 invokes a worker thread, which runs in the user-space, to execute the reachability-testing request by invoking reachability-testing FSM 910. Reachability-testing FSM 910 creates the reachability-testing request packet, starts a timer, and communicates with the kernel via a socket interface 912 using a newly created socket family, such as AF_TOAM or AF_PACKET. The created request packet makes its way through HSL and ASIC driver 914, and then goes out on the wire. When a reachability-response packet is received, it gets to the kernel via HSL module and ASIC driver 914. Subsequently, the response packet gets to reachability-testing FSM 910 via socket interface 912, which processes the response and sends it to display 916.



FIG. 9B presents a diagram illustrating the detailed flow of the reachability-testing request and response packets within a TRILL network node that responds to the reachability test in accordance with an embodiment of the present invention. During operation, the target of the reachability test receives a reachability-testing request packet, which makes its way to HSL module and ASIC driver 914. Through socket interface 912, the request packet arrives at a reachability-testing responder module 918, which processes the request packet and generates a reachability-testing response packet. The response packet is then sent back to HSL module and ASIC driver 914 before it goes out on the wire.


This option integrates the advantages of both previous options. No additional daemon is needed as the process runs in the dcmD context, and debugging is easier as the process is running in the user space.


Reachability-Testing FSM



FIG. 10 presents a state diagram of an exemplary reachability-testing finite state machine (FSM) in accordance with an embodiment of the present invention. Reachability-testing FSM 1000 includes three states: initial state 1002, ready state 1004, and wait-for-response state 1006.


After system initialization, FSM 1000 moves from initial state 1002 to ready state 1004. During operation, a reachability-testing user command causes FSM 1000 to move from ready state 1004 to wait-for-response state 1006. Valid events in wait-for-response state 1006 include user termination, arrival of a response, and command times out. These valid responses cause the system to display the result of the reachability test, clean up the data structures, and return to ready state 1004. On the other hand, an invalid event will cause the system to clean up the data structure, and return to ready state 1004. Note that, at any given time, a number of simultaneous reachability-testing requests can exist as long as the number does not exceed a predetermined threshold. To implement FSM 1000, the system can allocate individual data blocks, each representing the states and other aspects of a reachability-testing request.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A method, comprising: processing a command to test reachability in a Transparent Interconnection of Lots of Links (TRILL) network, wherein the command specifies a type of layer two or layer three network operating on top of the TRILL network;generating a network-test request flame based at least on the specified type of layer two or layer three network operating on top of the TRILL network and an address of a destination node;transmitting a network testing request frame from a source node to a destination node; andin response to a network-testing response frame corresponding to the network-testing request frame, determining reachability of the destination node.
  • 2. The method of claim 1, wherein the network-testing request frame or the network-testing response frame includes an Ethernet frame.
  • 3. The method of claim 2, wherein the Ethernet frame includes a field which indicates that the Ethernet frame is an Operation, Administration, and Management (OAM) frame.
  • 4. The method of claim 1, wherein the network-testing request frame or the network-testing response frame is a Transparent Interconnection of Lots of Links (TRILL) frame.
  • 5. The method of claim 4, wherein the network-testing request frame or the network-testing response frame includes TRILL headers comprising an address of the destination node in an outer media access control (MAC) destination address (DA) field.
  • 6. The method of claim 4, wherein the network-testing request frame or the network-testing response frame includes TRILL headers and an encapsulated Ethernet frame, and wherein an Ethertype field of the encapsulated Ethernet frame specifies that the network-testing request frame or the network-testing response frame is a TRILL OAM frame.
  • 7. The method of claim 6, wherein the encapsulated Ethernet frame includes a TRILL OAM header field.
  • 8. The method of claim 7, wherein the TRILL OAM header field includes an operation code (opcode) field, and wherein the opcode field specifies whether a TRILL OAM frame is a request frame or a response frame.
  • 9. The method of claim 7, wherein the TRILL OAM header field includes a transaction identifier, and wherein the network-testing request frame and the corresponding network-testing response frame have the same transaction identifier.
  • 10. The method of claim 1, further comprising determining a round trip time between the time when the network-testing request frame is transmitted and the time when the network-testing response frame is received.
  • 11. A switch, comprising: a processing mechanism configured to process a command to test reachability in a Transparent Interconnection of Lots of Links (TRILL) network, wherein the command specifies a type of layer two or layer three network operating on top of the TRILL network;a packet generator configured to generate a network-test request flame based at least on the specified type of layer two or layer three network operating on top of the TRILL network and an address of a destination node; anda transmission mechanism configured to transmit a network testing request frame from a source node to a destination node; anda determination mechanism configured to determine, in response to receiving the network-testing response frame corresponding to the network-testing request frame, reachability of the destination node.
  • 12. The switch of claim 11, wherein the network-testing request frame or the network-testing response frame includes an Ethernet frame.
  • 13. The switch of claim 11, wherein the Ethernet frame includes a field which indicates that the Ethernet frame is an Operation, Administration, and Management (OAM) frame.
  • 14. The switch of claim 11, wherein the network-testing request frame or the network-testing response frame is a Transparent Interconnection of Lots of Links (TRILL) frame.
  • 15. The switch of claim 14, wherein the network-testing request frame or the network-testing response frame includes TRILL headers comprising an address of the destination node in an outer media access control (MAC) destination address (DA) field.
  • 16. The switch of claim 14, wherein the network-testing request or response frame includes TRILL headers and an encapsulated Ethernet frame, and wherein an Ethertype field of the encapsulated Ethernet frame specifies that the network-testing request frame or the network-testing response frame is a TRILL OAM frame.
  • 17. The switch of claim 16, wherein the encapsulated Ethernet frame includes a TRILL OAM header field.
  • 18. The switch of claim 17, wherein the TRILL OAM header field includes an operation code (opcode) field, and wherein the opcode field specifies whether a TRILL OAM frame is a request frame or a response frame.
  • 19. The switch of claim 17, wherein the TRILL OAM header field includes a transaction identifier, and wherein the network-testing request frame and the corresponding network-testing response frame have the same transaction identifier.
  • 20. The switch of claim 11, further comprising a round trip time calculator configured to calculate the round trip time between the time when the network-testing request frame is transmitted and the time when the network-testing response frame is received.
  • 21. An apparatus, comprising: means for processing a command to test reachability in a Transparent Interconnection of Lots of Links (TRILL) network, wherein the command specifies a type of layer two or layer three network operating on top of the TRILL network;means for generating a network-test request frame based at least on the specified type of layer two or layer three network operating on top of the TRILL network and an address of a destination node;means for transmitting a network testing request frame from a source node to a destination node; andmeans for, in response to a network-testing response frame corresponding to the network-testing request frame, determining reachability of the destination node.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/350,827, entitled “Reachability Detection in TRILL Networks,” by inventors Suresh Vobbilisetty, Phanidhar Koganti, and Arun Mahajan, filed 2 Jun. 2010, and U.S. Provisional Application No. 61/380,814, entitled “Reachability Detection in TRILL Networks,” by inventors Suresh Vobbilisetty, Phanidhar Koganti, and Arun Mahajan, filed 8 Sep. 2010, the disclosures of which are incorporated by reference herein. The present disclosure is related to U.S. patent application Ser. No. 12/725,249, entitled “REDUNDANT HOST CONNECTION IN A ROUTED NETWORK,” by inventors Somesh Gupta, Anoop Ghanwani, Phanidhar Koganti, and Shunjia Yu, filed 16 Mar. 2010; U.S. patent application Ser. No. 12/730,749, entitled “METHOD AND SYSTEM FOR EXTENDING ROUTING DOMAIN TO NON-ROUTING END STATIONS,” by inventors Pankaj K. Jha and Mitri Halabi, filed 24 Mar. 2010; and U.S. patent application Ser. No. 13/087,239, entitled “VIRTUAL CLUSTER SWITCHING,” by inventors Suresh Vobbilisetty and Dilip Chatwani, filed Apr. 14, 2011. the disclosures of which are incorporated by reference herein.

US Referenced Citations (227)
Number Name Date Kind
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5983278 Chong Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6104696 Kadambi Aug 2000 A
6185241 Sun Feb 2001 B1
6438106 Pillar Aug 2002 B1
6542266 Phillips Apr 2003 B1
6633761 Singhal Oct 2003 B1
6873602 Ambe Mar 2005 B1
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser, Jr. Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7716370 Devarapalli May 2010 B1
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937756 Kay May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8078704 Lee Dec 2011 B2
8102781 Smith Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8301686 Appajodu Oct 2012 B1
8351352 Eastlake, III Jan 2013 B1
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8462774 Page et al. Jun 2013 B2
8520595 Yadav Aug 2013 B2
8599850 Jha Dec 2013 B2
20020021701 Lavian Feb 2002 A1
20020091795 Yip Jul 2002 A1
20030041085 Sato Feb 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20040001433 Gram Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040165595 Holmgren et al. Aug 2004 A1
20040213232 Regan Oct 2004 A1
20050007951 Lapuh Jan 2005 A1
20050044199 Shiga Feb 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050122979 Gross Jun 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060018302 Ivaldi Jan 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060184937 Abels Aug 2006 A1
20060221960 Borgione Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070097968 Du May 2007 A1
20070116224 Burke May 2007 A1
20070177597 Ju Aug 2007 A1
20070274234 Kubota Nov 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080065760 Damm et al. Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080101386 Gray May 2008 A1
20080133760 Berkvens et al. Jun 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan et al. Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 LaVigne et al. Oct 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20090037607 Farinacci Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090116381 Kanda May 2009 A1
20090138752 Graham May 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100131636 Suri May 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100257263 Casado Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20110019678 Mehta Jan 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110064086 Xiong Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 Van Der Merwe et al. Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110194403 Sajassi et al. Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dumbar Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Da Silva et al. Feb 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120106339 Mishra May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120163164 Terry Jun 2012 A1
20120177039 Berman Jul 2012 A1
20120243539 Keesara Sep 2012 A1
20120294192 Masood Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20130034015 Jaiswal Feb 2013 A1
20130067466 Combs Mar 2013 A1
20130259037 Natarajan Oct 2013 A1
20140105034 Sun Apr 2014 A1
Foreign Referenced Citations (4)
Number Date Country
102801599 Nov 2012 CN
1916807 Apr 2008 EP
2001167 Dec 2008 EP
2010111142 Sep 2010 WO
Non-Patent Literature Citations (93)
Entry
“RBridges: Base Protocol Specification”, IETF Draft, Perlman et al., Jun. 26, 2009.
Brocade Unveils, “The Effortless Network” Mar. 2012.
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Brocade, “FastIron and TurboIron 24x Configuration Guide”, Feb. 16, 2010.
Brocade, “FastIron Configuration Guide” Dec. 18, 2009.
Narten, T. et al., “Problem Statement: Overlays for Network Virtualization draft-narten-nvo3-overlay-problem-statement-01”, Oct. 31, 2011.
Knight, Paul et al., “Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts”, Jun. 2004.
Brocade “An Introduction to Brocade VCS Fabric Technology”, Dec. 3, 2012.
Kreeger, L. et al., “Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00”, Jan. 30, 2012.
Knight, Paul et al., “Network Based IP VPN Architecture using Virtual Routers”, May 2003.
Louati, Wajdi et al., “Network-Based Virtual Personal Overlay Networks Using Programmable Virtual Routers”, Jul. 2005.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, from Wyllie, Christopher T., dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, from Park, Jung H., dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, from Kavleski, Ryan C., dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, from Chang, Richard K., dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, from Park, Jung H., dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, from Park. Jung H., dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated May 24, 2012.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, from Haile, Awet A., dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, from Haile, Awet A., dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, from Huang, Weibin, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, from Lo, Diane Lee, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, from Ghafoerkhan, Faiyazkhan, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, from Ambaye, Mewale A., dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, from Ambaye, Mewale A., dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, from Mansoury, Nourali, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, from Weidner, Timothy J., dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, from Weidner, Timothy J., dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, from Preval, Lionel, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, from Preval, Lionel, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, from Patel, Parthkumar, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/365,808, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, from Qin, Zhiren, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, from Lee, Chi Ho A., dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, from Qin, Zhiren, dated Nov. 12, 2013.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, from Patel, Parthkumar, dated Nov. 29, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, from Vu, Viet Duy, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, from Kavleski, Ryan C., dated Jan. 10, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, from Patel, Parthkumar, dated Jan. 6, 2014.
“Switched Virtual Internetworking moves beyond bridges and routers”, 8178 Data Communications 23(Sep. 1994), No. 12, New York, pp. 66-70, 72, 74, 76, 78, 80.
Perlman, Radia et al., “RBridge VLAN Mapping”, Dec. 4, 2003.
Perlman, Radia et al., “Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology”, 2009.
S. Nada, ED et al., “Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6”, Mar. 2010.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, Oct. 2002.
Knight, S. et al., “Virtual Router Redundancy Protocol”, Apr. 1998.
Eastlake 3rd., Donald et al., “RBridges: TRILL Header Options”, <draft-ietf-trill-rbridge-options-00.txt>, Dec. 2009.
Lapuh, Roger et al., “Split Multi-link Trunking (SMLT)”, draft-lapuh-network-smlt-08, Jul. 2008.
Touch, J. et al., “Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement”, May 2009.
Christensen, M. et al., “Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches”, May 2006.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated May 14, 2014.
Office Action for U.S. Appl. No. 13/484,072, filed May 30, 2012, dated May 9, 2014.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Apr. 22, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Mar. 26, 2014.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 14, 2014.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Zhai F. Hu et al. “RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt”, May 15, 2012.
Huang, Nen-Fu et al., “An Effective Spanning Tree Algorithm for a Bridged LAN”, Mar. 16, 1992.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office Action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office Action dated Jun. 20, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Related Publications (1)
Number Date Country
20110299409 A1 Dec 2011 US
Provisional Applications (2)
Number Date Country
61380814 Sep 2010 US
61350827 Jun 2010 US