This invention is an improvement on U.S. Pat. No. 5,700,233, U.S. Pat. 6,526,795 and U.S. Provisional Application No. 60/338,670 filed Dec. 11, 2001.
The reduction of steel in a mill requires the presence of very robust equipment. The reduction of a steel bar to wire is usually accomplished by means of a series of reducing stands in which a pair of mating rolls are mounted on stout pinions so as to be able to exert sufficient force on a steel work product passing between the mating rolls to enable the rolls to distort the work product to a work product with a reduced cross sectional area.
It will be seen that not only do the mating rolls have to produce great force on the work product, but the rolls must produce a torque to pull the work through between the reducing rolls.
The reducing rolls are usually mounted at the end of a driving shaft (usually referred to as a pinion) in such a manner as to be able to exert substantial force in order to reduce the cross section of the work as it passes between the rolls and the pinion must transmit considerable torque from the pinion to each roll in order to pull the work between the rolls.
In order to produce an acceptable work product in which the cross section of the end work product is within an acceptable range, the rolls must be very precisely and accurately mounted on the pinion to reduce eccentricity to an acceptable value. Above all the roll must never be allowed to slip on the driving pinion (because of the possible introduction of eccentricity to the roll rotation) because of the possibility of the rejection of the resulting work product due to variations in gauge.
This invention relates to a method of mounting a reducing roll on a pinion in such a manner that the roll is tightly clamped on the pinion by the production of a compressive force on the roll (which presses the roll firmly against a shoulder on the driving pinion) whilst a simultaneous is force expands the diameter of pinion on which the roll is mounted. In this invention, the production of these two forces is interdependent, thus as the force causing the increase in diameter of the roll mounting surface of the pinion is being produced, a simultaneous reaction force is being produced which clamps the roll tightly against a shoulder on the driving pinion. An increase in one of the above forces automatically causes an increase in the other force.
U.S. Pat. No. 6,526,795
U.S. Pat. No. 5,700,233
Referring to
Cap 22 is now threaded on to plug 26 at threaded portion 32 (See
Cap 22 is provided with seal ring 38 to prevent the ingress of foreign particles such as mill scale into the assembly 10. A series of pressure bolts 40 are threaded into cap 22 at threaded holes 42. Bolts 40 are provided with seal rings 44 to prevent the ingress of foreign particles into the assembly 10.
Plug 26 is provided with shallow buttress type threads as shown in inset drawing 45.
Cap 22 is provided with a series of holes 46 which permits an operator to insert a tool therein to tighten or loosen cap 22 on the threaded end 32 of plug 26.
In operation, plug 26 is first threaded into the chamber which is provided with a surface threaded with threads 25. Plug 26 is threaded into the threaded chamber until the end of plug 26 nearly contacts the bottom of the chamber. Next bolts 28 are inserted into the clearance holes 30 provided in plug 26 and bolts 28 are subsequently tightened into threaded holes 32 provided in pinion 12. Bolts 28 prevent plug 26 from undergoing any rotational motion during operation of the assembly 10.
Next, a spacer ring assembly 16 is placed on pinion 12 against shoulder 14. Roll 18 is next mounted on pinion 12 against spacer ring assembly 16. Cap 22 carrying seal ring 38 is threaded on to plug 26 at threads 32.
When the cap 22 has been tightened on plug 26 to a predetermined torque, the tightening of pressure bolts 40 may begin. Bolts 40 are tightened in succession to: (1) clamp roll 18 against shoulder 14 of pinion 12; and (2) to cause expansion of the surface of the pinion beneath roll 18. Torquing bolts 40 will force roll 18 to move slightly to the left as shown in
Referring to
Referring now to
A piston plate 150 is threaded onto plug 126 at threads 133. Piston plate 150 is somewhat disc shaped and is provided with threads 133 to engage plug 126. Piston plate 150 is probably best illustrated in
A hydraulic fluid pressure adapter 170 is threaded into piston plate 150 at threads 172. Pressure adapter 170 is provided to the assembly 110 to provide ready connection to an external source of hydraulic pressure. An internal pressure duct 174 in adaptor 170 is shown in communication with radially extending distribution ducts 176. A pair of seal rings 178 are installed on adapter 170 at the surface which mates with piston plate 150.
Duct 174 is provided with a pair of ball checks 184 and 186 to maintain the internal pressure in the system when the external source of hydraulic pressure is removed.
Referring to
It will be seen in
Assembly and operation of this pinion assembly is as follows:
Roll 118 and spacer rings 116 are first placed on pinion 112. Plug 124 is next threaded into cavity 124 until a predetermined “home” position is reached. Headless bolts 128 are next threaded into pinion 112 to secure plug 126 against any further rotation of plug 126.
Next thrust ring 120 is fitted onto piston plate 150 and the assembly comprising piston plate 150, thrust ring 120 are threaded onto plug 126 at threads 133. Final torquing of piston plate 150 on plug 126 may be accomplished by means of hexagonal head 192 (
When the assembly (150, 120) is in place, adapter 170 may be threaded into piston plate 150. Bleeder plugs 182 will have to be removed to permit bleeding of the assembly 110. When the unit is ready for pressurization bleeder plugs 182 are replaced.
A source of external hydraulic pressure is applied to adaptor 170. This pressure is applied to chamber 190 by means of ducts 174 and 176. As soon as chamber 190 becomes pressurized, thrust ring 120 is forced to the left whilst the reaction force which is applied to piston plate 150 tends to pull the plug 126 to the right. As with the previous version of this assembly, these two forces are equal and opposite. When a predetermined pressure is reached in chamber 190, the pressure source is removed from adaptor 170 (ball checks 184 and 186 maintain the pressure) and cap 122 is installed on pressure plate 150 at threads 192.
When it is desired to remove roll 118 from the pinion assembly 110, cap 122 is unscrewed from piston plate 150 and one or all bleeder plugs 182 are removed from piston plate 150 to release the hydraulic pressure in chamber 190.
The piston plate 150, thrust collar 120 assembly is next removed by unscrewing piston plate 150 from plug 126 and it will be seen that the roll mounting surface of pinion 112 will have contracted sufficiently that the roll may be easily removed from pinion 112.