The present invention relates to target systems for firearm training.
The operation of firearms can be very dangerous. Every round fired from a firearm has the potential of causing death or serious injury. Shot placement accuracy is critical when trying to stop a life threatening attack. Poor shot placement can cause a failure to protect life and the possible death or injury of innocent life.
For this reason, firearm training systems are key to ensuring that firearm users develop necessary firearm handling skills. Live fire training for firearms, which is conventionally used for firearm training, uses full metal jacketed ammunition at close distances and thus requires 100% shoot through targets that are ricochet free for safety. Static targets, including paper and cardboard targets, are typically used for this type of training, and can be viewed after every shot allowing the firearm operator to evaluate their firearm handling skills. In particular, the target will show the target location hit by the operator's round, which allows the operator to adjust their aim to make a better shot in subsequent rounds.
However, there are some limitations for firearm training systems that rely on static targets. In particular, the static nature of the targets prevents the operator from obtaining real-time feedback. For example, the operator must “walk-back” the paper/cardboard target in order to closely analyze their shot placement.
There is thus a need for addressing these and/or other issues associated with the prior art.
A reactive firearm target is provided. The reactive firearm target includes a shoot-through, ricochet-free surface, a rigid support having a first end coupled to a portion of the shoot-through, ricochet-free surface, and a hinge mechanism coupled to a second end of the rigid support, wherein the hinge mechanism is configured to swing from a first position to a second position when the shoot-through, ricochet-free surface is contacted by a firearm projectile.
The reactive firearm target 100 refers to a target to be shot with a firearm projectile during firearm training/practice. The firearm refers to any type, model, etc. of firearm, such as a handgun, rifle, etc. The firearm projectile refers to any type of projectile capable of being projected from the firearm during normal operation of the firearm by an operator (i.e. user).
As illustrated, the reactive firearm target 100 includes a shoot-through, ricochet-free surface 102. The shoot-through, ricochet-free surface 102 is a surface intended to be shot with the firearm projectile, and thus may also be referred to herein as the “target surface”. The surface 102 is constructed such that, upon contact, the firearm projectile will shoot through the surface and will not ricochet off the surface in a direction back towards the firearm. In an embodiment, the shoot-through, ricochet-free surface 102 may be a flexible self-healing polymer.
The reactive firearm target 100 also includes a rigid support 104 having a first end coupled to a portion of the shoot-through, ricochet-free surface 102. The rigid support 104 refers to a mechanism configured to support the shoot-through, ricochet-free surface 102 in a position that allows the surface 102 to be used as a shooting target. To allow the surface 102 to be used for accuracy training/practice, the rigid support 104 may be sufficiently rigid to provide a steady positioning of the surface 102 until contacted by the firearm projectile. Likewise, the first end of the rigid support 104 may be rigidly coupled to the portion of the shoot-through, ricochet-free surface 102. In an embodiment, the rigid support 104 may be formed of a multi-channel reinforced stiff polymer board.
The reactive firearm target 100 further includes a hinge mechanism 106 coupled to a second end of the rigid support 104. In an embodiment, the hinge mechanism 106 may be formed of a long fiber reinforced material. With respect to the present description, the hinge mechanism 106 is configured to swing from a first position to a second position when the shoot-through, ricochet-free surface 102 is contacted by the firearm projectile. In particular, a force of the firearm projectile upon the surface 102 may cause the hinge mechanism 106 to swing. Thus, the hinge mechanism 106 may swing the rigid support 104 and its coupled shoot-through, ricochet-free surface 102, when the shoot-through, ricochet-free surface 102 is contacted by the firearm projectile.
In an embodiment, a first end of the hinge mechanism 106 is coupled to the second end of the rigid support 104, and a second end of the hinge mechanism 106 is configured to be mounted to a rigid backing (not shown). In an embodiment, the second end of the hinge mechanism 106 may have coupled thereto a high density polyethylene (HDPE) stiffener. In an embodiment, the second end of the hinge mechanism 106 (e.g. together with the HDPE stiffener) may include one or more openings for mounting the second end of the hinge mechanism 106 to the rigid backing with one or more couplers (e.g. rivets, zip ties, etc.). In this embodiment, when the shoot-through, ricochet-free surface 102 is contacted by the firearm projectile, the hinge mechanism 106 will swing its first end coupled to the rigid support 104 while its second end is held steady to the rigid backing.
In an embodiment, the hinge mechanism 106 may be considered open when in the first position and may be considered at least partially closed when in the second position. For example, the hinge mechanism 106 may be at 180 degrees when in the first position and at less than 180 degrees when in the second position. With respect to the rigid backing described above, the hinge mechanism 106 may be coupled thereto in a position such that it is operable to swing the rigid support 104 in a knock-down motion, a swing up motion, or a side swing motion.
To this end, the firearm target 100 described herein may be operable to be “reactive” when the shoot-through, ricochet-free surface 102 is contacted by the firearm projectile, namely by swinging the surface 102 from the first (initial, target position) to the second position. This swinging action may in turn provide instant visual feedback to the firearm operator. In particular, movement of the shoot-through, ricochet-free surface 102 may indicate to the operator that the firearm target 100 has been hit, whereas no movement of the shoot-through, ricochet-free surface 102 may indicate to the operator that the firearm target 100 has not been hit. Further, since the surface 102 is constructed using a shoot-through material, the operator may subsequently analyze the surface 102 to view the shot placement with respect to the target.
More illustrative information will now be set forth regarding various optional architectures and uses in which the foregoing method may or may not be implemented, per the desires of the user. It should be strongly noted that the following information is set forth for illustrative purposes and should not be construed as limiting in any manner. Any of the following features may be optionally incorporated with or without the exclusion of other features described.
As illustrated in
As illustrated in
As illustrated in
As shown, the firearm training system 300 includes a plurality of the reactive firearm target 100 described with reference to
Each reactive firearm target 100 is coupled to a rigid backing 302, which provides steady support for the reactive firearm target 100. The rigid backing 302 may be formed of a shoot-through, ricochet-free material, such as a multi-channel reinforced stiff polymer board. The rigid backing 302 may be resistant to wind and twisting. Each reactive firearm target 100 may be coupled to the rigid backing 302, on an end of the hinge mechanism opposite the end of the hinge mechanism coupled to the rigid support of the reactive firearm target 100. Each reactive firearm target 100 may be coupled to the rigid backing 302 via one or more couplers (e.g. rivets, zip ties, etc.).
In an embodiment, the rigid backing 302 includes an opening (i.e. window) 304 that frames the shoot-through, ricochet-free surface of the reactive firearm target 100. Thus, the firearm projectile may travel through the opening to contact the shoot-through, ricochet-free surface. In an embodiment, the rigid backing 302 may include a plurality of openings that each frame the shoot-through, ricochet-free surface of a respective one of the reactive firearm targets 100. The reactive firearm target 100, when contacted by a firearm projectile, swings in a motion (e.g. knock-down, swing up, side swing) that is respective to the rigid backing 302.
It should be noted that the materials used to construct at least the reactive firearm target 100 and the rigid backing 302 may be shoot-through and ricochet-free such that they are safe to shoot at a distance of 2 feet with full metal jacketed ammunition. For example, the rigid backing 302 may be made of a semi-rigid polymer with structural channels. Accordingly, the firearm training system 300 may be rigid and light weight. A 24″×72″ life-size target frame with 5 firearm targets 100 can weigh less than 3 pounds and can be accelerated at 20 m/s sq. A 24″×36″ target frame with 4 reaction targets can weigh less than 2 pounds and can be accelerated at 20 m/s sq. These firearm targets 100 are ideal for live fire animations in shoot houses, in vehicles, on cables, on rails, and drones.
In
As illustrated in
In the present embodiments, the sensor may be operable to detect when the hinge mechanism of the reactive firearm target swings from a first (i.e. unhit) position to a second (i.e. hit) position, and then responsive to the detection causes instant feedback to be provided to an operator of the firearm. The sensor may be an optic switch, a magnetic switch, a proximity switch, or a contacts switch, as described with reference to
When the dual fiber optic sensor and the reflector are adjacent to one another, the dual fiber optic sensor senses its own light output reflected from the reflector, and does not trigger the instant feedback. When the dual fiber optic sensor and the reflector are not adjacent to one another, the dual fiber optic sensor does not sense its own light output, and in response triggers the instant feedback.
In the present embodiments, the sensor array may be operable to detect when the hinge mechanism of each reactive firearm target swings from a first (i.e. unhit) position to a second (i.e. hit) position, and then responsive to the detection causes instant feedback to be provided to an operator of the firearm.
As shown, the sensor array includes an light emitting diode (LED) array transmitter on one end of the rigid backing and a LED array receiver on another end of the rigid backing. Light from the transmitter is blocked from receipt by the receiver when the reactive firearm targets are in an initial (i.e. unhit) position. Light from the transmitter is received by the receiver when the reactive firearm targets are in a hit position.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 63/394,183 (Attorney Docket GIL1P003+), entitled “MULTI-WINDOWED, SHOOT THROUGH, TARGET SYSTEMS FOR CLOSE DISTANCE LIVE FIRE TRAINING,” and filed Aug. 1, 2022, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63394183 | Aug 2022 | US |