Reactive matching for waveguide-slot-microstrip transitions

Information

  • Patent Grant
  • 6509874
  • Patent Number
    6,509,874
  • Date Filed
    Friday, July 13, 2001
    23 years ago
  • Date Issued
    Tuesday, January 21, 2003
    22 years ago
Abstract
A millimeter wave radar system including a microstrip antenna array that provides reduced return loss at microstrip antenna ports. The millimeter wave radar system includes at least one channel formed in a surface of a metal backing plate and a microstrip antenna array assembly. The assembly includes a plurality of conductive microstrips, a ground plane, and a dielectric substrate disposed between the conductive microstrips and the ground plane to form a plurality of microstrip transmission lines. The metal plate surface is mounted to the ground plate to form at least one waveguide. The ground plane has a plurality of slots formed therethrough to form a plurality of waveguide-to-microstrip transmission line transitions. The conductive microstrips have a plurality of tuning stubs coupled thereto and configured to provide reactive matching for the plurality of waveguide-to-microstrip transmission line transitions.
Description




CROSS REFERENCE TO RELATED APPLICATIONS




N/A




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




N/A




BACKGROUND OF THE INVENTION




The present invention relates generally to millimeter wave radar, and more specifically to a millimeter wave radar system including a microstrip antenna array that provides reduced return loss at microstrip antenna ports.




In recent years, millimeter wave radar has been increasingly employed in automotive vehicles as part of Adaptive Cruise Control (ACC) systems. A conventional millimeter wave radar system adapted for ACC applications includes an antenna assembly such as a microstrip antenna array assembly that can be mounted on an automotive vehicle. The microstrip antenna array assembly is configured to transmit one or more directional beams to scan a field of view ahead of the vehicle, and receive one or more electromagnetic waves reflected from objects within the field of view to collect certain information about the objects. For example, the collected information may include data on the relative speed, direction, and/or distance of the objects in a roadway ahead of the vehicle. Further, the ACC system may use that information to decide whether to alert a driver of the vehicle to a particular obstacle in the roadway and/or automatically change the speed of the vehicle to prevent a collision with the obstacle.




The microstrip antenna array assembly included in the conventional millimeter wave radar system comprises a waveguide disposed on a surface of a backing plate, and a microstrip antenna array assembly operatively disposed on a surface of the waveguide. The waveguide includes a plurality of sections having slots formed therethrough such that junctions of the waveguide, the slots, and the microstrip antenna array define a plurality of respective waveguide-slot-microstrip transitions. The conventional millimeter wave radar system further includes a transmitter/receiver unit configured to transmit electromagnetic wave energy to the waveguide for subsequent transfer to the microstrip antenna array via the waveguide-slot-microstrip transitions, and receive electromagnetic wave energy from the waveguide via the microstrip antenna array and the waveguide-slot-microstrip transitions.




One drawback of the conventional millimeter wave radar system is that there is typically significant return loss at the respective waveguide-slot-microstrip transitions due primarily to impedance mismatches between the waveguide and the microstrip antenna array. Such losses can adversely affect the transmission of directional beams by making it harder to achieve full illumination of the microstrip antenna array. This is particularly problematic in ACC systems because it can compromise the validity of information collected on objects in a roadway ahead of a vehicle, and can lead to improper decision making regarding whether to alert a driver of the vehicle and/or automatically change the speed of the vehicle to prevent a collision with an obstacle in the roadway.




It would therefore be desirable to have a millimeter wave radar system that can be employed in automotive ACC applications. Such a millimeter wave radar system would include a microstrip antenna array assembly providing reduced return loss at waveguide-slot-microstrip transitions to enhance the performance of the overall system.




BRIEF SUMMARY OF THE INVENTION




In accordance with the present invention, a millimeter wave radar system is disclosed that includes a microstrip antenna array providing reduced return loss at microstrip antenna ports. Benefits of the presently disclosed system are achieved by configuring the microstrip antenna array so that respective waveguide-slot-microstrip transitions at the microstrip antenna ports can more efficiently transfer electromagnetic wave energy between the microstrip antenna array and at least one waveguide included in the system.




In one embodiment, the millimeter wave radar system includes at least one channel formed in a metal backing plate and an adjacent microstrip antenna array assembly. The microstrip antenna array assembly includes a substantially planar circuit board, a single microstrip antenna array disposed on a first surface of the circuit board, and a ground plane disposed along a second circuit board surface such that a dielectric substrate of the circuit board is between the microstrip antenna array and the ground plane. The combination of the microstrip antenna array, the dielectric substrate, and the ground plane forms a plurality of microstrip transmission lines. Further, the ground plane is mounted to the metal backing plate comprising the at least one channel to form at least one waveguide. The ground plane has a plurality of slots formed therethrough along at least one line. The plurality of slots is transversely located relative to the microstrip transmission lines and longitudinally located relative to the waveguide, thereby forming a corresponding plurality of waveguide-slot-microstrip transitions for transferring electromagnetic wave energy between the microstrip transmission lines and the waveguide.




At least one open circuit stub is placed on each microstrip transmission line to match the impedance of the respective microstrip transmission line and the waveguide. The open circuit stubs are configured to add capacitive reactance to the respective microstrip transmission lines to cancel out a net inductive reactance at the waveguide-slot-microstrip transitions. In a preferred embodiment, the open circuit stubs are rectangular stubs positioned on the respective microstrip transmission lines so that each stub is in registration with a respective slot in the ground plane.




By employing capacitive stub matching on the microstrip antenna array to cancel out the net inductive reactance at the waveguide-slot-microstrip transitions, return loss is reduced at the microstrip antenna ports of the millimeter wave radar system. As a result, full illumination of the microstrip antenna array can be achieved, thereby making it easier to transmit a plurality of directional beams using the single microstrip antenna array.




Other features, functions, and aspects of the invention will be evident from the Detailed Description of the Invention that follows.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The invention will be more fully understood with reference to the following Detailed Description of the Invention in conjunction with the drawings of which:





FIG. 1

is an exploded view of a millimeter wave radar system including a plurality of channels formed in a metal backing plate and an adjacent microstrip antenna array assembly according to the present invention;





FIG. 2



a


is a bottom plan view of a ground plane included in the microstrip antenna array assembly illustrated in

FIG. 1

;





FIG. 2



b


is a detailed view of the ground plane illustrated in

FIG. 2



a;







FIG. 3



a


is a top plan view of a microstrip antenna array included in the microstrip antenna array assembly illustrated in

FIG. 1

; and





FIG. 3



b


is a detailed view of the microstrip antenna array illustrated in

FIG. 3



a.













DETAILED DESCRIPTION OF THE INVENTION




A millimeter wave radar system that can be employed in automotive Adaptive Cruise Control (ACC) applications is disclosed. The millimeter wave radar system includes a single microstrip antenna array that uses capacitive stub matching at waveguide-slot-microstrip transitions to cancel out a net inductive reactance at the transitions, thereby reducing return loss at microstrip antenna ports to enhance the performance of the overall system.





FIG. 1

depicts an illustrative embodiment of a millimeter wave radar system


100


in accordance with the present invention. The millimeter wave radar system


100


includes a plurality of channels


108


formed in a metal backing plate


102


; and, a microstrip antenna array assembly comprising a single microstrip antenna array


112


(also known as a patch antenna array) disposed on a surface of a substantially planar circuit board


106


, and an adjacent ground plane


104


.




The microstrip antenna array


112


includes a plurality of conductive microstrips shown generally at reference numeral


114


, pluralities of rectangular open circuit tuning stubs shown generally at reference numeral


116


and positioned at regular intervals on the respective conductive microstrips


114


, and pluralities of radiating antenna elements such as square antenna element


115


coupled to the respective conductive microstrips


114


. Each radiating antenna element


115


is coupled to one of the conductive microstrips


114


by a microstrip feed line (not numbered). For example, the microstrip antenna array


112


comprising the conductive microstrips


114


, the open circuit tuning stubs


116


, and the square antenna elements


115


may be fabricated on the surface of the circuit board


106


by a conventional photo etching process or any other suitable process.




A dielectric substrate (not numbered) of the circuit board


106


separates the plurality of conductive microstrips


114


from the adjacent ground plane


104


to form a corresponding plurality of microstrip transmission lines. Further, the ground plane


104


is mounted to the metal backing plate


102


comprising the plurality of channels


108


to form a corresponding plurality of waveguides having generally rectangular cross-section. For example, respective opposing surfaces of the ground plane


104


may be bonded to the dielectric substrate of the circuit board


106


and the metal backing plate


102


using an epoxy resin or any other suitable adhesive.




In the illustrated embodiment, the ground plane


104


has a plurality of slots


110


formed therethrough and arranged in three (3) columns, in which each column includes the same number of collinear slots. Further, each conductive microstrip


114


has three (3) open circuit tuning stubs


116


positioned thereon such that each rectangular stub


116


is in registration with a respective slot


110


. For example, the plurality of slots


110


may be formed through the ground plane


104


by etching or any other suitable technique.




Accordingly, when the ground plane


104


of the microstrip antenna array assembly is bonded to the metal backing plate


102


, the plurality of slots


110


is transversely located relative to the respective conductive microstrips


114


and longitudinally located relative to the respective channels


108


, thereby forming a corresponding plurality of waveguide-slot-microstrip transitions. Further, each one of the waveguide-slot-microstrip transitions is configured to transfer electromagnetic wave energy between a respective microstrip transmission line and a respective waveguide.




An exemplary embodiment of a slot-coupled patch antenna array is described in co-pending U.S. patent application Ser. No. 09/691,815 filed Oct. 19, 2000 entitled SLOT FED SWITCH BEAM PATCH ANTENNA now U.S. Pat. No. 6,313,807, which is incorporated herein by reference. That application describes a waveguide configured to receive respective electromagnetic waves; a plurality of slots in the waveguide through which the respective waves are fed; and, a patch antenna array comprising a plurality of microstrip transmission lines configured to receive the waves, produce phase differences in the waves, and transmit corresponding directional beams at predetermined angles via radiating antenna elements. In a similar manner, the three (3) waveguides of the millimeter wave radar system


100


(see

FIG. 1

) are configured to receive respective electromagnetic waves, and the plurality of waveguide-slot-microstrip transitions comprising the slots


110


is configured to transfer the respective waves to the single microstrip antenna array


112


to produce phase differences in the waves, thereby causing the transmission of three (3) directional beams by the radiating antenna elements


115


.





FIG. 2



a


depicts a bottom plan view of the ground plane


104


included in the millimeter wave radar system


100


(see FIG.


1


). In the illustrated embodiment, the plurality of slots


110


are formed through the ground plane


104


in three (3) columns, in which each column comprises thirty (30) collinear slots


110


. It is noted that the ground plane


104


and the microstrip antenna array


112


(see

FIG. 1

) are arranged in the microstrip antenna array assembly so that one (1) slot


110


from each column feeds an electromagnetic wave to a respective microstrip transmission line.

FIG. 2



b


depicts a detailed view of the ground plane


104


including illustrative embodiments of slots


110




a


and


110




b.







FIG. 3



a


depicts a top plan view of the circuit board


106


included in the millimeter wave radar system


100


(see FIG.


1


), in which a preferred embodiment of the microstrip antenna array


112


is shown. In the illustrated embodiment, the microstrip antenna array


112


includes thirty (30) parallel conductive microstrips


114


. Further, each conductive microstrip


114


has three (3) open circuit tuning stubs


116


positioned at regular intervals thereon.




As described above, each rectangular stub


116


is in registration with one of the slots


110


(see FIG.


1


), and one (1) slot


110


from each of the three (3) columns of slots


110


feeds an electromagnetic wave from a waveguide to a respective microstrip transmission line of the microstrip antenna array assembly. As a result, phase differences are produced in the waves, which accumulate to cause the antenna elements


115


to transmit three (3) directional beams at predetermined angles.





FIG. 3



b


depicts a detailed view of the microstrip antenna array


112


including illustrative embodiments of conductive microstrips


114




a


and


114




b


. The conductive microstrip


114




a


has an open circuit rectangular stub


116




a


positioned thereon, and a plurality of antenna elements


115




a


coupled thereto. Similarly, the conductive microstrip


114




b


has an open circuit rectangular stub


116




b


positioned thereon, and a plurality of antenna elements


115




b


coupled thereto. Further, each of the rectangular stubs


116




a


and


116




b


is in registration with a respective slot


110


in the ground plane


104


(see FIG.


1


).




Those of ordinary skill in the art will appreciate that waveguide-slot-microstrip transitions can introduce a net inductive reactance at respective microstrip antenna ports of a microstrip antenna array assembly. For this reason, each of the open circuit stubs


116


such as the stubs


116




a


and


116




b


is configured to provide capacitive stub matching to compensate for the net inductance introduced by the waveguide-slot-microstrip transitions. As a result, return loss at the microstrip antenna ports is reduced, thereby allowing full illumination of the microstrip antenna array.




In order to compensate for the net inductive reactance introduced by the waveguide-slot-microstrip transitions, the rectangular stubs


116


(see

FIGS. 3



a


and


3




b


) are adjusted to a predetermined length. In a preferred embodiment, the length of the rectangular stubs


116


is equidistant about the respective conductive microstrips


114


. Further, the stub length is preferably less than one quarter of a wavelength at the operating frequency of the system, which is preferably about 77 GHz. As described above, the rectangular stubs


116


are positioned on the respective conductive microstrips


114


so that each stub


116


is in registration with a respective slot


110


in the ground plane


104


. In a preferred embodiment, the length of the slots


110


is less than one half of a wavelength at the operating frequency of 77 GHz, and the slot width is narrow relative to the wavelength.




Accordingly, when compensating for the net inductive reactance introduced by the waveguide-slot-microstrip transitions, the length of the rectangular stubs


116


is adjusted relative to the length of the slots


110


. In a preferred embodiment, the stub lengths are adjusted to provide an impedance of about 50Ω at the waveguide-slot-microstrip transitions.




It is noted that the millimeter wave radar system


100


of

FIG. 1

can be used to implement ACC systems in automotive vehicles. For example, the millimeter wave radar system


100


may be mounted on an automotive vehicle (not shown), and the microstrip antenna array


112


may be configured to transmit directional beams to scan a field of view in a roadway ahead of the vehicle and collect information about objects within the field of view. The collected information may include data on the speed, direction, and/or distance of the objects in the roadway relative to the vehicle. The ACC system may subsequently use that information to decide, e.g., whether to alert a driver of the vehicle to a particular obstacle in the roadway and/or automatically change the speed of the vehicle to prevent a collision with the obstacle.




By adjusting the length of the rectangular stubs


116


relative to the length of the respective slots


110


to match the waveguide-slot-microstrip transitions at the microstrip antenna ports, the illumination of a vertical plane of the microstrip antenna array


112


in an ACC application can be improved. This makes it easier to implement a multi-beam automotive antenna using the single microstrip antenna array


112


. For example, the microstrip antenna array assembly including the single microstrip antenna array


112


comprising the impedance matching stubs


116


, and the ground plane


104


comprising the three (3) columns of collinear slots


110


(see FIG.


1


), may be used to implement a three-beam automotive antenna.




It should be noted that although the illustrated embodiment of the millimeter wave radar system


100


includes the rectangular open circuit stubs


116


(see

FIGS. 3



a


and


3




b


), the system


100


may alternatively include tuning stubs shaped as squares, fans, arcs, or any other geometrical shape suitable for providing capacitive stub matching. Similarly, the geometrical shape of the radiating antenna elements


115


may take different forms. Further, the electrical parameters of the dielectric substrate, the dimensions of the conductive microstrips


114


, the dimensions of the microstrip feed lines, the dimensions of the radiating antenna elements


115


, and the size and position of the slots


110


may be modified for further enhancing the performance of the system.




It will be appreciated by those of ordinary skill in the art that modifications to and variations of the above-described system may be made without departing from the inventive concepts disclosed herein. Accordingly, the invention should not be viewed as limited except as by the scope and spirit of the appended claims.



Claims
  • 1. A millimeter wave radar system, comprising:a microstrip antenna array assembly comprising a plurality of conductive microstrips, a ground plane, and a dielectric substrate disposed between the plurality of conductive microstrips and the ground plane to form a corresponding plurality of microstrip transmission lines; and a metal plate having at least one channel formed in a surface thereof, the metal plate surface being coupled to the ground plane to form at least one waveguide, wherein the ground plane includes a plurality of apertures disposed relative to the waveguide and the respective microstrip transmission lines to form a corresponding plurality of waveguide-to-microstrip transmission line transitions, and wherein the microstrip antenna array assembly further includes a plurality of tuning stubs coupled to the respective conductive microstrips, the plurality of tuning stubs being in registration with the respective apertures and configured to provide reactive matching for the respective waveguide-to-microstrip transmission line transitions.
  • 2. The system of claim 1 wherein the microstrip antenna array assembly further includes a plurality of radiating elements coupled to each conductive microstrip.
  • 3. The system of claim 1 wherein the apertures are longitudinally located relative to the waveguide and transversely located relative to the respective microstrip transmission lines.
  • 4. The system of claim 1 wherein the plurality of tuning stubs is configured to provide capacitive stub matching to cancel out a net inductive reactance at the respective waveguide-to-microstrip transmission line transitions.
  • 5. The system of claim 1 wherein the plurality of tuning stubs comprises respective open circuit tuning stubs.
  • 6. The system of claim 1 wherein the plurality of tuning stubs comprises respective rectangular tuning stubs disposed equidistant about the respective conductive microstrips.
  • 7. The system of claim 1 wherein the plurality of apertures comprises a plurality of collinear slots.
  • 8. The system of claim 7 wherein the plurality of collinear slots is arranged in a plurality of columns.
  • 9. A millimeter wave radar system, comprising:a microstrip antenna array assembly configured to transmit and receive a plurality of directional beams, the assembly including a single microstrip antenna array, a ground plane, and a dielectric substrate disposed between the single microstrip antenna array and the ground plane; a metal plate having a plurality of channels formed in a surface thereof, the metal plate surface being coupled to the ground plane to form a plurality of waveguides; and a plurality of transitions disposed between the single microstrip antenna array and the plurality of waveguides, the plurality of transitions being configured to transfer electromagnetic wave energy between the microstrip antenna array and the plurality of waveguides, wherein the single microstrip antenna array includes a plurality of tuning stubs configured to provide reactive matching for the plurality of transitions.
  • 10. The system of claim 9 wherein the plurality of transitions comprises a plurality of slots formed through the ground plane.
  • 11. The system of claim 10 wherein the plurality of slots comprises a plurality of collinear slots arranged in a plurality of columns.
  • 12. The system of claim 11 wherein the microstrip antenna array assembly is configured to transmit a number of directional beams equal to the number of columns of slots.
  • 13. The system of claim 10 wherein the plurality of tuning stubs is in registration with the respective slots.
  • 14. The system of claim 13 wherein the plurality of tuning stubs comprises a plurality of open circuit tuning stubs.
  • 15. A method of operating a millimeter wave radar system, comprising the steps of:providing a plurality of first electromagnetic waves to a corresponding plurality of waveguides; transferring the plurality of first electromagnetic waves from the corresponding plurality of waveguides to a single microstrip antenna array by a plurality of reactive matched waveguide-to-microstrip transmission line transitions, the reactive matching for the plurality of transitions being provided by a plurality of tuning stubs included in the microstrip antenna array; and transmitting a plurality of directional beams corresponding to the plurality of electromagnetic waves by the single microstrip antenna array.
  • 16. The method of claim 15 further including the steps of receiving at least one second electromagnetic wave by the single microstrip antenna array, and transferring the at least one second electromagnetic wave from the single microstrip antenna array to the plurality of waveguides by the plurality of reactive matched waveguide-to-microstrip transmission line transitions.
US Referenced Citations (9)
Number Name Date Kind
5010351 Kelly Apr 1991 A
5990844 Dumont et al. Nov 1999 A
6127901 Lynch Oct 2000 A
6133877 Sandstedt et al. Oct 2000 A
6144344 Kim et al. Nov 2000 A
6188361 George et al. Feb 2001 B1
6313807 Kolak Nov 2001 B1
6377217 Zhu et al. Apr 2002 B1
6396440 Chen May 2002 B1