A metal catalyst mixture added to the combustion air of hydrocarbon fuel oils, heavy fuels and marine diesel oil to elevate the combustibility of the low grade fuel oils and to improve the combustibility of higher grade fuel oils, the metal catalyst mixture comprised of platinum, rhenium, rhodium, indium and aluminum. The presentation and injection of each of the metal catalyst is most effective delivered as a liquid or in a liquid suspension. Platinum, in the form of cloroplatinic acid, converts O2 in the combustion chamber with the hydrocarbon fuel oil to O, resulting in improved combustion. Rhenium, provided in the form of perrhenic acid, gathers and converts random hydrocarbons, light ends or aromatics, into chained hydrocarbons resulting in a more efficiently burned hydrocarbon. Rhodium, provided in the form of rhodium chloride, is known to change the bonding temperature between nitrogen and oxygen in NOX. Indium, provided in the form of indium chloride, is known to contain and control electron transfer between molecules in the hydrocarbons during combustion. Aluminum, provided in the form of aluminum chloride, is known to accelerate any combustion in the hydrocarbon field and improve the effectiveness of the heterogeneous nano layer formed by the metals after combustion. This condition causes the effectiveness of this method to improve over time.
The introduction of each of the individual metal catalyst to the fuel oil must be independent so that the catalyst mixture may be varied by ratio depending on the hydrocarbon fuel oil to which the catalyst mixture is applied. The preferred ratio of the Pt—Re—Rh—In—Al catalyst mixture is 6.0:1.5:1.0:2.0:1.5, with rhodium being most varied dependant upon the hydrocarbon fuel oil, with each of the above individual metal catalyst components variable to ±4.0. Most preferably, the amount of catalyst mixture to hydrocarbon fuel is less than 80 parts per billion per weight of the hydrocarbon fuel.
Low grade hydrocarbon fuel oils, also known in the art as bunker fuels, are commonly used in the marine industry as fuel for large ocean going vessels. These include heavy fuel and marine diesel fuels, which will hereinafter be referenced as bunker fuels. Depending upon where the bunker fuels originate, the bunker fuels can vary from “unfit for use”, having a Equivalent Cetane Number (ECN) below 19.4 to a higher grade bunker fuel oil having an ECN of above 19.4. When the metal catalyst is added to bunker fuels having an ECN of less than 19.4 at the time of ignition, the ECN is elevated above 20, improving the ignition property of the bunker fuels. Even on bunker fuels having an ECN above 20, significant improvement can be demonstrated to the ignition properties by the addition of the metal catalyst mixture.
The independent introduction of each individual metal catalyst to the fuel oils is best achieved by injection into the ignition firing chamber of the engine, most often a slow speed 2-stroke engine or a 4-stroke medium speed engine. Each individual metal catalyst is presented as a liquid suspension mixed with air and is directed towards the fuel oil at the nearest location to the ignition point of the fuel oil. In an engine having a desiccant apparatus or a dehydrating apparatus, the injection of the metal catalyst would be directed after the desiccant or dehydrating apparatus in the engine to prevent condensation of the metal catalyst on the condensed water which typically gathers on the desiccant or dehydrating apparatus within the engine, diminishing the effective purpose and function of the metal catalyst and possibly altering the ratio of the metal catalyst mixture being injected into fuel oil and air mixture within the engine.
Each individual metal catalyst injection would be independently adjustable to provide an adjustment to the metal catalyst mixture depending on the subjective grade of the fuel oil being used as a fuel source. As previously indicated, the amount of rhodium in the metal catalyst mixture can very between 1.0 and 1.5, with more rhodium being added in inverse proportion to the ECN number of the bunker fuel to boost control of the NOX emissions. Where the ignition quality of the fuel oil is relatively low, more aluminum would be added. By making the injection of the individual metal catalyst independently adjustable, a more custom control of the efficiency of the combustibility of the fuel oil is obtained.
When fuel oils are use in the industry, the lower grade fuel oils generally require preheating of the fuel oil to at least an air temperature of 50° C. at an air pressure of 45 bar. In tests performed using a FIA 100/3 instrument according to the procedure established on the instrument when testing heavy fuels, several standards of measured results are obtained from the test instrument. “Ignition delay”, measured in milliseconds (ms) is defined as a time delay from the start of injection until an increase in pressure of 0.2 bar above the initial chamber pressure has been detected. “Start of Main Combustion” phase is determined as the time, in ms, when an increase in pressure 3 bars above the initial chamber pressure has been detected. “Start of Main Combustion” is used in order to establish the ignition quality of a fuel tested as a FIA CN (Cetane Number). The basis for FIA CN is a reference curve for the FIA 11/3 instrument being used to conduct the testing, showing the ignition properties for mixtures between reference fuels U15 and T22 from PHILLIPS PETROLEUM INTERNATIONAL®. This reference curve establishes the relation between ignition quality recorded in milliseconds and ECN for the different mixtures of the reference fuels. For heavy fuels, the ECN are typically in the range of 18.7 to above 40.
Base line fuels were tested prior to the addition of the metal catalyst mixture first with a “good fuel” having an ECN above 20 and second with a “bad fuel” having an ECN below 20. In the “good fuel” test, the good fuel tested alone without the metal catalyst mixture had an ECN of 39.9 with an ignition delay of 5.30 ms, a start of combustion time of 7.05 ms, and a combustion period of 15.7 ms. In a second test, the metal catalyst mixture was added to the “good fuel”, resulting in an ECN of 46.0, an ignition delay of 5.15 ms, a start of combustion time of 6.80 ms, and a combustion period of 14.9 ms. The ECN increased while the ignition delay decreased, the start of main combustion time decrease and the combustion period decreased.
In the “bad fuel” test, the bad fuel was tested alone resulting in an ECN below 19.4, an ignition delay of 8.90 ms, a start of main combustion of 12.05 ms, and a combustion period of 18.5 ms. After adding the metal catalyst mixture to the “bad fuel”, a first test resulted in an ECN of 21.5, an ignition delay of 7.90 ms, a start of main combustion of 10.90 ms, and a combustion period of 17.0 ms. A second test of the metal catalyst mixture and “bad fuel” resulted in an ECN of 23.6, an ignition delay of 7.65 ms, a start of main combustion of 10.30 ms, and a combustion period of 18.1. In both instances where the metal catalyst mixture was added to the “bad fuel”, the ECN increased, the ignition delay decrease, the start of main combustion decreased and the combustion period decreased. The conclusion of the testing demonstrates a significant improvement to both the “good fuel” and the “bad fuel” with regard to the quality of the fuel oil for use as an engine fuel.
A method for adapting an engine utilizing fuels oils to improve combustion of the fuel oil by injecting the metal catalyst mixture at the combustion point of the fuel oil within the engine would involve first installing within the engine five injectors with independent flow control devices, the five injectors directed towards a common injector target located at the point of combustion of the fuel oil within the engine with a first injector providing a controlled and regulated flow of a platinum metal catalyst, preferably in the form of chloroplatanic acid, to the combustion point of the fuel oil within the engine, a second injector providing a controlled and regulated flow of rhenium, preferably provided as perrhenic acid, to the combustion point of the fuel oil within the engine, a third injector providing a controlled and regulated flow of rhodium, preferably in the form of rhodium chloride, to the combustion point of the fuel oil within the engine, a fourth injector providing a controlled and regulated flow of indium, preferably in the form of indium chloride, to the combustion point of the fuel oil within the engine and a fifth injector providing a controlled and regulated flow of aluminum, preferably in the form of aluminum chloride, to the combustion point of the fuel oil, the platinum, rhenium, rhodium, indium and aluminum being contemporaneously injected at a relative ratio of 6.0:1.5:1.0;:2.0:1.5 variable to ±4.0, with a combined mixture to fuel oil of less than 80 parts per billion per weight of the fuel oil. The fuel oil and engine combustion components would be otherwise be unaffected, other than by noted improvement to the combustibility of the fuel oil within the engine and enhanced engine power production and efficiency.
Alternatively, the method for adapting an engine utilizing fuels oils to improve the combustion of the fuel oil by injecting the metal catalyst mixture at the combustion point of the fuel oil within the engine would comprise the steps of installing a single injector within the engine directed at the combustion point, attaching a pre-mixture manifold to the injector, attaching a first injector line having an independent flow control device to the manifold, attaching a second injector line having an independent flow control device to the manifold, attaching a third injector line having an independent flow control device to the manifold, attaching a fourth injector line having an independent flow control device to the manifold, attaching a fifth injector line having an independent flow control device to the manifold, directing a flow of platinum metal catalyst, preferably in the form of chloroplatanic acid, to the first injector line, directing a flow of rhenium metal catalyst, preferably in the form of perrhenic acid, to the second injector line, directing a flow of rhodium metal catalyst, preferably in the form of rhodium chloride, to the third injector line, directing a flow of indium metal catalyst, preferably in the form of indium chloride, to the fourth injector line, directing a flow of aluminum metal catalyst, preferably in the form of aluminum chloride, to the fifth injector line, mixing the platinum metal catalyst, rhenium metal catalyst, rhodium metal catalyst, indium metal catalyst and aluminum metal catalyst in a preferred ratio of 6.0:1.5:1.0:2.0:1.5 variable to ±4.0, with a combined catalyst mixture to fuel oil of less than 80 parts per billion per weight of fuel oil. The fuel oil and engine combustion components would be otherwise be unaffected, other than by noted improvement to the combustibility of the fuel oil within the engine and enhanced engine power production and efficiency.
While the invention has been particularly shown and described with reference to a preferred embodiment thereof, it will be understood by those skilled in the art that changes in form and detail may be made therein without departing from the spirit and scope of the invention.
U.S. Pat. No. 6,786,714, issued on Sep. 7, 2004, and U.S. Pat. No. 6,776,606, issued on Aug. 17, 2004, both to James W. Haskew, a common inventor herein.