The invention relates generally to a flywheel for use in a pump, and in particular to a high inertia flywheel using a number of high density segments for use in a nuclear reactor coolant pump.
Flywheels are used in centrifugal pumps to mechanically store potential energy during operation of the pump, which energy may be utilized to maintain rotation of the pump in the event of loss of motive power. In nuclear reactors, this technology helps to maintain coolant circulation through the reactor core.
Exemplary flywheels for use in reactor coolant pumps are described in U.S. Pat. Nos. 4,886,430 and 5,165,305, the disclosures of which are incorporated by reference herein.
A need, however, exists for an improved reactor coolant pump flywheel.
In accordance with an embodiment of the invention, the invention provides a flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump.
In accordance with an embodiment of the invention, the flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner member and the outer member. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists any hoop stress effect or keystoning of the segments. A number of upper pins and a number of lower pins are provided at an inner diameter of the segments in order to couple the number of segments to the inner member. An interference fit may be provided between the inner member, the segments and the outer member. A key, spline or interference fit is provided between the inner member and the rotatably operable shaft in order to couple the flywheel to the shaft. In combination with the pins and the coupling of the inner member to the rotatable operable shaft, the gap provides radial loading on the segments and gives the stability desired to resist motion which could show up as a balance change.
In accordance with an embodiment of the invention, the flywheel includes an upper end cap member, a lower end cap member and a shell member capping the upper and lower surfaces of the high density segments and at least a portion of the outer member. The cap members ensure that the high density segments and at least a portion of the outer member do not get immersed in a solvent. The cap members prevent corrosion of the high density segments and contamination of the coolant by the tungsten material of the high density segments. In addition, the cap members provide positive encapsulation of at least a portion of the outer member for an axial seismic or shock event without resorting to friction.
In accordance with an embodiment of the invention, a pair of flywheels is provided within the stator and casing of a nuclear reactor coolant pump, with one flywheel at each end of the pump in opposed relation to one another. The pump, according to one example of the invention, is for use in a pressurized water reactor nuclear power plant structured to generate at least 1000 MWe.
For the invention to be clearly understood and readily practiced, the invention will be described in conjunction with the following FIGS., wherein like reference characters designate the same or similar elements, which FIGS. are incorporated into and constitute a part of the specification, wherein:
It is to be understood that the FIGS. and descriptions of the invention have been simplified to illustrate elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that may be well known. Those of ordinary skill in the art will recognize that, such as, for example, all of the components of the reactor coolant pumps other than as shown in the FIGS. have not been described in detail herein for the purpose of simplifying the specification of the patent application.
For purposes of the description hereinafter, the terms “upper”, “lower”, “vertical”, “horizontal”, “axial”, “top”, “bottom”, “aft”, “behind”, and derivatives thereof shall relate to the invention, as it is oriented in the drawing FIGS. However, it is to be understood that the invention may assume various alternative configurations except where expressly specified to the contrary. It is also to be understood that the specific elements illustrated in the FIGS. and described in the following specification are simply exemplary embodiments of the invention. Therefore, specific dimensions, orientations and other physical characteristics related to the embodiments disclosed herein are not to be considered limiting.
As used herein, the term “pin” means any suitable fastening, connecting or tightening mechanism such as dowel pins, fasteners, rivets, other connecting elements and the like. As used herein, the statement that two or more parts are “coupled” together means that the parts are joined together either directly or joined together indirectly through one or more intermediate parts.
The detailed description will be provided hereinbelow with reference to the attached drawings. In the drawings, like reference characters designate corresponding parts throughout the views.
Referring to
Pump 10 further includes a motor 28 having a rotor assembly 30 mounted on a rotatably operable shaft 32 and the corresponding stator assembly 18. Rotor assembly 30 includes rotor can 36. Stator assembly 18 includes stator can 38, stator coils 40, stator shell 42, stator closure ring 44, stator main flange 46, stator vents 47, a stator lower flange 50, stator end turns 52 and stator cap 54. Pump 10 also includes an external heat exchanger 56 and stator cooling jacket 58 for removing heat generated within the pump 10.
Upper flywheel 12 is disposed proximate to the impeller end of the pump 10 coupled to shaft 32 within the pump casing 16. Lower flywheel 14 is disposed on the other end of shaft 32 in opposed relation to the upper flywheel 12 coupled to the shaft 32 within the pump stator assembly 18. Disposed on an upper side and a lower side of lower flywheel 14 are an upper thrust bearing 60 and a lower thrust bearing 62.
Flywheels 12 and 14 are constructed in a similar manner. Lower flywheel 14, however, has a different profile as can be seen by comparing
Flywheel 12 includes an inner member 64 and outer member 66 wherein the inner member 64 may be an inner tubular cylindrical member and the outer member 66 may be an outer tubular cylindrical member. A number of high density segments 68 are provided between the inner and outer members 64, 66. The high density segments 68 may be formed from a tungsten based alloy. Other high density materials, however, are suitable. A preselected gap 70 is provided between each of the number of high density segments 68. The gap 70 accommodates thermal expansion and Poisson's effect of each of the number of segments 68 and resists any hoop stress effect/keystoning of the segments 68. The gap 70 in an embodiment is between about 0.010 to 0.050 inches (0.25 to 1.27 mm). An upper pin 72 and a lower pin 74 are provided at an inner diameter of the segments 68 at each gap 70 (see
As can be seen in
Nothing in the above description is meant to limit the invention to any specific materials, geometry, or orientation of elements. Many parts/orientation substitutions are contemplated within the scope of the invention and will be apparent to those skilled in the art. The embodiments described herein were presented by way of example only and should not be used to limit the scope of the invention.
Although the invention has been described in terms of particular embodiments in an application, one of ordinary skill in the art, in light of the teachings herein, can generate additional embodiments and modifications without departing from the spirit of, or exceeding the scope of, the claimed invention. Accordingly, it is understood that the drawings and the descriptions herein are proffered only to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This application claims the benefit under 35 U.S.C. §119(e) of the earlier filing date of U.S. Provisional Application Ser. No. 61/057,446 filed on May 30, 2008, the contents of which are hereby incorporated by reference.
The United States Government has rights in this invention pursuant to Contract No. DE-FC07-07ID14779 between the U.S. Department of Energy and Westinghouse Electric Company.
Number | Name | Date | Kind |
---|---|---|---|
4052260 | Forster et al. | Oct 1977 | A |
4754606 | Nam | Jul 1988 | A |
4886430 | Veronesi et al. | Dec 1989 | A |
5165305 | Veronesi | Nov 1992 | A |
5356273 | Nixon | Oct 1994 | A |
5775176 | Bender et al. | Jul 1998 | A |
Entry |
---|
International Preliminary Report on Patentability for corresponding to International Application No. PCT/US2009/044878, Sep. 1, 2010. |
International Search Report for corresponding to International Application No. PCT/US2009/044878, Sep. 30, 2009. |
Written Opinion for corresponding International Application No. PCT/US2009/044878, Sep. 30, 2009. |
Number | Date | Country | |
---|---|---|---|
20100091931 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61057446 | May 2008 | US |