The present invention relates to an optical indicia reading apparatus generally and particularly to an image based barcode reader for scanning and decoding either a barcode printed on a substrate or a barcode presented on an electronic display within a single frame time.
Optical indicia such as barcode symbols can be defined as optical machine-readable representations of data. Over the last several decades, various optical code symbologies have been created and incorporated into countless industrial, commercial, and residential applications. For example, the first commercially successful barcodes, Universal Product Codes (UPCs), were developed along with automated supermarket checkout systems. These systems included a laser-scanner barcode reader to read and decode UPC barcode symbols affixed to products to get the price for the each product. UPC symbols are considered to be a one-dimensional barcode in that data is encoded linearly across a series of parallel bars and spaces with varying widths. A moveable laser beam is operated to form a line across the width of a barcode symbol being read. The intensity of the light reflected back from the barcode symbol is captured via one or more photodiodes as a waveform having a series of peaks and valleys. After a full waveform is obtained by the barcode reader, the processor decodes the symbol to extract the data contained therein.
After widespread proliferation of UPC symbols, other types of linear barcodes were developed with many still in use today. Due to their simplicity and ease of reading, linear barcodes are particularly well suited for applications involving automated sorting and material handling, inventory management, quality control, shipping and receiving functions, especially at high volumes and/or speed. Linear barcodes, however, only hold a limited amount of data or information.
To overcome the data limitations of one-dimensional barcodes, two-dimensional (2D) barcode symbols and image-based readers to read and decode them, were subsequently developed. Examples of two-dimensional barcode symbols include matrix codes (QR, Data Matrix, etc.) and stacked barcodes (e.g., PDF-417). Both one-dimensional and two-dimensional barcodes, along with other machine-readable indicia such as alpha-numeric characters, are generally referred to as optical codes.
Newer image based optical code readers use a complementary metal oxide semiconductor (CMOS)-based camera sensor with an array of pixels having a field of view. In use, images, or frames, from the field of view are obtained by the camera at a preset rate. The readers have an illuminator, typically one or more LEDs, and an electronic shutter mechanism that can be adjusted to obtain sufficiently clear and bright images. Images are processed with various algorithms to identify and decode optical indicia including 1D and 2D barcodes within the reader's field of view.
Images acquired with optical code reader are referred to generally as a frame. All video and still-frame cameras have a frame rate, or imaging speed, given in units of frames per second (fps). Many barcode readers operate at a speed, or frame rate, of sixty (60) frames per second. An image sensor in such a reader obtains a full image frame every 1/60 of a second, or roughly every 16.67 milliseconds. After a full frame has been exposed, the charge of each pixel is shifted out to a memory unit and processed collectively into a single image.
Recent advancements in barcode technology include the development of digital barcodes, i.e., one- and two-dimensional barcode symbols generated and presented electronically on high-resolution display screens of smart phones, computers, and other portable electronic devices. Digital barcodes have found acceptance in applications such as electronic coupons, paperless airline tickets, and other applications and can be delivered to consumers via email, websites, and television advertising. Despite the widespread and growing use of digital barcodes, many image based barcode scanners cannot reliably read digital barcodes due to the highly reflective display screens on most electronic devices. Barcodes printed on paper or other physical media are best read with a single illumination pulse and a relatively short exposure period while barcodes presented on a backlit display are best read with no illumination and a relatively longer exposure period.
With the wide variety of scanning applications, including instances in which either printed or digital barcodes may be presented to a reader, one frame and a single illumination flash, may not reliably produce an optimal, i.e., decodable, image. To cover both possibilities, existing barcode readers inherently require two or more frames, one obtained under optimal conditions for digital barcodes and one obtained under optimal conditions for printed barcodes. This results in the need to off-load and evaluate multiple frames. This approach is inherently slow due to the increased time needed to obtain multiple images, even if only two frames are needed to produce a readable barcode image. If both possibilities could be covered in the same frame, the speed to obtain a readable image of either type of barcode would be faster.
Therefore, a need exists for an image based optical code reader able to read barcode symbols presented under more than one set of exposure and illumination conditions within a single frame. If multiple conditions can be applied during a single frame, the number of frames needed to obtain a decodable barcode image may be reduced to a single frame if either a printed or a digital barcode is presented to the reader.
Accordingly, in one aspect, the present invention embraces an optical indicia reader capable of reading optical indicia using images obtained under two or more optimized imaging conditions within a single frame. The optical indicia reader includes an image sensor having a plurality of selectively addressable pixels for obtaining image data from a field of view of the reader. The reader also includes an illuminator for illuminating objects within the reader's field of view and a processor. The processor may control the reader to expose two or more pixel groups of the image sensor to obtain a multiple partial frame images within a single frame time of the reader.
In an exemplary embodiment, the illuminator provides separate illumination profiles while exposing two pixel groups. The image settings for the first pixel group may be optimized for obtaining an image of optical indicia printed on a physical substrate. As such, a single illumination pulse is directed to the reader's field of view during the exposure of the first pixel group. The image settings for the second pixel group may be optimized for optical indicia digitally displayed on an electronic device in which no active illumination of the reader field of view is provided during the exposure of the second group of pixels. The exposure periods for the first and second group of pixels occur within a single frame time to provide independent partial frame images of each region in the field of view. The processor processes the first and second partial frames of image data to identify and decode optical indicia presented under two or more optimized imaging conditions within a single frame time.
In an alternative embodiment, the imaging conditions for each partial frame of image data can be optimized for the same type of optical indicia. In another alternative embodiment, partial frame images may be interlaced with overlapping regions of the reader field of view
In another aspect, the present invention embraces an image based barcode scanner able to read a barcode symbol presented under two or more imaging conditions with a single frame of image data. The barcode scanner includes an image sensor with an array individually addressable pixels and an electronic shutter mechanism. The pixels are logically divided between two pixel groups and the electronic shutter mechanism separately exposes the first and second pixel groups to obtain independent partial frames of image data.
The barcode scanner also includes an illuminator able to provide varying levels of illumination to barcode symbols in the reader's field of view. The barcode scanner further includes a processor configured by software to perform steps including setting optimized image settings for the first and second pixel groups. One pixel group may have image settings optimized for reading paper printed barcode symbols while another pixel group may have image settings optimized for reading digital barcodes.
The processor may process the partial frame images to identify and decode either paper-printed or digital barcodes visually depicted therein.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces an image based optical indicia reader, such as a barcode scanner, operable to successfully read barcode symbols regardless of form (and optimum illumination and exposure requirements) within the timing of a single frame. Image sensors in traditional barcode scanners utilize global shutters to expose all pixels simultaneously, resulting in one image per frame. Often, two or more frames, each exposed under distinct illumination conditions, are needed to obtain readable images of barcode symbols. The present barcode scanner includes an image sensor with an electronic shutter mechanism that enables two or more regions of interest (ROI) to be illuminated and exposed separately and independently within the timing of a single frame.
One embodiment of a barcode reader according to the present invention includes an image sensor having separately addressable pixels. Pixels are grouped together to produce images from sub-, or partial, frames of image data. Another embodiment of the barcode reader includes an image sensor with a spatially programmable shutter. The shutter is used to create regional shutters that open and close at different times to independently expose two or more regions. In both embodiments, two or more independent images are obtained with partial frames obtained within the timing of a single frame. The electronic gain of the sensor may also be adjusted along with the illumination and exposure settings. As such, each partial frame may be obtained under independent illumination, exposure, and/or gain settings.
The barcode reader further includes an illuminator, user interface with display, and a memory unit operatively coupled to, and controlled by, a processor. The processor is configured by software to capture partial frame images from a field of view and process them to identify and decode barcode symbols contained therein.
The illuminator includes an active light source such as one or more LEDs to provide direct illumination of a region of the field of view. Illumination settings and exposure periods for each partial frame may be optimized using ideal imaging parameters for either printed or digital barcode symbols. The electronic shutter mechanism controls the start time and duration of each partial frame exposure. The illuminator controls the illumination provided for each partial frame. By obtaining two (or more) images of a barcode under different imaging conditions within the timing of a single frame, the barcode reader is more likely to be able to read and decode a barcode symbol, regardless of whether it is on printed on a physical media or digitally presented on an electronic device.
After each frame time, the full frame of image data, consisting of the accumulated charge from the partial frame-exposed pixels is shifted out to a memory unit or processor and reset. Signal processing on the partial frame images is used to identify and decode barcode symbols from the field of view. Data received from decodable barcodes may be stored in the memory unit and used by the processor.
The processor 102 is configured to execute instructions and control various tasks related to the operation of the barcode reader 100. For example, the processor 102 may control the reception and manipulation of input and output data between the components of the barcode reader 100. The processor 102 typically has an operating system to execute instructions, such as for producing and using data from images obtained with the image sensor 108. The operating system, software modules, and image data may reside within the memory unit 104 that is operatively connected to the processor 102. The memory unit 104 generally provides a place to store computer code and data from barcode symbols decoded by the barcode reader 100.
The processor 102 may utilize numerous software modules, or algorithms, to execute routines related to scanning and decoding barcode symbols under various imaging conditions. The processor 102 may further utilize one or more barcode detection and analysis modules 116 to locate and identify barcode symbols found in the partial frame images from regions of the field of view 118.
The processor 102 may also utilize a timing module 124 to enable independent control of the start and stop of the exposure and illumination associated with each partial frame. The exposure and the timing and intensity of the illumination during each partial frame may be set in accordance with known standards for either printed or digitally displayed barcode symbols. In one embodiment, the exposure periods for each partial frame are set in a sequential, non-overlapping order to ensure that the pixels associated with each partial frame are exposed and illuminated independently though still within the timing of a single frame.
In operation, a trigger or other actuator may signal the processor 102 to acquire a first partial frame image from a region of the field of view in which a barcode symbol may be present. The processor 102 may employ image processing algorithms to locate, identify, and decode any barcode symbols found in the image.
Referring now also to
The illuminator 106 provides a reflective or direct light source for the image sensor 108 to obtain a suitable image of a paper printed barcode symbol 120. Preferred illumination for a printed barcode symbol 120 includes a single strobe or pulse during the exposure period. In various embodiments, the illuminator 106 may comprise LEDs (e.g., white, colored, infrared, ultraviolet, etc.), lasers, halogen lights, arc lamps, incandescent bulbs, or any other light source capable of producing sufficiently intense lighting. The illumination settings for each partial frame may be adjusted to ensure clear, machine-readable barcode images are obtained with a short exposure time. If the illumination settings for printed barcode symbols 120 are used on digital barcode symbols 130, the resulting images are usually unreadable due to light reflected by the display screens 132.
An exemplary illumination profile for a barcode presented on an electronic device includes a relatively long, e.g., 10 milliseconds, period. The preferred illumination setting is a ‘pulse-off’ mode that keeps the illuminator off during the entire exposure period so that the digital barcode symbol 130 is only illuminated via backlighting from the display. Without active illumination such as a flash, the barcode reader 100 is able to obtain computer-readable images of digital barcodes 130.
The user interface 110 may include one or more components capable of interacting with a user (e.g., receiving information from a user, outputting information to a user, etc.). The visual display 112 may be a touchscreen capable of displaying visual information and receiving tactile commands from a user (e.g., selections made by touching the screen with a finger, by pointing at a desired selection, etc.). The user interface 110 may also include one or more speakers, buttons, keyboards, and/or microphones.
The image sensor 108 is preferably a CMOS-based camera/imager with an array 140 of photosensitive elements (i.e., pixels) providing a field of view 118 for the barcode reader 100. In an exemplary barcode reader with a camera speed of sixty frames per second (60 fps), the image sensor 108 produces a full image frame approximately every 16.67 milliseconds. The image sensor 108 includes an electronic shutter mechanism 142 operable to control and limit the exposure of the pixels 140.
One embodiment of the image sensor 108 of the present disclosure provides a sub-frame imaging mode in which the pixels 140 are selectively divided into two or more groups that are independently controlled to create partial image frames. Each partial frame may contain separate images for adjacent regions of interest within the field of view 118 or interlaced images for overlapping regions. In either scenario, the start and stop times for the exposure of each pixel group is independently controlled. After the two or more groups of pixels have been exposed, the accumulated charges for the pixel array 140 are simultaneously shifted and read out to the memory unit 104 or processor 102. The accumulated charges, representing two or more images from the barcode reader field of view 118 may undergo various signal processing routines to obtain data encoded by the barcodes.
In step 206, groups of pixels are selectively assigned to form partial frames associated with each region. Regions may be interlaced, allowing for interpolation between the regions and expanding the dynamic range of the image sensor. The regions may otherwise be separate from each other though still within the field of view 118. Overlapping regions may also be employed by the barcode reader 100.
As already described, image parameters of each region, including illumination duration and intensity and the exposure period, may be set to optimal imaging parameters for either printed or digital barcode symbols. One partial frame may be set for a short, i.e., less than a millisecond, illumination pulse with a slightly longer exposure period for a printed barcode symbol. A second partial frame may have parameters set for a printed barcode symbol or for a digital barcode symbol. Said differently, the illumination and exposure settings for both regions may be optimized for paper barcodes (or for digital codes). The ability to produce multiple independent images within a single frame is a more efficient means to successfully scan and decode barcode symbols.
In step 208, the start and stop times for the exposure and the illumination profile for the two or more partial frames are independently set. In some instances, the regions may be illuminated and exposed at separate and distinct times within the single frame. Such a setting may be utilized to ensure that illumination needed for the imaging of one barcode symbol does not interfere with the imaging of a different type of barcode symbol. In other instances, the exposure and/or illumination of the regions may overlap.
In step 210, discussed in greater detail with respect to
The barcode reader 100 may be operated with two regions having the same or similar optimum imaging parameters for the same type of barcode, such as for a printed barcode. In this mode, the barcode reader 100 is able to obtain two independent images of the same barcode symbol in one frame time, effectively doubling the camera speed. Two or more images of a barcode symbol obtained within a single frame time can be analyzed to improve the likelihood of a successful decode. It is also contemplated that the barcode reader 100 may scan and decode two barcode symbols located within the field of view 118 within the timing of a one frame even with one digital barcode and one printed barcode.
In step 212, the charges in the entire pixel array 140, representing two or more partial frame images is shifted and read out to the processor 102 or memory unit 104. The images obtained by the image sensor 108 may be interlaced images from the same ROI, separate images from different ROIs, or a combination of both in the case of overlapping ROIs. In step 214, the images are processed to identify and decode a barcode symbol in at least one of the partial frame images.
In step 228, the exposure period for the pixels associated with the second region of interest commences. In step 230, the field of view 118 is illuminated in accordance with the optimized imaging parameters of another type, digital, of barcode symbol. In step 232, the exposure period for the pixels associated with the second partial frame ends.
In an exemplary operation, the barcode reader 100 may be positioned to bring a paper-printed barcode 120 within the field of view 118. Upon a predetermined triggering action, the imaging process 200 is executed within a single frame time. Within that time, pixels groups associated with a first and second region are independently exposed for preset lengths of times to create a first and second partial frame. While each pixel group is being exposed, the field of view 118 may be illuminated in accordance with the optimized imaging settings associated with each region. The start and stop times for the exposure of each pixel group are separately controlled so as to prevent, for example, illumination needed to obtain an image of a printed barcode from affecting the exposure of an image of a digital barcode. After one barcode has been successfully read within a single frame time, the same process may be repeated with a different barcode that will also be successfully read within a subsequent frame time.
Referring now also to
In the illustrative timing diagram 150, the illuminator 106 may be activated in response to an illumination ‘off’ portion 160 after the exposure period of the first region has ended. In this manner, the images obtained from the first region are not affected by possible illumination provided for the second region. The electronic shutter mechanism 142 is again activated in response to an ‘on’ state 162 of a second exposure timing signal 168 to begin exposing the pixel group associated with the second region. The timing diagram 150 of
Paper barcodes are typically read in less than one millisecond to a few (˜3, 4, or 5) milliseconds depending on factors such as the type of paper, print quality, reading distance, and the amount of light produced by the scanner LEDs. A digital barcode displayed on a typical cell phone can usually be read with about ten milliseconds of exposure in order to gain sufficient light. Image sensors and barcode scanners according to aspects of the present invention provide two or more independent exposures within a single frame, providing increased efficiency and scan aggressiveness.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
This application is a continuation of U.S. application Ser. No. 15/352,688, filed Nov. 16, 2016, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Van et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein, Jr. | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre, Jr. | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8736909 | Sato et al. | May 2014 | B2 |
8740082 | Wilz, Sr. | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue et al. | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein, Jr. | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | El et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber et al. | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224027 | Van et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey et al. | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
20050056699 | Meier et al. | Mar 2005 | A1 |
20050103864 | Zhu et al. | May 2005 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070090191 | Schnee et al. | Apr 2007 | A1 |
20070126922 | Richardson | Jun 2007 | A1 |
20080116279 | Tsikos et al. | May 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100265880 | Rautiola et al. | Oct 2010 | A1 |
20110038563 | Bremer et al. | Feb 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein, Jr. | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein, Jr. | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140121438 | Long et al. | May 2014 | A1 |
20140121445 | Fontenot et al. | May 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Liu et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140278391 | Braho et al. | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071818 | Scheuren et al. | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chen et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150178523 | Gelay et al. | Jun 2015 | A1 |
20150178534 | Jovanovski et al. | Jun 2015 | A1 |
20150178535 | Bremer et al. | Jun 2015 | A1 |
20150178536 | Hennick et al. | Jun 2015 | A1 |
20150178537 | El et al. | Jun 2015 | A1 |
20150181093 | Zhu et al. | Jun 2015 | A1 |
20150181109 | Gillet et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150212565 | Murawski et al. | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150220901 | Gomez et al. | Aug 2015 | A1 |
20150227189 | Davis et al. | Aug 2015 | A1 |
20150236984 | Sevier | Aug 2015 | A1 |
20150239348 | Chamberlin | Aug 2015 | A1 |
20150242658 | Nahill et al. | Aug 2015 | A1 |
20150242671 | Smith et al. | Aug 2015 | A1 |
20150242836 | Smith | Aug 2015 | A1 |
20150248572 | Soule et al. | Sep 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150256695 | Showering et al. | Sep 2015 | A1 |
20150261643 | Caballero et al. | Sep 2015 | A1 |
20150261719 | Caballero | Sep 2015 | A1 |
20150264624 | Wang et al. | Sep 2015 | A1 |
20150268971 | Barten | Sep 2015 | A1 |
20150269402 | Barber et al. | Sep 2015 | A1 |
20150276470 | Amundsen et al. | Oct 2015 | A1 |
20150288689 | Todeschini et al. | Oct 2015 | A1 |
20150288896 | Wang | Oct 2015 | A1 |
20150310244 | Xian et al. | Oct 2015 | A1 |
20150310247 | Todeschini et al. | Oct 2015 | A1 |
20150312780 | Wang et al. | Oct 2015 | A1 |
20150324623 | Powilleit | Nov 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160026839 | Qu et al. | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue et al. | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160325677 | Fitch et al. | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1791074 | May 2007 | EP |
2284766 | Feb 2011 | EP |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
U.S. Patent Application pages for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages, U.S. Appl. No. 14/747,197. |
U.S. Patent Application No. for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned, U.S. Appl. No. 14/446,391. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al.); 16 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Patent Application for Tracking Battery Conditions filed May 4, 2015 (Yong et al.); 70 pages. |
U.S. Patent Application for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); now abandoned, U.S. Appl. No. 14/283,282. |
U.S. Patent Application for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages, U.S. Appl. No. 14/740,320. |
U.S. Patent Application for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages, U.S. Appl. No. 14/702,110. |
U.S. Patent Application for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned., U.S. Appl. No. 14/277,337. |
U.S. Patent Application for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages, U.S. Appl. No. 14/705,407. |
U.S. Patent Application for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages, U.S. Appl. No. 14/704,050. |
U.S. Patent Application for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages, U.S. Appl. No. 14/735,717. |
U.S. Patent Application for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages, U.S. Appl. No. 14/705,012. |
U.S. Patent Application for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages, U.S. Appl. No. 14/715,916. |
U.S. Patent Application for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages, U.S. Appl. No. 14/747,490. |
U.S. Patent Application for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages, U.S. Appl. No. 14/740,373. |
U.S. Patent Application for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages, U.S. Appl. No. 14/715,672. |
U.S. Patent Application for Application Independent DEX/UCS Interface filed May 8, 2015 (Page); 47 pages, U.S. Appl. No. 14/707,123. |
U.S. Pat. Appl. filed Feb. 7, 2012, (Feng et al.); now abandoned., U.S. Appl. No. 13/367,978. |
Extended Search Report in related European Application No. 17200826.0 dated Apr. 11, 2018, pp. 1-7. |
Notice of Allowance and Fees Due (PTOL-85) dated Jun. 29, 2018 for U.S. Appl. No. 15/352,688. |
Non-Final Rejection dated Oct. 11, 2017 for U.S. Appl. No. 15/352,688. |
Final Rejection dated Mar. 26, 2018 for U.S. Appl. No. 15/352,688. |
Number | Date | Country | |
---|---|---|---|
20190034683 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15352688 | Nov 2016 | US |
Child | 16150936 | US |