The present invention relates to the field of organic chemistry and, more particularly, to the synthesis of para-Methoxybenzyl (PMB) ethers.
para-Methoxybenzyl (PMB) ethers are workhorse protecting groups in organic synthesis.1 Like benzyl (Bn) ethers, PMB ethers withstand a wide range of reaction conditions, can be cleaved under mild conditions,2 and are not subject to the unwanted migration between neighboring functional groups that is observed with ester, acetal, and silyl ether protecting groups. However, the formation of PMB ethers can be problematic. Common methods for the synthesis of PMB ethers-Williamson3 and trichloroacetimidate4 coupling reactions-require basic or acidic media that may not be compatible with complex systems.5 Furthermore, neither PMB trichloroacetimidate (unstable to storage) nor PMB chloride (lachrymator) is especially convenient for routine usage.
With the foregoing in mind, the present invention advantageously provides a synthesis of versatile PMB ethers that should be widely applicable in synthetic chemistry.8 The present PMB ethers are analogous to those we recently introduced, 2-benzyloxy-1-methylpyridinium triflate (compound 4),6 a stable organic salt that provides benzyl ethers upon warming in the presence of alcohols (Equation 1).7
The present invention, thus, discloses a novel para-Methoxybenzyl ether having the formula of compound 1. Additionally, the invention includes a method of making compound 1, also designated 2-(4-methoxybenzyloxy)-4-methylquinoline or lepidine ether, the method consisting of a reaction according to Equation 2. Also included in the invention is a method of making various para-methoxybenzyl ethers according to formulas 3 as shown in Table 1 and
Some of the features, advantages, and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, presented for solely for exemplary purposes and not with intent to limit the invention thereto, and in which:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. Any publications, patent applications, patents, or other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including any definitions, will control. In addition, the materials, methods and examples given are illustrative in nature only and not intended to be limiting. Accordingly, this invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these illustrated embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
PMB salt, compound 7 shown in
Preliminary experiments showed that lepidine derivative, compound 8, is soluble in aromatic solvents: addition of methyl triflate (MeOTf) to lepidine ether, compound 1, in trifluorotoluene9 did not produce a visible precipitate despite rapid consumption of 1 with concomitant formation of polar material.10 Lepidine ether 1 is significantly more stable than other PMB transfer reagents such as PMB chloride3 and PMB trichloroacetimidate.4 Furthermore, addition of methyl triflate to mixtures containing alcohols 2 and lepidine 1 affords PMB ethers 3, as shown in Table 1—see also Note 2.
As shown in Table 1, the formation of PMB ethers using compound 1 and methyl triflate occurs efficiently on a range of alcohols (depicted in
In keeping with our earlier work on the synthesis of benzyl ethers,6 and wishing not to be bound, we theorize that the current synthesis of PMB ethers
aUnless otherwise indicated, methyl triflate was added to a mixture of alcohol 2, lepidine 1, MgO, and trifluorotoluene under argon.
bIsolated yield.
cAlcohol 2 was not fully consumed after 1 h.
dPotassium carbonate (K2CO3) employed in lieu of MgO.
eToluene employed in lieu of PhCF3.
proceeds by an SN1-type mechanism analogous to that observed from trichloroacetimidates. Important to the success of the present synthetic approach is that the neutral alcohol 2 does not react with methyl triflate, whereas alcohol 2 does react with the p-methoxybenzyl cation as it is released from active reagent compound 8.
Lepidine ether 1 provides several key advantages over PMB trichloroacetimidate: (1) ether 1 is more stable; (2) active reagent 8 is generated under non-acidic conditions; and (3) the by-product, lepidone 10, remains in solution until it is purged, either during aqueous workup, or on silica gel chromatography. In contrast, the acetamide by-product of trichloroacetimidate coupling reactions can cause problems during purification.
In summary, we have disclosed a new p-methoxybenzyloxy derivative of lepidine that, upon treatment with methyl triflate, transfers the PMB group to an awaiting alcohol substrate. Methylation of the lepidine core generates an activated reagent under effectively neutral conditions, allowing acid- and base-sensitive alcohols (e.g., 2j) to be protected as PMB ethers. We expect this invention to be of considerable utility.
Note 1: 2-(4-Methoxybenzyloxy)-4-methylquinoline (1) A mixture of 4-methoxybenzyl alcohol (3.6 g, 26 mmol), 2-chlorolepidine (3.6 g, 21 mmol), KOH (4.8 g, 86 mmol, ground with a mortar and pestle), toluene (41 mL) and 18-crown-6 (318 mg, 1.2 mmol) was heated at reflux for 1 h with azeotropic removal of water (Dean-Stark trap). The reaction mixture was then cooled to room temperature and partitioned between ethyl acetate (100 mL) and water (50 mL). The organics were washed (brine), dried (MgSO4), filtered, concentrated under vacuum, and purified on silica gel (elution with 5% EtOAc-hexanes) to provide 5.3 g of 1 (93% yield) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.87 (br d, J=8.4 Hz, 2H), 7.62 (td, J=7.6, 1.3 Hz, 1H), 7.49-7.37 (m, 3H), 6.92 (d, J=6.7 Hz, 2H), 6.79 (s, 1H), 5.46 (s, 2H), 3.82 (s, 3H), 2.62 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 162.1, 159.7, 147.0, 146.8, 130.3, 129.8, 129.5, 128.0, 125.8, 124.0, 123.9, 114.1, 113.5, 67.4, 55.5, 18.9. IR 1611, 1573, 1514, 1470, 1448, 1396, 1329, 1303, 1246, 1174, 1130, 1039, 1020 cm−1. HRMS (ESI+) found 302.1163 (calcd for C18H17NO2Na: 302.1157).
Note 2: Standard procedure for the arylmethylation of alcohols (2→3) An ice-cold mixture of 2-PMBO-lepidine 1 (200 mg, 0.72 mmol), benzotrifluoride (PhCF3, 3.6 mL), MgO (29 mg, 0.72 mmol, vacuum-dried), and alcohol 2 (0.36 mmol) was treated dropwise with methyl triflate (82 μL, 0.72 mmol). The ice bath was removed, and the reaction mixture was stirred at room temperature for 30-60 min. until TLC analysis showed consumption of alcohol 2. The mixture was then diluted with ethyl acetate, decanted away from the MgO residue, washed (H2O), dried (MgSO4), filtered, concentrated at reduced pressure, and purified on silica gel to yield PMB ether 3 (see Table 1).
Accordingly, in the drawings and specification, there have been disclosed typical preferred embodiments of the invention, and although specific terms may have been employed, the terms are used in a descriptive sense only and not for purposes of limitation. The invention has been described in considerable detail with specific reference to these illustrated embodiments. It will be apparent to the skilled. however, that various modifications and changes can be made within the spirit and scope of the invention as described in the foregoing specification and as defined in the appended claims.
This application claims priority from provisional applications Ser. No. 60/827,763, which was filed on Oct. 2, 2006, and Ser. No. 60/862,121, which was filed on Oct. 19, 2006, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7754909 | Dudley | Jul 2010 | B1 |
Number | Date | Country | |
---|---|---|---|
60827763 | Oct 2006 | US | |
60862121 | Oct 2006 | US |