1. Field of the Invention
The technology described herein generally relates to reagent tubes designed to facilitate pipetting of small volumes of liquid from within, and more particularly to reagent tubes that are used in extracting microfluidic quantities of polynucleotides in solution following extraction from biological samples.
2. Description of the Related Art
The medical diagnostics industry is a critical element of today's healthcare infrastructure. At present, however, diagnostic analyses no matter how routine have become a bottleneck in patient care. There are several reasons for this. For example, many diagnostic analyses can only be done with highly specialist equipment that is both expensive and only operable by trained clinicians. Such equipment is found in only a few locations, and often there is just one in any given urban area. This means that most hospitals are required to send out samples for analyses to these locations, thereby incurring shipping costs and transportation delays, and possibly even sample loss or mishandling.
Understanding that sample flow breaks down into several key steps, it would be desirable to consider ways to automate or make efficient as many of these as possible. In one key step, a biological sample, once extracted from a patient, must be put in a form suitable for a processing and detection regime that typically involves using PCR to amplify a vector of interest. Once amplified, the presence or absence of the vector in the sample needs to be determined unambiguously. Preparing samples for PCR is currently a time-consuming and labor intensive step, though not one requiring specialist skills, and could usefully be automated. By contrast, steps such as PCR and nucleotide detection have customarily only been within the compass of specially trained individuals having access to specialist equipment.
Sample preparation is labor intensive in part because of the number of reagents required, and the need for multiple liquid transfer (e.g., pipetting) operations. Furthermore, a trend towards portable diagnostic instruments, or those that can be easily installed in almost any healthcare setting (without requiring a dedicated facility), has meant that the instruments are configured to analyze very small (microfluidic or smaller) volumes of polynucleotide-containing solutions. With such volumes, it becomes important to minimize sample loss—such as from liquid transfer operations—during sample preparation. Even a loss of a very small fraction of a processing volume could result in loss of a significant number of copies of target polynucleotide and thereby result in a concomitant loss of amplification and detection sensitivity and—potentially—a false negative diagnosis. A major source of loss of liquid samples and solutions is from incomplete pipetting, where a pipette attempts to suck an entire quantity of fluid from a container, but where some fraction of that quantity is retained in the container, such as on the interior surfaces.
Various interior surface features in reagent tubes have been described elsewhere. U.S. Pat. No. 4,466,740 describes an array of reaction vessels on a plate, wherein each vessel has a conical interior lower surface that is stepped so that a number of concentric ridges of increasing diameter span between the bottom of the vessel and the vessel at its maximum width. Such a shape of interior surface is likely to present an increased surface area on which solution may remain during pipetting, and are unlikely to effectively channel the solution towards the location of a pipette tip. U.S. Pat. No. 6,143,250 (the '250 patent) describes liquid storage vessels having “ditches” in their lower interior surfaces that follow the interior surface of an inclined edge of the vessel. Although the '250 patent suggests that these grooves can be present in numbers of greater than two, and arranged radially with respect to the center of the vessel, such a configuration has at least the drawback that it would require a complex manufacture of the vessel, and are therefore limited to particular vessels, not necessarily those that are used in routine laboratory processes, such as biological sample preparation.
There is therefore a need for a method and apparatus of carrying out sample preparation on samples, so that loss of liquid volumes during liquid transfer is reduced. Such methods and apparatus could also find application to liquid transfer operations used in other fields, where mitigation of sample loss during work-up is important.
The discussion of the background herein is included to explain the context of the inventions described herein. This is not to be taken as an admission that any of the material referred to was published, known, or part of the common general knowledge as at the priority date of any of the claims.
Throughout the description and claims of the specification the word “comprise” and variations thereof, such as “comprising” and “comprises”, is not intended to exclude other additives, components, integers or steps.
The technology described herein includes a reagent tube comprising a pattern of ridges extending radially and centered at the bottom of the interior surface of the tube. Also contemplated are radially oriented patterns of grooves on the bottom interior surface of the tube.
The reagent tube described herein typically comprises a wall having an upper portion, usually cylindrical, and a lower portion, usually conical or tapering towards a bottom, and has an exterior surface and an interior surface. The pattern of ridges is typically star-shaped and is disposed on the interior surface of the tube, at the bottom of the tube.
The technology described herein further includes methods of using a reagent tube, as described herein, such as a method of removing all, or substantially all, of a liquid from the tube by use of a pipette tip. The pipette tip may be removably attached to a manually, such as hand-operated, pipette, or may be removably attached to an automatic dispensing apparatus.
The reagent tube herein typically finds use in sample preparation, that sequence of processing steps by which polynucleotide molecules, such as DNA and/or RNA, present in a biological sample (such as blood, sputum, semen, or urine), are extracted from their cellular matrix, and placed in a form suitable for amplification, such as by PCR, and subsequent detection as part of a diagnostic test.
Reagent Tubes
The reagent tubes described herein are designed to facilitate pipetting of small volumes of liquid from within, such as to transfer the liquid to another container, with very little attendant loss of liquid.
The reagent tubes can be used in extracting microfluidic quantities of polynucleotides in solution following isolation of such polynucleotides from biological samples, such as in conjunction with a holder of various reagents as described in U.S. Patent Publication. No. 2009-0129978 A1, filed by ExpressMail on Jul. 14, 2008 (and entitled “Reagent Holder, and Kits Containing Same”, in the name of Wilson, et al.), and an automated pipette head and dispenser as described in U.S. Patent Publication No. 2009-0130745 A1, filed by ExpressMail on Jul. 14, 2008 (and entitled “Integrated Apparatus for Performing Nucleic Acid Extraction and Diagnostic Testing on Multiple Biological Samples”, in the name of Williams, et al.), both of which are incorporated herein by reference. Exemplary procedures for sample preparation from polynucleotide-containing biological samples are found in U.S. Patent Publication Nos. 2010-0009351 A1, and 2009-0131650 A1, both filed Jul. 11, 2008, and incorporated herein by reference.
However, reagent tubes consistent with the embodiments described herein are not exclusively for use with automated pipetting apparatus but also can be used in conjunction with manual processing, such as pipetting by hand.
Tubes consistent with the embodiments herein may have a variety of volumes, typically in the range 0.1 ml to 0.65 ml, such as 03 ml, 0.6 ml, or in the range 1.5-2.0 ml, or may have intermediate, or greater, volumes than those specifically delimited. They may also have a variety of shapes such as conical, barrel-shaped (wider at a middle portion than at top and bottom portions), or cylindrical with a tapered or conical bottom. Usually, reagent tubes are circular in cross-section, but other cross sections are possible and consistent herewith, and include but are not limited to: rectilinear, such as square or rectangular, like a cuvette; polygonal, such as pentagonal or hexagonal; and oval. Ordinarily, the tubes have a unitary construction, though in certain instances may be constructed from two or more parts fused or otherwise joined together as applicable. Typically, the tubes are configured to accept a pipette tip for deposit and/or retrieval of fluids.
The features of the reagent tubes as described herein may be found in or on the interior surfaces of many fluid containing vessels, including, but not limited to: vessels configured to carry out reactions, such as PCR tubes; arrays, such as microarray plates, having many vessels arranged in a single substrate; snap-in tubes, such as tubes that contain reagents and are shipped separately or loosely, but when used are snapped into a supporting member such as a rack or a holder, disposable tubes; re-usable tubes; tubes that are sealed to limit contact of their contents with air and/or moisture during storage or transport; tubes that are sealable and re-sealable, such as having a removable, or flip-up cap; tubes that can be labeled for a single use, or labeled for multiple uses; tubes that are made of a clear, or a translucent, or an opaque material, depending upon, e.g., photosensitivity of the contents; tubes that contain liquid reagents such as those that are directly pipetted out of the tubes; and tubes that contain solid, e.g., particulate, or lyophilized, reagents that are constituted into liquid form prior to pipetting, such as by dissolving upon contact with a liquid such as an aqueous buffer solution; and tubes that are made of plastic, or glass, or quartz.
As described elsewhere herein, the reagent tubes are configured to have a star-shaped—also referred to as stellated—pattern (see
The design of the star shaped pattern is important, especially when present in a reagent tube used for recovery of DNA or RNA present in very small quantities (low copy numbers) in a clinical sample, or an extract therefrom. The star-shaped pattern ensures that when a fluid is withdrawn from the tube, a pipette tip can be bottomed out in the tube and still be able to withdraw the entire, or almost the entire fluid from the tube, as shown in
Accordingly, the stellated pattern should enable pipetting of most of the liquid (residual volume<1 microliter) when used with a pipette bottomed out with the bottom of the tube. Although it is not necessary for a pipette tip to bottom out in the reagent tubes described herein, an advantage of it so doing is that a very clear indication of the position of the tip during pipetting is obtained and thereby a consistent positioning can be accomplished across multiple pipetting operations. A requirement that a pipette tip be positioned at some intermediate distance above the bottom of the tube in order to maximize pipetting efficiency, would be harder to verify and to make consistent and reproducible over large numbers of operations even when using an automated pipetting device.
The design of the stellated or star-shaped pattern can be optimized to maximize the flow rate of liquid through various gaps in the pattern that lie between a bottomed out pipette, such as a p1000 pipette, and the star pattern. It would be understood that, although the description herein pertains to pipettes and pipette tips typically used in sample preparation of biological samples, the principles and detailed aspects of the design are as applicable to other types of pipette and pipette tip, and may be so-adapted.
Center 2209 is typically positioned coincidentally with the geometric center of the bottom of reagent tube 2200. Such a tube is typically circular in cross-section, so that identifying its geometric center (e.g., at a crossing point of two diameters) is normally straightforward. Center 2209 may be larger than shown in
Ring 2207 is an optional feature of star-shaped pattern 2203. Typically ring 2207 is centered on center 2209, and typically it also has a dimension that corresponds to the lower surface or caliber of a pipette tip. Thus, when a pipette tip ‘bottoms out’ in the bottom of reagent tube 2200, the bottom of the pipette tip rests in contact with ring 2207. Ring 2207 is thus preferably a cut-out or recessed feature that can accommodate the pipette tip and assist in guiding its positioning centrally at the bottom of the tube. Ring 2207 may alternately be a raised or ridge-like feature, according to manufacturing or other preference. In other embodiments more than one, such as 2, 3, or 4, concentric rings 2207 are present, so that pipette tips of varying calibers can be used with the same reagent tube, and each can be suitably positioned, while pipetting, in contact with one of the respective rings.
In the embodiment shown in
Characteristic features of the stellated pattern in
A star pattern 2203 as described herein is configured to have dimensions that give an optimal flow-rate of liquid out of the reagent tube into a suitably positioned, such as a bottomed-out, pipette tip. The star pattern in
The radial segments are typically rounded in their lower surfaces, such as semi-circular in cross section, or having a curved surface that is in cross section an arc of a circle, ellipse, parabola, or hyperbola, but may also be V-shaped. The segments may also be trapezoid in cross-section, such as having a wider upper portion than the bottom, which is flat, the upper portion and the bottom being connected by sloping walls.
In some embodiments, for ease of manufacture, the radial segments end on the same level as one another in the bottom of the tube. Thus the apices 2206 are all disposed on the circumference of a circle whose plane lies perpendicular to the cylindrical axis of the tube. In other embodiments, the segments do not all end on the same level. For example, apices 2206 may alternately be on different levels, and thus the apices are alternately disposed on the respective circumferences of two concentric circles that occupy different, parallel, planes in space from one another.
Radial segments 2205 are shown in
Typically the radial segments taper uniformly in width and height or depth from center 2209 to each respective apex 2206. Still other configurations are possible, such as a segment that follows a constant width, or depth, out to a particular radial extent, within 30-60% of its length such as near its midpoint of length, and then narrows and/or becomes shallower towards its apex 2206. Alternatively, a radial segment may start narrow at center 2209, widen to a widest region within 30-60% of its length, such as near its midpoint of length, and then narrow towards its apex. Still other possibilities, not described herein, are consistent with the stellated pattern of the reagent tubes herein.
In a 0.3 ml tube, the radius of the star-pattern formed from the radial segments, measured as the shortest distance from center 2209 to an apex 2206, is typically around 0.5 mm, but may be from 0.1-1 mm, or from 0.3-0.7 mm, or from 0.5 to 1.5 mm, or from 0.7 to 2 mm.
In a 0.3 ml tube, the width of each radial segment 2205 at its widest point is typically around 50 microns, and the width typically tapers uniformly from a widest point, closest to or at center 2209, to a narrower width at the apex 2206.
In a 0.3 ml tube, the height (for a ridge) or depth (for a groove) of a segment at the deepest point is typically around 25-50 microns and the height depth typically tapers uniformly from a highest or deepest point respectively, closest to or at center 2209, to an apex 2206.
In another embodiment, in a 0.3 ml tube, the radial segments should be rounded off and less than 100 microns deep (or high), or less than 50 microns deep (or high), or less than 25 microns deep (or high).
The stellated pattern typically has a rotation axis of symmetry, the axis disposed perpendicular to the bottom of the tube and through center 2209 (concentric with a cylindrical axis of the tube), so that the radial segments are disposed symmetrically about the rotation axis. By this is meant that, for n segments, a rotation by an angle of 2π/n about the central (rotational) axis can bring each segment into coincidence with the segment adjacent to it.
The stellated shapes shown in
Also shown in the side plan view of
The reagent tube described herein may further comprise an identifiable code, such as a 1-D or a 2-D bar-code on the top 2208. Such a code is useful for identifying the composition of the reagents stored within, and/or a batch number for the preparation thereof, and/or an expiry date. The code may be printed on with, for example, an inkjet or transfer printer. The code may also be attached, or affixed, or printed on, the side of the tube, such as on an exterior surface of wall 2201.
Exemplary Manufacture
A stellated feature such as described herein may be positioned on the interior surface of the bottom of a reagent tube during manufacture of the tube by, for example injection moulding. The stellated feature is typically constructed as a raised feature, proud from the bottom interior surface. Thus, during manufacture of a reagent tube described herein by injection moulding, an outer portion of the mould is a cavity defining the exterior shape of the tube. An interior shape of the tube is formed by an inner portion of the mould positioned concentrically with the outer portion of the mould, and having a star-shaped structure milled out of its tip. Thus, when liquid plastic is injected into the space between the inner and the outer portions of the mould, the star-shape is formed as a raised portion on the bottom interior surface of the tube that is so-formed. Alternately, if the stellated feature is constructed as a recessed feature, the interior portion of the mould will have a complementary stellated feature projecting from its bottom surface.
Reagent tubes may be manufactured by injection moulding in batches, such as via an array of tube-shaped moulds in a single substrate. Tubes made in batch in this way may be imprinted with a non-functional marking characteristic of the location in the array, for example, for purposes of quality control.
Exemplary Pipetting Operations
At A, a pipette tip 2210, containing a liquid 2211 (such as a buffer solution), is positioned directly or approximately above the center of reagent tube 2200. The tube contains a number of lyophilized pellets 2212, and is sealed by a layer 2214, such as of foil, as further described herein.
At B, the pipette tip is lowered, piercing seal 2214, and brought into a position above the particles 2212.
At C the liquid 2211 is discharged from the pipette tip on to the particles, dissolving the same, as shown at D. After the particles are fully dissolved, forming a solution 2218, the pipette tip is lowered to a position where it is in contact with the stellated pattern 2203.
At E, the pipette tip is caused to suck up the solution 2218 (typically leaving less than 1 μl of solution 2218 in the tube), and at F, the tip may optionally discharge the solution back into the tube. Steps E and F may be repeated, as desired, to facilitate dissolution and mixing of the lyophilized components into solution.
At G, after sucking up as much of the solution 2218 as is practicable into the pipette tip, the pipette tip is withdrawn from the tube. Ideally, 100% by volume of the solution 2218 is drawn up into the pipette tip at G. In other embodiments, and depending upon the nature of solution 2218, at least 99% by volume of the solution is drawn up. In still other embodiments, at least 98%, at least 97%, at least 96%, at least 95%, and at least 90% by volume of the solution is drawn up.
The following examples illustrate an embodiment of the invention described and claimed herein, and are not intended to be limiting.
An exemplary reagent tube, showing various dimensions, is shown in
The cross-hatch area shown on the upper portion of the tube in
The pattern of ridges shown in
The tube is made from polypropylene homopolymer, e.g., available from Cannel Olefins Ltd., and identified as product no. Capilene U77 AV (see, e.g., world wide web site carmel-olefins.co.il/Media/Uploads/Capilene_nomenclatur.pdf).
Surfaces are SPI (Society of the Plastics Industry) grade A-2, a known surface quality measurement, or better.
Any and all flashes and burrs resulting from the manufacture are removed and, in order to be used, the tube should not come into contact with grease, dust, mold release or other foreign substances. The tube should also be free of cracks, crazing, scratches, and internal defects or particulates obvious to the unaided eye.
The containers of lyophilized reagents provided in conjunction with a holder as described herein are typically sealed by a non-plasticized aluminum foil. Aluminum foil bursts into an irregular polygonal pattern when pierced through a pipette and leaves an air vent even though the pipette is moved to the bottom of the tube. In order to save on reagents, it is desirable to dissolve the reagents and maximize the amount withdrawn from the tube. To accomplish this, a ridged-star (stellated) pattern is placed at the bottom of the container to maximize liquid volume withdrawn, and flow velocity in between the ridges.
Exemplary steps for dissolving solid particles, and withdrawing fluid are as follows:
The foregoing description is intended to illustrate various aspects of the present inventions. It is not intended that the examples presented herein limit the scope of the present inventions. The technology now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 12/178,557, filed on Jul. 23, 2008 which is a continuation-in-part of each of U.S. patent application Ser. No. 12/218,498, filed on Jul. 14, 2008, U.S. patent application Ser. No. 12/218,416, filed on Jul. 14, 2008, and U.S. patent application Ser. No. 12/173,023, filed Jul. 14, 2008, each of which claims the benefit of priority to U.S. provisional Patent Application Ser. No. 60/959,437, filed Jul. 13, 2007. All of the above patent applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1434314 | Raich | Oct 1922 | A |
1616419 | Wilson | Feb 1927 | A |
1733401 | Lovekin | Aug 1930 | A |
3528449 | Witte et al. | Sep 1970 | A |
3985649 | Eddelman | Oct 1976 | A |
4018089 | Dzula et al. | Apr 1977 | A |
4018652 | Lanham et al. | Apr 1977 | A |
4038192 | Serur | Jul 1977 | A |
4055395 | Honkawa et al. | Oct 1977 | A |
D249706 | Adamski | Sep 1978 | S |
4139005 | Dickey | Feb 1979 | A |
D252157 | Kronish et al. | Jun 1979 | S |
D252341 | Thomas | Jul 1979 | S |
D254687 | Fadler et al. | Apr 1980 | S |
4212744 | Oota | Jul 1980 | A |
D261033 | Armbruster | Sep 1981 | S |
D261173 | Armbruster | Oct 1981 | S |
4301412 | Hill et al. | Nov 1981 | A |
4439526 | Columbus | Mar 1984 | A |
4457329 | Werley et al. | Jul 1984 | A |
4466740 | Kano et al. | Aug 1984 | A |
4504582 | Swann | Mar 1985 | A |
4522786 | Ebersole | Jun 1985 | A |
D279817 | Chen et al. | Jul 1985 | S |
4599315 | Terasaki et al. | Jul 1986 | A |
4612873 | Gunter | Sep 1986 | A |
4612959 | Costello | Sep 1986 | A |
D288478 | Carlson et al. | Feb 1987 | S |
4654127 | Baker et al. | Mar 1987 | A |
4673657 | Christian | Jun 1987 | A |
4683195 | Mullis et al. | Jul 1987 | A |
4683202 | Mullis | Jul 1987 | A |
D292735 | Lovborg | Nov 1987 | S |
4720374 | Ramachandran | Jan 1988 | A |
4798693 | Mase et al. | Jan 1989 | A |
4800022 | Leonard | Jan 1989 | A |
4841786 | Schulz | Jun 1989 | A |
D302294 | Hillman | Jul 1989 | S |
4895650 | Wang | Jan 1990 | A |
4919829 | Gates et al. | Apr 1990 | A |
4921809 | Schiff et al. | May 1990 | A |
4935342 | Seligson et al. | Jun 1990 | A |
4946562 | Guruswamy | Aug 1990 | A |
4949742 | Rando et al. | Aug 1990 | A |
D310413 | Bigler et al. | Sep 1990 | S |
4963498 | Hillman | Oct 1990 | A |
4967950 | Legg et al. | Nov 1990 | A |
4978502 | Dole et al. | Dec 1990 | A |
4978622 | Mishell et al. | Dec 1990 | A |
4989626 | Takagi et al. | Feb 1991 | A |
5001417 | Pumphrey et al. | Mar 1991 | A |
5004583 | Guruswamy et al. | Apr 1991 | A |
5048554 | Kremer | Sep 1991 | A |
5053199 | Keiser et al. | Oct 1991 | A |
5060823 | Perlman | Oct 1991 | A |
5061336 | Soane | Oct 1991 | A |
5064618 | Baker et al. | Nov 1991 | A |
5071531 | Soane | Dec 1991 | A |
5091328 | Miller | Feb 1992 | A |
D324426 | Fan et al. | Mar 1992 | S |
5096669 | Lauks et al. | Mar 1992 | A |
5126002 | Iwata et al. | Jun 1992 | A |
5126022 | Soane et al. | Jun 1992 | A |
D328135 | Fan et al. | Jul 1992 | S |
D328794 | Frenkel et al. | Aug 1992 | S |
5135627 | Soane | Aug 1992 | A |
5135872 | Pouletty et al. | Aug 1992 | A |
5147606 | Charlton et al. | Sep 1992 | A |
5169512 | Wiedenmann et al. | Dec 1992 | A |
D333522 | Gianino | Feb 1993 | S |
5186339 | Heissler | Feb 1993 | A |
5192507 | Taylor et al. | Mar 1993 | A |
5208163 | Charlton et al. | May 1993 | A |
5223226 | Wittmer et al. | Jun 1993 | A |
D338275 | Fischer et al. | Aug 1993 | S |
5250263 | Manz | Oct 1993 | A |
5252743 | Barrett et al. | Oct 1993 | A |
5256376 | Callan et al. | Oct 1993 | A |
5275787 | Yuguchi et al. | Jan 1994 | A |
5282950 | Dietze et al. | Feb 1994 | A |
5296375 | Kricka et al. | Mar 1994 | A |
5304477 | Nagoh et al. | Apr 1994 | A |
5304487 | Wilding et al. | Apr 1994 | A |
D347478 | Pinkney | May 1994 | S |
5311896 | Kaartinen et al. | May 1994 | A |
5311996 | Duffy et al. | May 1994 | A |
5316727 | Suzuki et al. | May 1994 | A |
5327038 | Culp | Jul 1994 | A |
5339486 | Persic, Jr. | Aug 1994 | A |
D351475 | Gerber | Oct 1994 | S |
D351913 | Hieb et al. | Oct 1994 | S |
5364591 | Green et al. | Nov 1994 | A |
5372946 | Cusak et al. | Dec 1994 | A |
5374395 | Robinson | Dec 1994 | A |
5389339 | Petschek et al. | Feb 1995 | A |
5397709 | Berndt | Mar 1995 | A |
5401465 | Smethers et al. | Mar 1995 | A |
5411708 | Moscetta et al. | May 1995 | A |
5414245 | Hackleman | May 1995 | A |
5416000 | Allen et al. | May 1995 | A |
5422271 | Chen et al. | Jun 1995 | A |
5422284 | Lau | Jun 1995 | A |
5427946 | Kricka et al. | Jun 1995 | A |
5474796 | Brennan | Dec 1995 | A |
D366116 | Biskupski | Jan 1996 | S |
5486335 | Wilding et al. | Jan 1996 | A |
5494639 | Grzegorzewski | Feb 1996 | A |
5498392 | Wilding et al. | Mar 1996 | A |
5503803 | Brown | Apr 1996 | A |
5516410 | Schneider et al. | May 1996 | A |
5519635 | Miyake et al. | May 1996 | A |
5529677 | Schneider et al. | Jun 1996 | A |
5559432 | Logue | Sep 1996 | A |
5565171 | Dovichi et al. | Oct 1996 | A |
5569364 | Hooper et al. | Oct 1996 | A |
5578818 | Kain et al. | Nov 1996 | A |
5579928 | Anukwuem | Dec 1996 | A |
5580523 | Bard | Dec 1996 | A |
5582884 | Ball et al. | Dec 1996 | A |
5585069 | Zanzucchi et al. | Dec 1996 | A |
5585089 | Queen et al. | Dec 1996 | A |
5585242 | Bouma et al. | Dec 1996 | A |
5587128 | Wilding et al. | Dec 1996 | A |
5589136 | Northrup et al. | Dec 1996 | A |
5593838 | Zanzucchi et al. | Jan 1997 | A |
5595708 | Berndt | Jan 1997 | A |
5599432 | Manz et al. | Feb 1997 | A |
5599503 | Manz et al. | Feb 1997 | A |
5599667 | Arnold, Jr. et al. | Feb 1997 | A |
5601727 | Bormann et al. | Feb 1997 | A |
5603351 | Cherukuri et al. | Feb 1997 | A |
5605662 | Heller et al. | Feb 1997 | A |
D378782 | LaBarbera et al. | Apr 1997 | S |
5628890 | Carter et al. | May 1997 | A |
5630920 | Friese et al. | May 1997 | A |
5631337 | Sassi et al. | May 1997 | A |
5632876 | Zanzucchi et al. | May 1997 | A |
5632957 | Heller et al. | May 1997 | A |
5635358 | Wilding et al. | Jun 1997 | A |
5637469 | Wilding et al. | Jun 1997 | A |
5639423 | Northrup et al. | Jun 1997 | A |
5643738 | Zanzucchi et al. | Jul 1997 | A |
5646039 | Northrup et al. | Jul 1997 | A |
5647994 | Tuunanen et al. | Jul 1997 | A |
5651839 | Rauf | Jul 1997 | A |
5652149 | Mileaf et al. | Jul 1997 | A |
D382346 | Buhler et al. | Aug 1997 | S |
D382647 | Staples et al. | Aug 1997 | S |
5667976 | Van Ness et al. | Sep 1997 | A |
5671303 | Shieh et al. | Sep 1997 | A |
5674394 | Whitmore | Oct 1997 | A |
5674742 | Northrup et al. | Oct 1997 | A |
5681484 | Zanzucchi et al. | Oct 1997 | A |
5681529 | Taguchi et al. | Oct 1997 | A |
5683657 | Mian | Nov 1997 | A |
5699157 | Parce | Dec 1997 | A |
5700637 | Southern | Dec 1997 | A |
5705813 | Apffel et al. | Jan 1998 | A |
5726026 | Wilding et al. | Mar 1998 | A |
5726404 | Brody | Mar 1998 | A |
5726944 | Taft et al. | Mar 1998 | A |
5731212 | Gavin et al. | Mar 1998 | A |
5744366 | Kricka et al. | Apr 1998 | A |
5747666 | Willis | May 1998 | A |
5750015 | Soane et al. | May 1998 | A |
5755942 | Zanzucchi et al. | May 1998 | A |
5763262 | Wong et al. | Jun 1998 | A |
5770029 | Nelson et al. | Jun 1998 | A |
5770388 | Vorpahl | Jun 1998 | A |
5772966 | Maracas et al. | Jun 1998 | A |
5779868 | Parce et al. | Jul 1998 | A |
5787032 | Heller et al. | Jul 1998 | A |
5788814 | Sun et al. | Aug 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5804436 | Okun et al. | Sep 1998 | A |
D399959 | Prokop et al. | Oct 1998 | S |
5827481 | Bente et al. | Oct 1998 | A |
5842106 | Thaler et al. | Nov 1998 | A |
5842787 | Kopf-Sill et al. | Dec 1998 | A |
5846396 | Zanzucchi et al. | Dec 1998 | A |
5849208 | Hayes et al. | Dec 1998 | A |
5849486 | Heller et al. | Dec 1998 | A |
5849489 | Heller | Dec 1998 | A |
5849598 | Wilson et al. | Dec 1998 | A |
5852495 | Parce | Dec 1998 | A |
5856174 | Lipshutz et al. | Jan 1999 | A |
5858187 | Ramsey et al. | Jan 1999 | A |
5858188 | Soane et al. | Jan 1999 | A |
5863502 | Southgate et al. | Jan 1999 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5863801 | Southgate et al. | Jan 1999 | A |
5866345 | Wilding et al. | Feb 1999 | A |
5869004 | Parce et al. | Feb 1999 | A |
5872010 | Karger et al. | Feb 1999 | A |
5872623 | Stabile et al. | Feb 1999 | A |
5874046 | Megerle | Feb 1999 | A |
5876675 | Kennedy | Mar 1999 | A |
5880071 | Parce et al. | Mar 1999 | A |
5882465 | McReynolds | Mar 1999 | A |
5883211 | Sassi et al. | Mar 1999 | A |
5885432 | Hooper et al. | Mar 1999 | A |
5885470 | Parce et al. | Mar 1999 | A |
5895762 | Greenfield et al. | Apr 1999 | A |
5900130 | Benregnu et al. | May 1999 | A |
5912124 | Kumar | Jun 1999 | A |
5912134 | Shartle | Jun 1999 | A |
5916522 | Boyd et al. | Jun 1999 | A |
5916776 | Kumar | Jun 1999 | A |
5919646 | Okun et al. | Jul 1999 | A |
5919711 | Boyd et al. | Jul 1999 | A |
5922591 | Anderson et al. | Jul 1999 | A |
5927547 | Papen et al. | Jul 1999 | A |
5928880 | Wilding et al. | Jul 1999 | A |
5929208 | Heller et al. | Jul 1999 | A |
D413391 | Lapeus et al. | Aug 1999 | S |
5932799 | Moles | Aug 1999 | A |
5935401 | Amigo | Aug 1999 | A |
5939291 | Loewy et al. | Aug 1999 | A |
5942443 | Parce et al. | Aug 1999 | A |
D413677 | Dumitrescu et al. | Sep 1999 | S |
5948227 | Dubrow | Sep 1999 | A |
5955028 | Chow | Sep 1999 | A |
5955029 | Wilding et al. | Sep 1999 | A |
5957579 | Kopf-Sill et al. | Sep 1999 | A |
5958203 | Parce et al. | Sep 1999 | A |
5958694 | Nikiforov | Sep 1999 | A |
5959221 | Boyd et al. | Sep 1999 | A |
5959291 | Jensen | Sep 1999 | A |
5964995 | Nikiforov et al. | Oct 1999 | A |
5964997 | McBride | Oct 1999 | A |
5965001 | Chow et al. | Oct 1999 | A |
5965410 | Chow et al. | Oct 1999 | A |
5965886 | Sauer et al. | Oct 1999 | A |
5972187 | Parce et al. | Oct 1999 | A |
5973138 | Collis | Oct 1999 | A |
D417009 | Boyd | Nov 1999 | S |
5976336 | Dubrow et al. | Nov 1999 | A |
5980704 | Cherukuri et al. | Nov 1999 | A |
5980719 | Cherukuri et al. | Nov 1999 | A |
5981735 | Thatcher et al. | Nov 1999 | A |
5989402 | Chow et al. | Nov 1999 | A |
5992820 | Fare et al. | Nov 1999 | A |
5993611 | Moroney, III et al. | Nov 1999 | A |
5993750 | Ghosh et al. | Nov 1999 | A |
5997708 | Craig | Dec 1999 | A |
6001229 | Ramsey | Dec 1999 | A |
6001231 | Kopf-Sill | Dec 1999 | A |
6001307 | Naka et al. | Dec 1999 | A |
6004515 | Parce et al. | Dec 1999 | A |
6007690 | Nelson et al. | Dec 1999 | A |
6010607 | Ramsey | Jan 2000 | A |
6010608 | Ramsey | Jan 2000 | A |
6010627 | Hood, III | Jan 2000 | A |
6012902 | Parce | Jan 2000 | A |
D420747 | Dumitrescu et al. | Feb 2000 | S |
D421130 | Cohen et al. | Feb 2000 | S |
6024920 | Cunanan | Feb 2000 | A |
D421653 | Purcell | Mar 2000 | S |
6033546 | Ramsey | Mar 2000 | A |
6043080 | Lipshutz et al. | Mar 2000 | A |
6046056 | Parce et al. | Apr 2000 | A |
6048734 | Burns et al. | Apr 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6054277 | Furcht et al. | Apr 2000 | A |
6056860 | Amigo et al. | May 2000 | A |
6057149 | Burns et al. | May 2000 | A |
6062261 | Jacobson et al. | May 2000 | A |
6063341 | Fassbind et al. | May 2000 | A |
6063589 | Kellogg et al. | May 2000 | A |
6071478 | Chow | Jun 2000 | A |
6074725 | Kennedy | Jun 2000 | A |
6074827 | Nelson et al. | Jun 2000 | A |
D428497 | Lapeus et al. | Jul 2000 | S |
6086740 | Kennedy | Jul 2000 | A |
6096509 | Okun et al. | Aug 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6102897 | Lang | Aug 2000 | A |
6103537 | Ullman et al. | Aug 2000 | A |
6106685 | McBride et al. | Aug 2000 | A |
6110343 | Ramsey et al. | Aug 2000 | A |
6123205 | Dumitrescu et al. | Sep 2000 | A |
6123798 | Gandhi et al. | Sep 2000 | A |
6130098 | Handique et al. | Oct 2000 | A |
6132580 | Mathies et al. | Oct 2000 | A |
6132684 | Marino | Oct 2000 | A |
6133436 | Koster et al. | Oct 2000 | A |
D433759 | Mathis et al. | Nov 2000 | S |
6143250 | Tajima | Nov 2000 | A |
6149787 | Chow et al. | Nov 2000 | A |
6156199 | Zuk, Jr. | Dec 2000 | A |
6158269 | Dorenkott et al. | Dec 2000 | A |
6167910 | Chow | Jan 2001 | B1 |
6168948 | Anderson et al. | Jan 2001 | B1 |
6171850 | Nagle et al. | Jan 2001 | B1 |
6174675 | Chow et al. | Jan 2001 | B1 |
D438311 | Yamanishi et al. | Feb 2001 | S |
6190619 | Kilcoin et al. | Feb 2001 | B1 |
D438632 | Miller | Mar 2001 | S |
D438633 | Miller | Mar 2001 | S |
6197595 | Anderson et al. | Mar 2001 | B1 |
6211989 | Wulf et al. | Apr 2001 | B1 |
6213151 | Jacobson et al. | Apr 2001 | B1 |
6221600 | MacLeod et al. | Apr 2001 | B1 |
6228635 | Armstrong et al. | May 2001 | B1 |
6235175 | Dubrow et al. | May 2001 | B1 |
6235313 | Mathiowitz et al. | May 2001 | B1 |
6235471 | Knapp et al. | May 2001 | B1 |
6236581 | Foss et al. | May 2001 | B1 |
6251343 | Dubrow et al. | Jun 2001 | B1 |
6254826 | Acosta et al. | Jul 2001 | B1 |
6259635 | Torelli et al. | Jul 2001 | B1 |
6261431 | Mathies et al. | Jul 2001 | B1 |
6267858 | Parce et al. | Jul 2001 | B1 |
D446306 | Ochi et al. | Aug 2001 | S |
6271021 | Burns et al. | Aug 2001 | B1 |
6274089 | Chow et al. | Aug 2001 | B1 |
6280967 | Ransom et al. | Aug 2001 | B1 |
6281008 | Komai et al. | Aug 2001 | B1 |
6284113 | Bjornson et al. | Sep 2001 | B1 |
6287254 | Dodds | Sep 2001 | B1 |
6287774 | Kikiforov | Sep 2001 | B1 |
6291248 | Haj-Ahmad | Sep 2001 | B1 |
6294063 | Becker et al. | Sep 2001 | B1 |
6302134 | Kellogg et al. | Oct 2001 | B1 |
6302304 | Spencer | Oct 2001 | B1 |
6303343 | Kopf-sill | Oct 2001 | B1 |
6306273 | Wainright et al. | Oct 2001 | B1 |
6306590 | Mehta et al. | Oct 2001 | B1 |
6319469 | Mian et al. | Nov 2001 | B1 |
6322683 | Wolk et al. | Nov 2001 | B1 |
6326083 | Yang et al. | Dec 2001 | B1 |
6326211 | Anderson et al. | Dec 2001 | B1 |
6337435 | Chu et al. | Jan 2002 | B1 |
6353475 | Jensen et al. | Mar 2002 | B1 |
6358387 | Kopf-sill et al. | Mar 2002 | B1 |
6366924 | Parce | Apr 2002 | B1 |
6368871 | Christel et al. | Apr 2002 | B1 |
6370206 | Schenk | Apr 2002 | B1 |
6375185 | Lin | Apr 2002 | B1 |
6375901 | Robotti et al. | Apr 2002 | B1 |
6379884 | Wada et al. | Apr 2002 | B2 |
6379929 | Burns et al. | Apr 2002 | B1 |
6379974 | Parce et al. | Apr 2002 | B1 |
6391541 | Petersen et al. | May 2002 | B1 |
6391623 | Besemer et al. | May 2002 | B1 |
6395161 | Schneider et al. | May 2002 | B1 |
6398956 | Coville et al. | Jun 2002 | B1 |
6399025 | Chow | Jun 2002 | B1 |
6399389 | Parce et al. | Jun 2002 | B1 |
6399952 | Maher et al. | Jun 2002 | B1 |
6403338 | Knapp et al. | Jun 2002 | B1 |
6408878 | Unger et al. | Jun 2002 | B2 |
6413401 | Chow et al. | Jul 2002 | B1 |
6416642 | Alajoki et al. | Jul 2002 | B1 |
6420143 | Kopf-sill | Jul 2002 | B1 |
6425972 | McReynolds | Jul 2002 | B1 |
D461906 | Pham | Aug 2002 | S |
6428987 | Franzen | Aug 2002 | B2 |
6430512 | Gallagher | Aug 2002 | B1 |
6432366 | Ruediger et al. | Aug 2002 | B2 |
6440725 | Pourahmadi et al. | Aug 2002 | B1 |
D463031 | Slomski et al. | Sep 2002 | S |
6444461 | Knapp et al. | Sep 2002 | B1 |
6447661 | Chow et al. | Sep 2002 | B1 |
6447727 | Parce et al. | Sep 2002 | B1 |
6448064 | Vo-Dinh et al. | Sep 2002 | B1 |
6453928 | Kaplan et al. | Sep 2002 | B1 |
6465257 | Parce et al. | Oct 2002 | B1 |
6468761 | Yang et al. | Oct 2002 | B2 |
6472141 | Nikiforov | Oct 2002 | B2 |
6475364 | Dubrow et al. | Nov 2002 | B1 |
D467348 | McMichael et al. | Dec 2002 | S |
D467349 | Niedbala et al. | Dec 2002 | S |
6488897 | Dubrow et al. | Dec 2002 | B2 |
6495104 | Unno et al. | Dec 2002 | B1 |
6498497 | Chow et al. | Dec 2002 | B1 |
6500323 | Chow et al. | Dec 2002 | B1 |
6500390 | Boulton et al. | Dec 2002 | B1 |
D468437 | McMenamy et al. | Jan 2003 | S |
6506609 | Wada et al. | Jan 2003 | B1 |
6509193 | Tajima | Jan 2003 | B1 |
6511853 | Kopf-sill et al. | Jan 2003 | B1 |
D470595 | Crisanti et al. | Feb 2003 | S |
6515753 | Maher | Feb 2003 | B2 |
6517783 | Horner et al. | Feb 2003 | B2 |
6520197 | Deshmukh et al. | Feb 2003 | B2 |
6521188 | Webster | Feb 2003 | B1 |
6524456 | Ramsey et al. | Feb 2003 | B1 |
6524790 | Kopf-sill et al. | Feb 2003 | B1 |
D472324 | Rumore et al. | Mar 2003 | S |
6534295 | Tai et al. | Mar 2003 | B2 |
6537771 | Farinas et al. | Mar 2003 | B1 |
6540896 | Manz et al. | Apr 2003 | B1 |
6544734 | Briscoe et al. | Apr 2003 | B1 |
6547942 | Parce et al. | Apr 2003 | B1 |
6555389 | Ullman et al. | Apr 2003 | B1 |
6556923 | Gallagher et al. | Apr 2003 | B2 |
D474279 | Mayer et al. | May 2003 | S |
D474280 | Niedbala et al. | May 2003 | S |
6558916 | Veerapandian et al. | May 2003 | B2 |
6558945 | Kao | May 2003 | B1 |
6569607 | Mcreynolds | May 2003 | B2 |
6572830 | Burdon et al. | Jun 2003 | B1 |
6575188 | Parunak | Jun 2003 | B2 |
6576459 | Miles et al. | Jun 2003 | B2 |
6579453 | Bächler et al. | Jun 2003 | B1 |
6589729 | Chan et al. | Jul 2003 | B2 |
6592821 | Wada et al. | Jul 2003 | B1 |
6597450 | Andrews et al. | Jul 2003 | B1 |
6602474 | Tajima | Aug 2003 | B1 |
6613211 | Mccormick et al. | Sep 2003 | B1 |
6613512 | Kopf-sill et al. | Sep 2003 | B1 |
6613580 | Chow et al. | Sep 2003 | B1 |
6613581 | Wada et al. | Sep 2003 | B1 |
6614030 | Maher et al. | Sep 2003 | B2 |
6620625 | Wolk et al. | Sep 2003 | B2 |
6623860 | Hu et al. | Sep 2003 | B2 |
6627406 | Singh et al. | Sep 2003 | B1 |
D480814 | Lafferty et al. | Oct 2003 | S |
6632655 | Mehta et al. | Oct 2003 | B1 |
D482796 | Oyama et al. | Nov 2003 | S |
6649358 | Parce et al. | Nov 2003 | B1 |
6664104 | Pourahmadi et al. | Dec 2003 | B2 |
6669831 | Chow et al. | Dec 2003 | B2 |
6670153 | Stern | Dec 2003 | B2 |
D484989 | Gebrian | Jan 2004 | S |
6681616 | Spaid et al. | Jan 2004 | B2 |
6681788 | Parce et al. | Jan 2004 | B2 |
6685813 | Williams et al. | Feb 2004 | B2 |
6692700 | Handique | Feb 2004 | B2 |
6695009 | Chien et al. | Feb 2004 | B2 |
6706519 | Kellogg et al. | Mar 2004 | B1 |
6720148 | Nikiforov | Apr 2004 | B1 |
6730206 | Ricco et al. | May 2004 | B2 |
6733645 | Chow | May 2004 | B1 |
6734401 | Bedingham et al. | May 2004 | B2 |
D491272 | Alden et al. | Jun 2004 | S |
D491273 | Biegler et al. | Jun 2004 | S |
D491276 | Langille | Jun 2004 | S |
6750661 | Brooks et al. | Jun 2004 | B2 |
6752966 | Chazan | Jun 2004 | B1 |
6756019 | Dubrow et al. | Jun 2004 | B1 |
6766817 | da Silva | Jul 2004 | B2 |
6773567 | Wolk | Aug 2004 | B1 |
6777184 | Nikiforov et al. | Aug 2004 | B2 |
6783962 | Olander et al. | Aug 2004 | B1 |
D495805 | Lea et al. | Sep 2004 | S |
6787015 | Lackritz et al. | Sep 2004 | B2 |
6787016 | Tan et al. | Sep 2004 | B2 |
6790328 | Jacobson et al. | Sep 2004 | B2 |
6790330 | Gascoyne et al. | Sep 2004 | B2 |
6811668 | Berndt et al. | Nov 2004 | B1 |
6818113 | Williams et al. | Nov 2004 | B2 |
6819027 | Saraf | Nov 2004 | B2 |
6824663 | Boone | Nov 2004 | B1 |
D499813 | Wu | Dec 2004 | S |
D500142 | Crisanti et al. | Dec 2004 | S |
6827831 | Chow et al. | Dec 2004 | B1 |
6827906 | Bjornson et al. | Dec 2004 | B1 |
6838156 | Neyer et al. | Jan 2005 | B1 |
6838680 | Maher et al. | Jan 2005 | B2 |
6852287 | Ganesan | Feb 2005 | B2 |
6858185 | Kopf-sill et al. | Feb 2005 | B1 |
6859698 | Schmeisser | Feb 2005 | B2 |
6861035 | Pham et al. | Mar 2005 | B2 |
6878540 | Pourahmadi et al. | Apr 2005 | B2 |
6878755 | Singh et al. | Apr 2005 | B2 |
6884628 | Hubbell et al. | Apr 2005 | B2 |
6887693 | McMillan et al. | May 2005 | B2 |
6893879 | Petersen et al. | May 2005 | B2 |
6900889 | Bjornson et al. | May 2005 | B2 |
6905583 | Wainright et al. | Jun 2005 | B2 |
6905612 | Dorian et al. | Jun 2005 | B2 |
6906797 | Kao et al. | Jun 2005 | B1 |
6908594 | Schaevitz et al. | Jun 2005 | B1 |
6911183 | Handique et al. | Jun 2005 | B1 |
6914137 | Baker | Jul 2005 | B2 |
6915679 | Chien et al. | Jul 2005 | B2 |
6918404 | da Silva | Jul 2005 | B2 |
D508999 | Fanning et al. | Aug 2005 | S |
6939451 | Zhao et al. | Sep 2005 | B2 |
6942771 | Kayyem | Sep 2005 | B1 |
6958392 | Fomovskaia et al. | Oct 2005 | B2 |
D512155 | Matsumoto | Nov 2005 | S |
6964747 | Banerjee et al. | Nov 2005 | B2 |
6977163 | Mehta | Dec 2005 | B1 |
6984516 | Briscoe et al. | Jan 2006 | B2 |
D515707 | Shinohara et al. | Feb 2006 | S |
D516221 | Wohlstadter et al. | Feb 2006 | S |
7001853 | Brown et al. | Feb 2006 | B1 |
7004184 | Handique et al. | Feb 2006 | B2 |
D517554 | Yanagisawa et al. | Mar 2006 | S |
7010391 | Handique et al. | Mar 2006 | B2 |
7023007 | Gallagher | Apr 2006 | B2 |
7024281 | Unno | Apr 2006 | B1 |
7036667 | Greenstein et al. | May 2006 | B2 |
7037416 | Parce et al. | May 2006 | B2 |
7038472 | Chien | May 2006 | B1 |
7039527 | Tripathi et al. | May 2006 | B2 |
7040144 | Spaid et al. | May 2006 | B2 |
D523153 | Akashi et al. | Jun 2006 | S |
7055695 | Greenstein et al. | Jun 2006 | B2 |
7060171 | Nikiforov et al. | Jun 2006 | B1 |
7066586 | da Silva | Jun 2006 | B2 |
7069952 | Mcreynolds et al. | Jul 2006 | B1 |
7099778 | Chien | Aug 2006 | B2 |
D528215 | Malmsater | Sep 2006 | S |
7101467 | Spaid | Sep 2006 | B2 |
7105304 | Nikiforov et al. | Sep 2006 | B1 |
D531321 | Godfrey et al. | Oct 2006 | S |
7118910 | Unger et al. | Oct 2006 | B2 |
7138032 | Gandhi et al. | Nov 2006 | B2 |
D534280 | Gomm et al. | Dec 2006 | S |
7148043 | Kordunsky et al. | Dec 2006 | B2 |
7150814 | Parce et al. | Dec 2006 | B1 |
7150999 | Shuck | Dec 2006 | B1 |
D535403 | Isozaki et al. | Jan 2007 | S |
7160423 | Chien et al. | Jan 2007 | B2 |
7161356 | Chien | Jan 2007 | B1 |
7169277 | Ausserer et al. | Jan 2007 | B2 |
7169618 | Skould | Jan 2007 | B2 |
D537951 | Okamoto et al. | Mar 2007 | S |
D538436 | Patadia et al. | Mar 2007 | S |
7192557 | Wu et al. | Mar 2007 | B2 |
7195986 | Bousse et al. | Mar 2007 | B1 |
7208125 | Dong | Apr 2007 | B1 |
7235406 | Woudenberg et al. | Jun 2007 | B1 |
7247274 | Chow | Jul 2007 | B1 |
D548841 | Brownell et al. | Aug 2007 | S |
D549827 | Maeno et al. | Aug 2007 | S |
7252928 | Hafeman et al. | Aug 2007 | B1 |
7270786 | Parunak et al. | Sep 2007 | B2 |
D554069 | Bolotin et al. | Oct 2007 | S |
D554070 | Bolotin et al. | Oct 2007 | S |
7276330 | Chow et al. | Oct 2007 | B2 |
D556914 | Okamoto et al. | Dec 2007 | S |
7303727 | Dubrow et al. | Dec 2007 | B1 |
D559995 | Handique et al. | Jan 2008 | S |
7323140 | Handique et al. | Jan 2008 | B2 |
7332130 | Handique | Feb 2008 | B2 |
7338760 | Gong et al. | Mar 2008 | B2 |
D566291 | Parunak et al. | Apr 2008 | S |
7351377 | Chazan et al. | Apr 2008 | B2 |
D569526 | Duffy et al. | May 2008 | S |
7374949 | Kuriger | May 2008 | B2 |
7390460 | Osawa et al. | Jun 2008 | B2 |
7419784 | Dubrow et al. | Sep 2008 | B2 |
7422669 | Jacobson et al. | Sep 2008 | B2 |
7440684 | Spaid et al. | Oct 2008 | B2 |
7476313 | Siddiqi | Jan 2009 | B2 |
7494577 | Williams et al. | Feb 2009 | B2 |
7494770 | Wilding et al. | Feb 2009 | B2 |
7514046 | Kechagia et al. | Apr 2009 | B2 |
7518726 | Rulison et al. | Apr 2009 | B2 |
7521186 | Mehta | Apr 2009 | B2 |
7527769 | Bunch et al. | May 2009 | B2 |
7553671 | Sinclair et al. | Jun 2009 | B2 |
D596312 | Giraud et al. | Jul 2009 | S |
7595197 | Brasseur | Sep 2009 | B2 |
7604938 | Takahashi et al. | Oct 2009 | B2 |
7635588 | King et al. | Dec 2009 | B2 |
7645581 | Knapp et al. | Jan 2010 | B2 |
7670559 | Chien et al. | Mar 2010 | B2 |
7704735 | Facer et al. | Apr 2010 | B2 |
7723123 | Murphy et al. | May 2010 | B1 |
D618820 | Wilson et al. | Jun 2010 | S |
7727371 | Kennedy et al. | Jun 2010 | B2 |
7727477 | Boronkay et al. | Jun 2010 | B2 |
7744817 | Bui | Jun 2010 | B2 |
D621060 | Handique | Aug 2010 | S |
7867776 | Kennedy et al. | Jan 2011 | B2 |
7892819 | Wilding et al. | Feb 2011 | B2 |
20010023848 | Gjerde et al. | Sep 2001 | A1 |
20010038450 | McCaffrey et al. | Nov 2001 | A1 |
20010046702 | Schembri | Nov 2001 | A1 |
20010055765 | O'Keefe et al. | Dec 2001 | A1 |
20020001848 | Bedingham et al. | Jan 2002 | A1 |
20020009015 | Laugharn, Jr. et al. | Jan 2002 | A1 |
20020015667 | Chow | Feb 2002 | A1 |
20020021983 | Comte et al. | Feb 2002 | A1 |
20020037499 | Quake et al. | Mar 2002 | A1 |
20020039783 | McMillan et al. | Apr 2002 | A1 |
20020053399 | Soane et al. | May 2002 | A1 |
20020054835 | Robotti et al. | May 2002 | A1 |
20020055167 | Pourahmadi et al. | May 2002 | A1 |
20020060156 | Mathies et al. | May 2002 | A1 |
20020068357 | Mathies et al. | Jun 2002 | A1 |
20020141903 | Parunak et al. | Oct 2002 | A1 |
20020142471 | Handique et al. | Oct 2002 | A1 |
20020143297 | Francavilla et al. | Oct 2002 | A1 |
20020143437 | Handique et al. | Oct 2002 | A1 |
20020169518 | Luoma et al. | Nov 2002 | A1 |
20020187557 | Hobbs et al. | Dec 2002 | A1 |
20030019522 | Parunak | Jan 2003 | A1 |
20030049833 | Chen et al. | Mar 2003 | A1 |
20030070677 | Handique et al. | Apr 2003 | A1 |
20030073106 | Johansen et al. | Apr 2003 | A1 |
20030083686 | Freeman et al. | May 2003 | A1 |
20030087300 | Knapp et al. | May 2003 | A1 |
20030127327 | Kurnik | Jul 2003 | A1 |
20030136679 | Bohn et al. | Jul 2003 | A1 |
20030186295 | Colin et al. | Oct 2003 | A1 |
20030199081 | Wilding et al. | Oct 2003 | A1 |
20030211517 | Carulli et al. | Nov 2003 | A1 |
20040014238 | Krug et al. | Jan 2004 | A1 |
20040029258 | Heaney et al. | Feb 2004 | A1 |
20040053290 | Terbrueggen et al. | Mar 2004 | A1 |
20040063217 | Webster et al. | Apr 2004 | A1 |
20040072278 | Chou et al. | Apr 2004 | A1 |
20040072375 | Gjerde et al. | Apr 2004 | A1 |
20040141887 | Mainquist et al. | Jul 2004 | A1 |
20040151629 | Pease et al. | Aug 2004 | A1 |
20040157220 | Kurnool et al. | Aug 2004 | A1 |
20040161788 | Chen et al. | Aug 2004 | A1 |
20040189311 | Glezer et al. | Sep 2004 | A1 |
20040209331 | Ririe | Oct 2004 | A1 |
20040209354 | Mathies et al. | Oct 2004 | A1 |
20040219070 | Handique | Nov 2004 | A1 |
20040240097 | Evans | Dec 2004 | A1 |
20050009174 | Nikiforov et al. | Jan 2005 | A1 |
20050048540 | Inami et al. | Mar 2005 | A1 |
20050084424 | Ganesan et al. | Apr 2005 | A1 |
20050106066 | Saltsman et al. | May 2005 | A1 |
20050121324 | Park et al. | Jun 2005 | A1 |
20050133370 | Park et al. | Jun 2005 | A1 |
20050135655 | Kopf-sill et al. | Jun 2005 | A1 |
20050152808 | Ganesan | Jul 2005 | A1 |
20050170362 | Wada et al. | Aug 2005 | A1 |
20050202470 | Sundberg et al. | Sep 2005 | A1 |
20050202504 | Anderson et al. | Sep 2005 | A1 |
20050208676 | Kahatt | Sep 2005 | A1 |
20050220675 | Reed et al. | Oct 2005 | A1 |
20050227269 | Lloyd et al. | Oct 2005 | A1 |
20050233370 | Ammann et al. | Oct 2005 | A1 |
20050238545 | Parce et al. | Oct 2005 | A1 |
20050272079 | Burns et al. | Dec 2005 | A1 |
20060041058 | Yin et al. | Feb 2006 | A1 |
20060057039 | Morse et al. | Mar 2006 | A1 |
20060057629 | Kim | Mar 2006 | A1 |
20060062696 | Chow et al. | Mar 2006 | A1 |
20060094108 | Yoder et al. | May 2006 | A1 |
20060113190 | Kurnik | Jun 2006 | A1 |
20060133965 | Tajima et al. | Jun 2006 | A1 |
20060134790 | Tanaka et al. | Jun 2006 | A1 |
20060148063 | Fauzzi et al. | Jul 2006 | A1 |
20060165558 | Witty et al. | Jul 2006 | A1 |
20060165559 | Greenstein et al. | Jul 2006 | A1 |
20060166233 | Wu et al. | Jul 2006 | A1 |
20060177376 | Tomalia et al. | Aug 2006 | A1 |
20060183216 | Handique | Aug 2006 | A1 |
20060207944 | Siddiqi | Sep 2006 | A1 |
20060246493 | Jensen et al. | Nov 2006 | A1 |
20060246533 | Fathollahi et al. | Nov 2006 | A1 |
20070004028 | Lair et al. | Jan 2007 | A1 |
20070009386 | Padmanabhan et al. | Jan 2007 | A1 |
20070020699 | Carpenter et al. | Jan 2007 | A1 |
20070026421 | Sundberg et al. | Feb 2007 | A1 |
20070042441 | Masters et al. | Feb 2007 | A1 |
20070092901 | Ligler et al. | Apr 2007 | A1 |
20070098600 | Kayyem et al. | May 2007 | A1 |
20070099200 | Chow et al. | May 2007 | A1 |
20070104617 | Coulling et al. | May 2007 | A1 |
20070154895 | Spaid et al. | Jul 2007 | A1 |
20070177147 | Parce | Aug 2007 | A1 |
20070178607 | Prober et al. | Aug 2007 | A1 |
20070184463 | Molho et al. | Aug 2007 | A1 |
20070184547 | Handique et al. | Aug 2007 | A1 |
20070196238 | Kennedy et al. | Aug 2007 | A1 |
20070199821 | Chow | Aug 2007 | A1 |
20070215554 | Kreuwel et al. | Sep 2007 | A1 |
20070218459 | Miller et al. | Sep 2007 | A1 |
20070231213 | Prabhu et al. | Oct 2007 | A1 |
20070261479 | Spaid et al. | Nov 2007 | A1 |
20070269861 | Williams et al. | Nov 2007 | A1 |
20070292941 | Handique et al. | Dec 2007 | A1 |
20080000774 | Park et al. | Jan 2008 | A1 |
20080050804 | Handique et al. | Feb 2008 | A1 |
20080056948 | Dale et al. | Mar 2008 | A1 |
20080075634 | Herchenbach et al. | Mar 2008 | A1 |
20080090244 | Knapp et al. | Apr 2008 | A1 |
20080095673 | Xu | Apr 2008 | A1 |
20080118987 | Eastwood et al. | May 2008 | A1 |
20080124723 | Dale et al. | May 2008 | A1 |
20080149840 | Handique et al. | Jun 2008 | A1 |
20080160601 | Handique | Jul 2008 | A1 |
20080182301 | Handique et al. | Jul 2008 | A1 |
20080192254 | Kim et al. | Aug 2008 | A1 |
20080247914 | Edens et al. | Oct 2008 | A1 |
20080262213 | Wu et al. | Oct 2008 | A1 |
20090047713 | Handique | Feb 2009 | A1 |
20090129978 | Wilson et al. | May 2009 | A1 |
20090130719 | Handique | May 2009 | A1 |
20090130745 | Williams et al. | May 2009 | A1 |
20090131650 | Brahmasandra et al. | May 2009 | A1 |
20090134069 | Handique | May 2009 | A1 |
20090136385 | Handique et al. | May 2009 | A1 |
20090136386 | Duffy et al. | May 2009 | A1 |
20090155123 | Williams et al. | Jun 2009 | A1 |
20090221059 | Handique et al. | Sep 2009 | A1 |
20090223925 | Morse et al. | Sep 2009 | A1 |
20100009351 | Brahmasandra et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
2294819 | Jan 1999 | CA |
19929734 | Dec 1999 | DE |
0766256 | Apr 1997 | EP |
2672301 | Aug 1992 | FR |
2795426 | Dec 2000 | FR |
58212921 | Dec 1983 | JP |
H07-290706 | Nov 1995 | JP |
2001-515216 | Sep 2001 | JP |
A-2001-527220 | Dec 2001 | JP |
A-2003-500674 | Jan 2003 | JP |
2005-514718 | May 2005 | JP |
A-2005-204661 | Aug 2005 | JP |
WO 8806633 | Sep 1988 | WO |
WO 9205443 | Apr 1992 | WO |
WO 9800231 | Jan 1998 | WO |
WO 9822625 | May 1998 | WO |
WO 9853311 | Nov 1998 | WO |
WO 9901688 | Jan 1999 | WO |
WO 9909042 | Feb 1999 | WO |
WO 9912016 | Mar 1999 | WO |
WO 9933559 | Jul 1999 | WO |
WO 0105510 | Jan 2001 | WO |
WO 0114931 | Mar 2001 | WO |
WO 0127614 | Apr 2001 | WO |
WO 0128684 | Apr 2001 | WO |
WO 0141931 | Jun 2001 | WO |
WO 0154813 | Aug 2001 | WO |
WO 0189681 | Nov 2001 | WO |
WO 02078845 | Oct 2002 | WO |
WO 03012325 | Feb 2003 | WO |
WO 03012406 | Feb 2003 | WO |
WO 03055605 | Jul 2003 | WO |
WO 2004007081 | Jan 2004 | WO |
WO 2004074848 | Sep 2004 | WO |
WO 2005011867 | Feb 2005 | WO |
WO 2005108620 | Nov 2005 | WO |
WO 2006079082 | Jul 2006 | WO |
WO 2008060604 | May 2008 | WO |
WO 2009012185 | Jan 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110027151 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
60959437 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12178557 | Jul 2008 | US |
Child | 12904901 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12218416 | Jul 2008 | US |
Child | 12178557 | US | |
Parent | 12218498 | Jul 2008 | US |
Child | 12218416 | US | |
Parent | 12173023 | Jul 2008 | US |
Child | 12218498 | US |