Reagents for the Detection of Protein Phosphorylation in Leukemia Signaling Pathways

Information

  • Patent Application
  • 20090263832
  • Publication Number
    20090263832
  • Date Filed
    November 29, 2006
    18 years ago
  • Date Published
    October 22, 2009
    15 years ago
Abstract
The invention discloses nearly 123 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: protein kinases, adaptor/scaffold proteins, phosphatase/phospholipases, G proteins/GTPase activating proteins/guanine nucleotide exchange factors, cellular metabolism enzymes, DNA binding proteins, cytoskeletal proteins, cell cycle regulation proteins, proteases, RNA binding proteins, transcription proteins, translation initiation complex proteins, transferases, ubiquitin conjugating system proteins, vesicle proteins, actin binding proteins, apoptosis proteins, chemokine proteins, enzyme proteins extra cellular matrix proteins, helicases, hydrolases, immunoglobin superfamily proteins, inhibitor proteins, isomerases, ligases, lipid binding proteins, methyltransferases, motor proteins, receptor proteins, and chaperone proteins.
Description
FIELD OF THE INVENTION

The invention relates generally to antibodies and peptide reagents for the detection of protein phosphorylation, and to protein phosphorylation in cancer.


BACKGROUND OF THE INVENTION

The activation of proteins by post-translational modification is an important cellular mechanism for regulating most aspects of biological organization and control, including growth, development, homeostasis, and cellular communication. Protein phosphorylation, for example, plays a critical role in the etiology of many pathological conditions and diseases, including cancer, developmental disorders, autoimmune diseases, and diabetes. Yet, in spite of the importance of protein modification, it is not yet well understood at the molecular level, due to the extraordinary complexity of signaling pathways, and the slow development of technology necessary to unravel it.


Protein phosphorylation on a proteome-wide scale is extremely complex as a result of three factors: the large number of modifying proteins, e.g. kinases, encoded in the genome, the much larger number of sites on substrate proteins that are modified by these enzymes, and the dynamic nature of protein expression during growth, development, disease states, and aging. The human genome, for example, encodes over 520 different protein kinases, making them the most abundant class of enzymes known. See Hunter, Nature 411: 355-65 (2001). Most kinases phosphorylate many different substrate proteins, at distinct tyrosine, serine, and/or threonine residues. Indeed, it is estimated that one-third of all proteins encoded by the human genome are phosphorylated, and many are phosphorylated at multiple sites by different kinases. See Graves et al., Pharmacol. Ther. 82:111-21 (1999).


Many of these phosphorylation sites regulate critical biological processes and may prove to be important diagnostic or therapeutic targets for molecular medicine. For example, of the more than 100 dominant oncogenes identified to date, 46 are protein kinases. See Hunter, supra. Understanding which proteins are modified by these kinases will greatly expand our understanding of the molecular mechanisms underlying oncogenic transformation. Therefore, the identification of, and ability to detect, phosphorylation sites on a wide variety of cellular proteins is crucially important to understanding the key signaling proteins and pathways implicated in the progression of diseases like cancer.


One form of cancer in which underlying signal transduction events are involved, but still poorly understood, is leukemia. Leukemia is a malignant disease of the bone marrow and blood, characterized by abnormal accumulation of blood cells, and is divided in four major categories. An estimated 33,500 new cases of leukemia will be diagnosed in the U.S. alone this year, affecting roughly 30,000 adults and 3,000 children, and close to 24,000 patients will die from the disease (Source: The Leukemia & Lymphoma Society (2004)). Depending on the cell type involved and the rate by which the disease progresses it can be defined as acute or chronic myelogenous leukemia (AML or CML), or acute and chronic lymphocytic leukemia (ALL or CLL). The acute forms of the disease rapidly progress, causing the accumulation of immature, functionless cells in the marrow and blood, which in turn results in anemia, immunodeficiency and coagulation deficiencies, respectively. Chronic forms of leukemia progress more slowly, allowing a greater number of mature, functional cells to be produced, which amass to high concentration in the blood over time.


More than half of adult leukemias occur in patients 67 years of age or older, and leukemia accounts for about 30% of all childhood cancers. The most common type of adult leukemia is acute myelogenous leukemia (AML), with an estimated 11,920 new cases annually. Without treatment patients rarely survive beyond 6-12 months, and despite continued development of new therapies, it remains fatal in 80% of treated patients (Source: The Leukemia & Lymphoma Society (2004)). The most common childhood leukemia is acute lymphocytic leukemia (ALL), but it can develop at any age. Chronic lymphocytic leukemia (CLL) is the second most prevalent adult leukemia, with approximately 8,200 new cases of CLL diagnosed annually in the U.S. The course of the disease is typically slower than acute forms, with a five-year relative survival of 74%. Chronic myelogenous leukemia (CML) is less prevalent, with about 4,600 new cases diagnosed each year in the U.S., and is rarely observed in children.


Most varieties of leukemia are generally characterized by genetic alterations associated with the etiology of the disease, and it has recently become apparent that, in many instances, such alterations (chromosomal translocations, deletions or point mutations) result in the constitutive activation of protein kinase genes, and their products, particularly tyrosine kinases. The most well known alteration is the oncogenic role of the chimeric BCR-Abl gene, which is generated by translocation of chromosome 9 to chromosome 22, creating the so-called Philadelphia chromosome characteristic of CML (see Nowell, Science 132:1497 (1960)). The resulting BCR-Abl kinase protein is constitutively active and elicits characteristic signaling pathways that have been shown to drive the proliferation and survival of CML cells (see Daley, Science 247: 824-830 (1990); Raitano et al., Biochim. Biophys. Acta. December 9; 1333(3): F201-16 (1997)). The recent success of Imanitib (also known as STI571 or Gleevec®), the first molecularly targeted compound designed to specifically inhibit the tyrosine kinase activity of BCR-Abl, provided critical confirmation of the central role of BCR-Abl signaling in the progression of CML (see Schindler et al., Science 289:1938-1942 (2000); Nardi et al., Curr. Opin. Hematol. 11: 35-43 (2003)).


The success of Gleevec® now serves as a paradigm for the development of targeted drugs designed to block the activity of other tyrosine kinases known to be involved in leukemias and other malignancies (see, e.g., Sawyers, Curr. Opin. Genet. Dev. February; 12(1): 111-5 (2002); Druker, Adv. Cancer Res. 91:1-30 (2004)). For example, recent studies have demonstrated that mutations in the FLT3 gene occur in one third of adult patients with AML. FLT3 (Fms-like tyrosine kinase 3) is a member of the class III receptor tyrosine kinase (RTK) family including FMS, platelet-derived growth factor receptor (PDGFR) and c-KIT (see Rosnet et al., Crit. Rev. Oncog. 4: 595-613 (1993). In 20-27% of patients with AML, an internal tandem duplication in the juxta-membrane region of FLT3 can be detected (see Yokota et al., Leukemia 11: 1605-1609 (1997)). Another 7% of patients have mutations within the active loop of the second kinase domain, predominantly substitutions of aspartate residue 835 (D835), while additional mutations have been described (see Yamamoto et al., Blood 97: 2434-2439 (2001); Abu-Duhier et al., Br. J. Haematol. 113: 983-988 (2001)). Expression of mutated FLT3 receptors results in constitutive tyrosine phosphorylation of FLT3, and subsequent phosphorylation and activation of downstream molecules such as STAT5, Akt and MAPK, resulting in factor-independent growth of hematopoietic cell lines.


Altogether, FLT3 is the single most common activated gene in AML known to date. This evidence has triggered an intensive search for FLT3 inhibitors for clinical use leading to at least four compounds in advanced stages of clinical development, including: PKC412 (by Novartis), CEP-701 (by Cephalon), MLN518 (by Millenium Pharmaceuticals), and SU5614 (by Sugen/Pfizer) (see Stone et al., Blood (in press) (2004); Smith et al., Blood 103: 3669-3676 (2004); Clark et al., Blood 104: 2867-2872 (2004); and Spiekerman et al., Blood 101: 1494-1504 (2003)).


There is also evidence indicating that kinases such as FLT3, c-KIT and Abl are implicated in some cases of ALL (see Cools et al., Cancer Res. 64: 6385-6389 (2004); Hu, Nat. Genet. 36:453-461 (2004); and Graux et al., Nat. Genet. 36: 1084-1089 (2004)). In contrast, very little is know regarding any causative role of protein kinases in CLL, except for a high correlation between high expression of the tyrosine kinase ZAP70 and the more aggressive form of the disease (see Rassenti et al., N. Eng. J. Med. 351: 893-901 (2004)).


Despite the identification of a few key molecules involved in progression of leukemia, the vast majority of signaling protein changes underlying this disease remains unknown. There is, therefore, relatively scarce information about kinase-driven signaling pathways and phosphorylation sites relevant to the different types of leukemia. This has hampered a complete and accurate understanding of how protein activation within signaling pathways is driving these complex cancers. Accordingly, there is a continuing and pressing need to unravel the molecular mechanisms of kinase-driven oncogenesis in leukemia by identifying the downstream signaling proteins mediating cellular transformation in this disease. Identifying particular phosphorylation sites on such signaling proteins and providing new reagents, such as phospho-specific antibodies and AQUA peptides, to detect and quantify them remains particularly important to advancing our understanding of the biology of this disease.


Presently, diagnosis of leukemia is made by tissue biopsy and detection of different cell surface markers. However, misdiagnosis can occur since some leukemia cases can be negative for certain markers, and because these markers may not indicate which genes or protein kinases may be deregulated. Although the genetic translocations and/or mutations characteristic of a particular form of leukemia can be sometimes detected, it is clear that other downstream effectors of constitutively active kinases having potential diagnostic, predictive, or therapeutic value, remain to be elucidated. Accordingly, identification of downstream signaling molecules and phosphorylation sites involved in different types of leukemia and development of new reagents to detect and quantify these sites and proteins may lead to improved diagnostic/prognostic markers, as well as novel drug targets, for the detection and treatment of this disease.


SUMMARY OF THE INVENTION

The invention discloses nearly 123 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemias and provides new reagents, including phosphorylation-site specific antibodies and AQUA peptides, for the selective detection and quantification of these phosphorylated sites/proteins. Also provided are methods of using the reagents of the invention for the detection, quantification and profiling of the disclosed phosphorylation sites.





BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1—is a diagram broadly depicting the immunoaffinity isolation and mass-spectrometric characterization methodology (IAP) employed to identify the novel phosphorylation sites disclosed herein.


FIG. 2—is a table (corresponding to Table 1) enumerating the Leukemia signaling protein phosphorylation sites disclosed herein: Column A=the name of the parent protein; Column B=the SwissProt accession number for the protein (human sequence); Column C=the protein type/classification; Column D=the tyrosine residue (in the parent protein amino acid sequence) at which phosphorylation occurs within the phosphorylation site; Column E=the phosphorylation site sequence encompassing the phosphorylatable residue (residue at which phosphorylation occurs (and corresponding to the respective entry in Column D) appears in lowercase; Column F=the type of leukemia in which the phosphorylation site was discovered; and Column G=the cell type(s), tissue(s) and/or patient(s) in which the phosphorylation site was discovered.


FIG. 3—is an exemplary mass spectrograph depicting the detection of the tyrosine 270 phosphorylation site in VIL2 (see Row 30 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2).


FIG. 4—is an exemplary mass spectrograph depicting the detection of the tyrosine 108 phosphorylation site in CRK (see Row 8 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2).


FIG. 5—is an exemplary mass spectrograph depicting the detection of the tyrosine 156 phosphorylation site in RHOA (see Row 44 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated serine (shown as lowercase “y” in FIG. 2).


FIG. 6—is an exemplary mass spectrograph depicting the detection of the tyrosine 1253 phosphorylation site in FASN (see Row 42 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2)


FIG. 7—is an exemplary mass spectrograph depicting the detection of the tyrosine 425 phosphorylation site in PIK3CB (see Row 60 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2).


FIG. 8—is an exemplary mass spectrograph depicting the detection of the tyrosine 612 phosphorylation site in LRRK1 (see Row 63 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2).


FIG. 9—is an exemplary mass spectrograph depicting the detection of the tyrosine 660 phosphorylation site in DDB1 (see Row 203 in FIG. 2/Table 1), as further described in Example 1 (red and blue indicate ions detected in MS/MS spectrum); Y* indicates the phosphorylated tyrosine (shown as lowercase “y” in FIG. 2).





DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, nearly 123 novel protein phosphorylation sites in signaling proteins and pathways underlying human Leukemia have now been discovered. These newly described phosphorylation sites were identified by employing the techniques described in “Immunoaffinity Isolation of Modified Peptides From Complex Mixtures,” U.S. Patent Publication No. 20030044848, Rush et al., using cellular extracts from a variety of leukemia-derived cell lines, e.g. MOLT15, K562, etc., as further described below. The novel phosphorylation sites (tyrosine), and their corresponding parent proteins, disclosed herein are listed in Table 1. These phosphorylation sites correspond to numerous different parent proteins (the full sequences (human) of which are all publicly available in SwissProt database and their Accession numbers listed in Column B of Table 1/FIG. 2), each of which fall into discrete protein type groups, for example transferases, transcription factors, adaptor/scaffold proteins, cytoskeletal proteins, protein kinases, and DNA binding proteins, etc. (see Column C of Table 1), the phosphorylation of which is relevant to signal transduction activity underlying Leukemias (AML, CML, CLL, and ALL), as disclosed herein.


The discovery of the nearly 123 novel protein phosphorylation sites described herein enables the production, by standard methods, of new reagents, such as phosphorylation site-specific antibodies and AQUA peptides (heavy-isotope labeled peptides), capable of specifically detecting and/or quantifying these phosphorylated sites/proteins. Such reagents are highly useful, inter alia, for studying signal transduction events underlying the progression of Leukemia. Accordingly, the invention provides novel reagents—phospho-specific antibodies and AQUA peptides—for the specific detection and/or quantification of a Leukemia-related signaling protein/polypeptide only when phosphorylated (or only when not phosphorylated) at a particular phosphorylation site disclosed herein. The invention also provides methods of detecting and/or quantifying one or more phosphorylated Leukemia-related signaling proteins using the phosphorylation-site specific antibodies and AQUA peptides of the invention and methods of obtaining a phosphorylation profile of such proteins (e.g. Kinases).


In part, the invention provides an isolated phosphorylation site-specific antibody that specifically binds a given Leukemia-related signaling protein only when phosphorylated (or not phosphorylated, respectively) at a particular tyrosine enumerated in Column D of Table 1/FIG. 2 comprised within the phosphorylatable peptide site sequence enumerated in corresponding Column E. In further part, the invention provides a heavy-isotope labeled peptide (AQUA peptide) for the detection and quantification of a given Leukemia-related signaling protein, the labeled peptide comprising a particular phosphorylatable peptide site/sequence enumerated in Column E of Table 1/FIG. 2 herein. For example, among the reagents provided by the invention is an isolated phosphorylation site-specific antibody that specifically binds the CRK adaptor/scaffold protein only when phosphorylated (or only when not phosphorylated) at tyrosine 108 (see Row 8 (and Columns D and E) of Table 1/FIG. 2). By way of further example, among the group of reagents provided by the invention is an AQUA peptide for the quantification of phosphorylated VIL2 cytoskeletal protein, the AQUA peptide comprising the phosphorylatable peptide sequence listed in Column E, Row 30, of Table 1/FIG. 2 (which encompasses the phosphorylatable tyrosine at position 270).


In one embodiment, the invention provides an isolated phosphorylation site-specific antibody that specifically binds a human Leukemia-related signaling protein selected from Column A of Table 1 (Rows 2-124) only when phosphorylated at the tyrosine residue listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 1-123), wherein said antibody does not bind said signaling protein when not phosphorylated at said tyrosine. In another embodiment, the invention provides an isolated phosphorylation site-specific antibody that specifically binds a Leukemia-related signaling protein selected from Column A of Table 1 only when not phosphorylated at the tyrosine residue listed in corresponding Column D of Table 1, comprised within the peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 1-123), wherein said antibody does not bind said signaling protein when phosphorylated at said tyrosine. Such reagents enable the specific detection of phosphorylation (or non-phosphorylation) of a novel phosphorylatable site disclosed herein. The invention further provides immortalized cell lines producing such antibodies. In one preferred embodiment, the immortalized cell line is a rabbit or mouse hybridoma.


In another embodiment, the invention provides a heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein selected from Column A of Table 1, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 1-123), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D of Table 1. In certain preferred embodiments, the phosphorylatable tyrosine within the labeled peptide is phosphorylated, while in other preferred embodiments, the phosphorylatable residue within the labeled peptide is not phosphorylated.


Reagents (antibodies and AQUA peptides) provided by the invention may conveniently be grouped by the type of Leukemia-related signaling protein in which a given phosphorylation site (for which reagents are provided) occurs. The protein types for each respective protein (in which a phosphorylation site has been discovered) are provided in Column C of Table 1/FIG. 2, and include: protein kinases, adaptor/scaffold proteins, phosphatase/phospholipases, G proteins/GTPase activating proteins/guanine nucleotide exchange factors, cellular metabolism enzymes, DNA binding proteins, cytoskeletal proteins, cell cycle regulation proteins, proteases, RNA binding proteins, transcription proteins, translation initiation complex proteins, transferases, ubiquitin conjugating system proteins, vesicle proteins, actin binding proteins, apoptosis proteins, chemokine proteins, enzyme proteins, extra cellular matrix proteins, helicases, hydrolases, immunoglobin superfamily proteins, inhibitor proteins, isomerases, ligases, lipid binding proteins, methyltransferases, motor proteins, receptor proteins, and chaperone proteins. Each of these distinct protein groups is considered a preferred subset of Leukemia-related signal transduction protein phosphorylation sites disclosed herein, and reagents for their detection/quantification may be considered a preferred subset of reagents provided by the invention.


Particularly preferred subsets of the phosphorylation sites (and their corresponding proteins) disclosed herein are those occurring on the following protein types/groups listed in Column C of Table 1/FIG. 2 protein kinases, adaptor/scaffold proteins, phosphatase/phospholipases, G proteins/GTPase activating proteins/guanine nucleotide exchange factors, cellular metabolism enzymes, DNA binding proteins, cytoskeletal proteins, cell cycle regulation proteins, proteases, RNA binding proteins, transcription proteins, translation initiation complex proteins, transferases, ubiquitin conjugating system proteins and vesicle proteins. Accordingly, among preferred subsets of reagents provided by the invention are isolated antibodies and AQUA peptides useful for the detection and/or quantification of the foregoing preferred protein/phosphorylation site subsets.


In one subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a protein kinase selected from Column A, Rows 58-74, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 58-74, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 58-74, of Table 1 (SEQ ID NOs: 57-73), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the protein kinase when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a protein kinase selected from Column A, Rows 58-74, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 58-74, of Table 1 (SEQ ID NOs: 57-73), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 58-74, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following protein kinase phosphorylation sites are particularly preferred: PIK3CB (Y425), LRRK1 (Y612), TTN (Y215), BCR (Y844), ABL1 (Y172), SYK (Y74), ZAP70 (Y535) and TIE1 (Y1027) (see SEQ ID NOs: 59, 62, 64, 65, 66, 70, 72 and 73).


In a second subset of preferred embodiments there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds an adaptor/scaffold protein selected from Column A, Rows 3-15, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 3-15, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 3-15, of Table 1 (SEQ ID NOs: 2-14), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the adaptor/scaffold protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a adaptor/scaffold protein selected from Column A, Rows 3-15, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 3-15, of Table 1 (SEQ ID NOs: 2-14), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 3-15, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following adaptor/scaffold protein phosphorylation sites are particularly preferred: CRK (Y108) (see SEQ ID NO: 7).


In another subset of preferred embodiments there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a phosphatase/phospholipase selected from Column A, Rows 85-88, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 85-88, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 85-88, of Table 1 (SEQ ID NOs: 84-87), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the phosphatase/phospholipase when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is an phosphatase/phospholipase selected from Column A, Rows 85-88, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 85-88, of Table 1 (SEQ ID NOs: 84-87), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 85-88, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following phosphatase/phospholipase phosphorylation sites are particularly preferred: PTPRN2 (Y955) and PLCG2 (Y371) (see SEQ ID NO's: 86 and 87).


In still another subset of preferred embodiments there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a G protein/GTPase/Guanine nucleotide exchange factor selected from Column A, Rows 44-49, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 44-49, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 44-49, of Table 1 (SEQ ID NOs: 43-48), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the G protein/GTPase/Guanine nucleotide exchange factor when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a G protein/GTPase/Guanine nucleotide exchange factor selected from Column A, Rows 44-49, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 44-49, of Table 1 (SEQ ID NOs: 43-48), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 44-49, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following G protein/GTPase/Guanine nucleotide exchange factor phosphorylation sites are particularly preferred: RHOA (Y156) and SOS2 (Y213) (see SEQ ID NOs: 43 and 48).


In still another subset of preferred embodiments there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds an enzyme protein selected from Column A, Rows 37-42, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 37-42, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 37-42, of Table 1 (SEQ ID NOs: 36-41), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the enzyme protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a enzyme protein selected from Column A, Rows 37-42, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 37-42, of Table 1 (SEQ ID NOs: 36-41), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 37-42, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following enzyme protein phosphorylation sites are particularly preferred: FASN (Y1253) (see SEQ ID NO: 41).


In still another subset of preferred embodiments there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a DNA binding protein selected from Column A, Rows 33-36, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 33-36, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 33-36 of Table 1 (SEQ ID NOs: 32-35), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds DNA binding protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a DNA binding protein selected from Column A, Rows 33-36, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 33-36, of Table 1 (SEQ ID NOs: 32-35), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 33-36, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following DNA binding protein phosphorylation sites are particularly preferred: DDB1 (Y660) (see SEQ ID NO: 35).


In yet another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a cytoskeletal protein selected from Column A, Rows 22-32, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 22-32, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 22-32, of Table 1 (SEQ ID NOs: 21-31), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the cytoskeletal protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a cytoskeletal protein selected from Column A, Rows 22-32, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 22-32, of Table 1 (SEQ ID NOs: 21-31), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 22-32, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following cytoskeletal protein phosphorylation sites are particularly preferred: VIL2 (Y270) (see SEQ ID NO: 29).


In yet another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a cell cycle regulation protein selected from Column A, Row 17, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Row 17, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Row 17, of Table 1 (SEQ ID NO: 16), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the cell cycle regulation protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a cell cycle regulation protein selected from Column A, Row 17, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Row 17, of Table 1 (SEQ ID NO: 16), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Row 17, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following cell cycle regulation protein phosphorylation sites are particularly preferred: KNTC2 (Y458) (see SEQ ID NO: 16).


In yet another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a protease selected from Column A, Rows 89-95, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 89-95, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 89-95, of Table 1 (SEQ ID NOs: 88-94), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the protease when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a protease selected from Column A, Rows 89-95, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 89-95, of Table 1 (SEQ ID NOs: 88-94), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 89-95, of Table 1.


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a RNA binding protein selected from Column A, Rows 98-101, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 98-101, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 98-101, of Table 1 (SEQ ID NOs: 97-100), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the RNA binding protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that RNA binding protein selected from Column A, Rows 98-101, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 98-101, of Table 1 (SEQ ID NOs: 97-100), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 98-101, of Table 1.


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a transcription protein selected from Column A, Rows 102-106, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 102-106, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 102-106, of Table 1 (SEQ ID NOs: 101-105), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the transcription protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a transcription protein selected from Column A, Rows 102-106, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 102-106, of Table 1 (SEQ ID NOs: 101-105), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 102-106, of Table 1.


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a translation protein selected from Column A, Rows 110-119, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 110-119, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 110-119, of Table 1 (SEQ ID NOs: 109-118), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the translation protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a translation protein selected from Column A, Rows 110-119, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 110-119, of Table 1 (SEQ ID NOs: 109-118), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 110-119, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following a translation protein phosphorylation sites are particularly preferred: EIF2S1 (Y147) and EIF4A1 (Y197) (see SEQ ID NO: 109 and 116).


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a transferase selected from Column A, Rows 107-109, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 107-109, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 107-109, of Table 1 (SEQ ID NOs: 106-108), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the transferase when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a transferase selected from Column A, Rows 107-109, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 107-109, of Table 1 (SEQ ID NOs: 106-108), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 107-109, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following transferase phosphorylation sites are particularly preferred ATIC (Y290) (see SEQ ID NO: 106).


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds an ubiquitin conjugating system protein selected from Column A, Rows 120-121, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 120-121, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 120-121, of Table 1 (SEQ ID NOs: 119-120), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the ubiquitin conjugating system protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is an ubiquitin conjugating system protein selected from Column A, Rows 120-121, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 120-121, of Table 1 (SEQ ID NOs: 119-120), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 120-121, of Table 1.


Among this preferred subset of reagents, antibodies and AQUA peptides for the detection/quantification of the following ubiquitin conjugating system protein phosphorylation sites are particularly preferred: UBEL (Y388) (see SEQ ID NO: 120).


In still another subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds a vesicle protein selected from Column A, Rows 122-124, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 122-124, of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Rows 122-124, of Table 1 (SEQ ID NOs: 121-123), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the vesicle protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of a Leukemia-related signaling protein that is a vesicle protein selected from Column A, Rows 122-124, said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Rows 122-124, of Table 1 (SEQ ID NOs: 121-123), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 122-124, of Table 1.


In yet a further subset of preferred embodiments, there is provided:


(i) An isolated phosphorylation site-specific antibody that specifically binds MLL3 (Y1693) (Column A, Row 79 of Table 1) only when phosphorylated at the tyrosine listed in corresponding Column D, Row 79 of Table 1), said tyrosine comprised within the phosphorylatable peptide sequence listed in corresponding Column E, Row 79 of Table 1 (SEQ ID NO: 78), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.


(ii) An equivalent antibody to (i) above that only binds the MLL3 (Y1693) (Column A, Row 79 of Table 1) protein when not phosphorylated at the disclosed site (and does not bind the protein when it is phosphorylated at the site).


(iii) A heavy-isotope labeled peptide (AQUA peptide) for the quantification of MLL3 (Y1693) (Column A, Row 79 of Table 1) (Column A, Row 79 of Table 1), said labeled peptide comprising the phosphorylatable peptide sequence listed in corresponding Column E, Row 79 of Table 1 (SEQ ID NO: 78), which sequence comprises the phosphorylatable tyrosine listed in corresponding Column D, Rows 79 of Table 1.


The invention also provides, in part, an immortalized cell line producing an antibody of the invention, for example, a cell line producing an antibody within any of the foregoing preferred subsets of antibodies. In one preferred embodiment, the immortalized cell line is a rabbit hybridoma or a mouse hybridoma.


In certain other preferred embodiments, a heavy-isotope labeled peptide (AQUA peptide) of the invention (for example, an AQUA peptide within any of the foregoing preferred subsets of AQUA peptides) comprises a disclosed site sequence wherein the phosphorylatable tyrosine is phosphorylated. In certain other preferred embodiments, a heavy-isotope labeled peptide of the invention comprises a disclosed site sequence wherein the phosphorylatable tyrosine is not phosphorylated.


The foregoing subsets of preferred reagents of the invention should not be construed as limiting the scope of the invention, which, as noted above, includes reagents for the detection and/or quantification of disclosed phosphorylation sites on any of the other protein type/group subsets (each a preferred subset) listed in Column C of Table 1/FIG. 2.


Also provided by the invention are methods for detecting or quantifying a Leukemia-related signaling protein that is tyrosine phosphorylated, said method comprising the step of utilizing one or more of the above-described reagents of the invention to detect or quantify one or more Leukemia-related signaling protein(s) selected from Column A of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D of Table 1. In certain preferred embodiments of the methods of the invention, the reagents comprise a subset of preferred reagents as described above.


Also provided by the invention is a method for obtaining a phosphorylation profile of protein kinases that are phosphorylated in Leukemia signaling pathways, said method comprising the step of utilizing one or more isolated antibody that specifically binds a protein kinase selected from Column A, Rows 138-165, of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D, Rows 138-165, of Table 1, comprised within the phosphorylation site sequence listed in corresponding Column E, Rows 138-165, of Table 1 (SEQ ID NOs: 137-154, and 156-164), to detect the phosphorylation of one or more of said protein kinases, thereby obtaining a phosphorylation profile for said kinases.


The identification of the disclosed novel Leukemia-related signaling protein phosphorylation sites, and the standard production and use of the reagents provided by the invention are described in further detail below and in the Examples that follow.


All cited references are hereby incorporated herein, in their entirety, by reference. The Examples are provided to further illustrate the invention, and do not in any way limit its scope, except as provided in the claims appended hereto.









TABLE 1







Newly Discovered Leukemia-related Phosphorylation Sites.















A


D
E





Protein
B
C
Phospho-
Phosphorylation Site
H


1
Name
Accession No.
Protein Type
Residue
Sequence
SEQ ID NO





  2
PARVB
NP_037459.2
Actin binding protein
Y116
QLEEDLyDGQVLQK
SEQ ID NO: 1






  3
C200rf32
NP_065089.2
Adaptor/scaffold
Y113
GLEEAPASSEETYQVPT
SEQ ID NO: 2







LPRPPTPGPVyEQMR





  4
C200rf32
NP_065089.2
Adaptor/scaffold
Y98
GLEEAPASSEETyQVPT
SEQ ID NO: 3







LPRPPTPGPVYEQMR





  5
TJP2
NP_004808.2
Adaptor/scaffold
Y249
SIDQDyER
SEQ ID NO: 4





  6
ACBD3
NP_073572.2
Adaptor/scaffold
Y492
RDCHEEVyAGSHQYP
SEQ ID NO: 5





  7
AKAP9
NP_671695.1
Adaptor/scaffold
Y675
KDNLGIHyKQQIDGL
SEQ ID NO: 6





  8
CRK
BAA01505.1
Adaptor/scaffold
Y108
LEFYKIHyWDTTTLI
SEQ ID NO: 7





  9
MIST
NP_443196.1
Adaptor/scaffold
Y69
KGHSDDDyDDPELRM
SEQ ID NO: 8





 10
MIST
NP_443196.1
Adaptor/scaffold
Y96
RPIKESEyADTHYFK
SEQ ID NO: 9





 11
OSTF1
NP_036515.3
Adaptor/scaffold
Y111
KAGSTALyWACHGGH
SEQ ID NO: 10





 12
OSTF1
NP_036515.3
Adaptor/scaffold
Y152
DAAAWKGyADIVQLL
SEQ ID NO: 11





 13
SH2D3C
NP_733745.1
Adaptor/scaffold
Y316
EQSGAIIyCPVNRTF
SEQ ID NO: 12





 14
STRN3
NP_055389.2
Adaptor/scaffold
Y527
SLDVEPIyTFRAHIG
SEQ ID NO: 13





 15
CBLB
NP_733762.2
Adaptor/scaffold, Calcium-
Y763
NIPDLSIyLKGDVFD
SEQ ID NO: 14





binding protein





 16
BRE
NP_004890.2
Apoptosis
Y263
LLTNKVQyVIQGYHK
SEQ ID NO: 15





 17
KNTC2
NP_006092.1
Cell cycle regulation
Y458
VKYRAQVyVPLKELL
SEQ ID NO: 16





 18
HSPA4
NP_002145.3
Chaperone
Y723
FKNKEDQyDHLDAAD
SEQ ID NO: 17





 19
TCP1
NP_110379.2
Chaperone
Y545
KDDKHGSyEDAVHSG
SEQ ID NO: 18





 20
FKBP4
NP_002005.1
Chaperone, Enzyme, misc.
Y225
IVYLKPSyAFGSVGK
SEQ ID NO: 19





 21
PPBP
NP_002695.1
Chemokine
Y58
GKEESLDSDLyAELR
SEQ ID NO: 20





 22
CTTN
NP_612632.1
Cytoskeletal protein
Y265
LQLHESQKDySK
SEQ ID NO: 21





 23
TUBB1
NP_110400.1
Cytoskeletal protein
Y55
ISVYYNEAyGR
SEQ ID NO: 22





 24
ACTN1
NP_001093.1
Cytoskeletal protein
Y193
HRPELIDyGKLRKDD
SEQ ID NO: 23





 25
ACTR3
NP_005712.1
Cytoskeletal protein
Y109
RAEPEDHyFLLTEPP
SEQ ID NO: 24





 26
NEB
NP_004534.2
Cytoskeletal protein
Y1796
EEEKKKGyDLRPDAI
SEQ ID NO: 25





 27
PLEC1
NP_958782.1
Cytoskeletal protein
Y480
KNRSKGIyQSLEGAV
SEQ ID NO: 26





 28
SORBS1
NP_001030126.1
Cytoskeletal protein
Y536
RAEPKSIyEYQPGKS
SEQ ID NO: 27





 29
TLN1
NP_006280.2
Cytoskeletal protein
Y1777
ESALQLLyTAKEAGG
SEQ ID NO: 28





 30
VIL2
NP_003370.2
Cytoskeletal protein
Y270
KAPDFVFyAPRLRIN
SEQ ID NO: 29





 31
LPXN
NP_004802.1
Cytoskeletal protein,
Y213
LFSPRCAyCAAPILD
SEQ ID NO: 30





Adaptor/scaffold





 32
SPTAN1
NP_003118.1
Cytoskeletal protein,
Y2430
YVTKEELyQNLTREQ
SEQ ID NO: 31





Adaptor/scaffold





 33
RPA1
NP_002936.1
DNA binding protein
Y461
GQGDKPDyFSSVATV
SEQ ID NO: 32





 34
HIST1H2BB
NP_066406.1
DNA binding protein
Y38
KRSRKESySIYVYKV
SEQ ID NO: 33





 35
HIST1H3A
NP_003520.1
DNA binding protein
Y100
LQEACEAyLVGLFED
SEQ ID NO: 34





 36
DOB1
NP_001914.2
DNA repair
Y660
SDRPTVIySSNHKLV
SEQ ID NO: 35





 37
AGPS
NP_003650.1
Enzyme, cellular metabolism
Y645
MLKSVKEyVDPNNIF
SEQ ID NO: 36





 38
PFAS
NP_036525.1
Enzyme, cellular metabolism
Y538
DPAGAIIyTSRFQLG
SEQ ID NO: 37





 39
ALDOA
NP_000025.1
Enzyme, cellular metabolism
Y223
ALSDHHIyLEGTLLK
SEQ ID NO: 38





 40
CP
NP_000087.1
Enzyme, misc.
Y260
FQESNRMySVNGYTF
SEQ ID NO: 39





 41
CP
NP_000087.1
Enzyme, misc.
Y265
RMYSVNGyTFGSLPG
SEQ ID NO: 40





 42
FASN
NP_004095.4
Enzyme, misc.
Y1253
LAGHGHLySRIPGLL
SEQ ID NO: 41





 43
CRISP3
NP_006052.1
Extracellular matrix
Y120
IQSWFDEyNDFDFGV
SEQ ID NO: 42





 44
RHOA
NP_001655.1
G protein, monomeric (non-
Y156
NRIGAFGyMECSAKT
SEQ ID NO: 43





Rab)





 45
CENTB1
NP_055531.1
GTPase activating protein, ARF
Y297
IQSNQLVyQKKYKDP
SEQ ID NO: 44





 46
ARHGAP6
NP_006116.2
GTPase activating protein,
Y407
KLSLNPIyRQVPRLV
SEQ ID NO: 45





Rac/Rho





 47
ARHGAP6
NP_006116.2
GTPase activating protein,
Y697
PGGSEKLyRVPGQFM
SEQ ID NO: 46





Rac/Rho





 48
VAV1
NP_005419.2
Guanine nucleotide exchange
Y267
TPGAANLyQVFIKYK
SEQ ID NO: 47





factor, Rac/Rho





 49
SOS2
NP_008870.1
Guanine nucleotide exchange
Y213
EIAEERQyLRELNMI
SEQ ID NO: 48





factor, Ras





 50
DDX3X
NP_001347.3
Helicase
Y462
DSLEDFLyHEGYACT
SEQ ID NO: 49





 51
RENT1
NP_002902.2
Hydrolase, non-esterase
Y488
DLNHSQVyAVKTVLQ
SEQ ID NO: 50





 52
C6orf25
NP_612116.1
Immunoglobulin superfamily
Y213
RLSTADPADASTIyAVV
SEQ ID NO: 51







V





 53
TREML1
NP_835468.1
Immunoglobulin superfamily
Y245
LDSPPSFDNTTyTSLPL
SEQ ID NO: 52







DSPSGKPSLPAPSSLPP







LPPK





 54
TREML1
NP_835468.1
Immunoglobulin superfamily
Y281
VLVCSKPVTyATVIFPG
SEQ ID NO: 53







GNK





 55
PRPSAP1
NP_002757.1
Inhibitor protein
Y40
ELGKSVVyQETNGET
SEQ ID NO: 54





 56
PRPSAP2
NP_002758.1
Inhibitor protein
Y52
EMGKVQVyQEPNRET
SEQ ID NO: 55





 57
TPI1
NP_000356.1
Isomerase
Y209
AQSTRIIyGGSVTGA
SEQ ID NO: 56





 58
PYGB
NP_002853.2
Kinase (non-protein)
Y197
WEKARPEyMLPVHFY
SEQ ID NO: 57





 59
PYGB
NP_002853.2
Kinase (non-protein)
Y405
PRHLEIIyAINQRHL
SEQ ID NO: 58





 60
PIK3CB
NP_006210.1
Kinase, lipid
Y425
KTINPSKyQTIRKAG
SEQ ID NO: 59





 61
PIK3R1
NP_852664.1
Kinase, lipid
Y679
INKTATGyGFAEPYN
SEQ ID NO: 60





 62
PRKAR2B
NP_002727.2
KINASE; Protein kinase,
Y120
ASVCAEAyNPDEEED
SEQ ID NO: 61





regulatory subunit





 63
LRRK1
NP_078928.3
KINASE; Protein kinase,
Y612
GGSGTVIyRARYQGQ
SEQ ID NO: 62





Ser/Thr (non-receptor)





 64
LRRK1
NP_078928.3
KINASE; Protein kinase,
Y784
GVEGTPGyQAPEIRP
SEQ ID NO: 63





Ser/Thr (non-receptor)





 65
TTN
NP_003310.3
KINASE; Protein kinase,
Y215
GGHKLTGyIVEKRDL
SEQ ID NO: 64





Ser/Thr (non-receptor)





 66
BCR
NP_004318.3
KINASE; Protein kinase,
Y844
HSRNGKSyTFLISSD
SEQ ID NO: 65





Ser/Thr (non-receptor), GTPase





activating protein, Rac/Rho





 67
ABL1
NP_005148.2
KINASE; Protein kinase,
Y172
LRYEGRVyHYRINTA
SEQ ID NO: 66





tyrosine (non-receptor)





 68
ABL1
NP_005148.2
KINASE; Protein kinase,
Y174
YEGRVYHyRINTASD
SEQ ID NO: 67





tyrosine (non-receptor)





 69
BMX
NP_001712.1
KINASE; Protein kinase,
Y202
KNyGSQPPSSSTSLAQ
SEQ ID NO: 68





tyrosine (non-receptor)

YDSNSK





 70
TXK
NP_003319.1
KINASE; Protein kinase,
Y420
RYVLDDEyVSSFGAK
SEQ ID NO: 69





tyrosine (non-receptor)





 71
SYK
NP_003168.2
KINASE; Protein kinase,
Y74
ERELNGTyAIAGGRT
SEQ ID NO: 70





tyrosine (non-receptor)





 72
ZAP70
NP_001070.2
KINASE; Protein kinase,
Y525
SRSDVWSyGVTMWEA
SEQ ID NO: 71





tyrosine (non-receptor)





 73
ZAP70
NP_001070.2
KINASE; Protein kinase,
Y535
TMWEALSyGQKPYKK
SEQ ID NO: 72





tyrosine (non-receptor)





 74
TIE1
NP_005415.1
KINASE; Receptor tyrosine
Y1027
WMAIESLNySVYTTK
SEQ ID NO: 73





kinase





 75
CARS
NP_001742.1
Ligase
Y60
YCCGPTVyDASHMGH
SEQ ID NO: 74





 76
VARS
NP_006286.1
Ligase
Y679
PLLRPQWyVRCGEMA
SEQ ID NO: 75





 77
PLEK
NP_002655.1
Lipid binding protein
Y277
EDPAYLHyYDPAGAE
SEQ ID NO: 76





 78
PLEK
NP_002655.1
LipId binding protein
Y278
DPAYLHVyDPAGAED
SEQ ID NO: 77





 79
MLL3
NP_067053.1
Methyltransferase
Y1693
SSQERAPyVQKARDN
SEQ ID NO: 78





 80
GLS
NP_055720.2
Mitochondrial; Hydrolase, non-
Y249
VADyIPQLAK
SEQ ID NO: 79





esterase





 81
DNAH7
NP_061720.1
Motor protein
Y2160
VNGTMTLyKEAMKNL
SEQ ID NO: 80





 82
KIF17
NP_065867.1
Motor protein
Y424
LARLKADyKAEQESR
SEQ ID NO: 81





 83
MYH9
NP_002464.1
Motor protein
Y11
QAADKVLyVDKNFIN
SEQ ID NO: 82





 84
INPP5D
NP_005532.2
Phosphatase, lipid
Y833
TETQLPIyTPLTHHG
SEQ ID NO: 83





 85
PTPN18
NP_055184.2
PHOSPHATASE; Protein
Y424
GTLPGRVPADQSPAGS
SEQ ID NO: 84





phosphatase, tyrosine (non-

GAyEDVAGGAQTGGLG





receptor)

FNLR





 86
PTPRB
NP_002828.2
PHOSPHATASE; Receptor
Y1981
SEQENPLFPIyENVNPE
SEQ ID NO: 85





protein phosphatase, tyrosine

VHR





 87
PTPRN2
NP_002838.1
PHOSPHATASE; Receptor
Y955
GAGRSGTyVLIDMVL
SEQ ID NO: 8





protein phosphatase, tyrosine





 88
PLCG2
NP_002652.2
Phospholipase
Y371
PDGKPVIyHGWTRTT
SEQ ID NO: 87





 89
STAMBP
NP_006454.1
Protease (non-proteasomal)
Y36
EDIPPRRyFRSGVEI
SEQ ID NO: 88





 90
PSMA2
NP_002778.1
Protease (proteasomal subunit)
Y57
KKQKSILyDERSVHK
SEQ ID NO: 89





 91
PSMA6
NP_002782.1
Protease (proteasomal subunit)
V159
YKCDPAGyYCGFKAT
SEQ ID NO: 90





 92
PSMC1
NP_002793.2
Protease (proteasomal subunit)
Y25
DKDKKKKyEPPVPTR
SEQ ID NO: 91





 93
PSMC6
NP_002797.2
Protease (proteasomal subunit)
Y328
TKHGEIDyEAIVKLS
SEQ ID NO: 92





 94
PSMD10
NP_002805.1
Protease (proteasomal subunit)
V112
NGCTPLHyAASKNRH
SEQ ID NO: 93





 95
PSMD11
NP_002806.2
Protease (proteasomal subunit)
Y415
SKVVDSLyNKAKKLT
SEQ ID NO: 94





 96
F2RL2
NP_004092.1
Receptor, GPCR
Y201
AIVHPFTyRGLPKHT
SEQ ID NO: 95





 97
FCER1G
NP_004097.1
Receptor, misc.
Y58
AAITSyEKSDGVYTGL
SEQ ID NO: 96







STR





 98
CUGBP2
NP_006552.2
RNA binding protein
Y62
FEPYGAVyQINVLRD
SEQ ID NO: 97





 99
GEMIN5
NP_056280.1
RNA binding protein
Y1053
YLGATCAyDAAKVLA
SEQ ID NO: 98





100
PABPC4
NP_003810.1
RNA binding protein
Y364
IVGSKPLyVALAQRK
SEQ ID NO: 99





101
SNRPA1
NP_003081.2
RNA binding protein
Y137
HYRLYVIyKVPQVRV
SEQ ID NO: 100





102
ZNF331
NP_061025.4
Transcription factor
Y144
DCGKAFSRGyQLSQHQ
SEQ ID NO: 101







KIHTGEK





103
PSMC3
NP_002795.2
Transcription, coactivator/
Y132
KTSTRQTyFLPVIGL
SEQ ID NO: 102





corepressor





104
SND1
NP_055205.2
Transcription, coactivator/
Y421
KVNVTVDyIRPASPA
SEQ ID NO: 103





corepressor





105
SND1
NP_055205.2
Transcription, coactivator/
Y533
RSEAVVEyVFSGSRL
SEQ ID NO: 104





corepressor





106
TBL1X
NP_005638.1
Transcription, coactivator/
Y458
TKHQEPVySVAFSPD
SEQ ID NO: 105





corepressor





107
ATIC
NP_004035.2
Transferase
Y290
EAKVCMVyDLYKTLT
SEQ ID NO: 106





108
PIGA
NP_002632.1
Transferase
Y398
AERTEKVyDRVSVEA
SEQ ID NO: 107





109
PSAT1
NP_478059.1
Transferase
Y346
GGIRASLyNAVTIED
SEQ ID NO: 108





110
EIF2S1
NP_004085.1
Translation initiation complex
Y147
DKYKRPGyGAYDAFK
SEQ ID NO: 109





111
EIF2S1
NP_004085.1
Translation initiation complex
Y150
KRPGYGAyDAFKHAV
SEQ ID NO: 110





112
EIF3S6IP
NP_057175.1
Translation initiation complex
Y318
CQVTTYYyVGFAYLM
SEQ ID NO: 111





113
EIF3S6IP
NP_057175.1
Translation initiation complex
Y323
YYYVGFAyLMMRRYQ
SEQ ID NO: 112





114
EIF3S6IP
NP_057175.1
Translation initiation complex
Y329
AYLMMRRyQDAIRVF
SEQ ID NO: 113





115
EIF3S6IP
NP_057175.1
Translation initiation complex
Y415
VYEELFSySCPKFLS
SEQ ID NO: 114





116
EIF3S7
NP_003744.1
Translation initiation complex
Y50
ADWTGATyQDKRYTN
SEQ ID NO: 115





117
EIF4A1
NP_001407.1
Translation initiation complex
Y197
RGFKDQIyDIFQKLN
SEQ ID NO: 116





118
EIF5
NP_001960.2
Translation initiation complex
Y362
SEKASKKyVSKELAK
SEQ ID NO: 117





119
RPL5
NP_000960.2
Translation initiation complex
Y66
DIICQIAyARIEGDM
SEQ ID NO: 118





120
PSMC5
NP_002796.4
Ubiquitin conjugating system
Y189
QPKGVLLyGPPGTGK
SEQ ID NO: 119





121
UBE1
NP_003325.2
Ubiquitin conjugating system
Y388
DLIRKLAyVAAGDLA
SEQ ID NO: 120





122
COPA
NP_004362.1
Vesicle protein
Y579
RVKGNNVyCLDRECR
SEQ ID NO: 121





123
HPS3
NP_115759.2
Vesicle protein
Y506
LYKEMVDySNTYKTV
SEQ ID NO: 122





124
DNM1
NP_004399.2
Vesicle protein, Motor protein
Y80
LVNATTEyAEFLHCK
SEQ ID NO: 123









The short name for each protein in which a phosphorylation site has presently been identified is provided in Column A, and its SwissProt accession number (human) is provided Column B. The protein type/group into which each protein falls is provided in Column C. The identified tyrosine residue at which phosphorylation occurs in a given protein is identified in Column D, and the amino acid sequence of the phosphorylation site encompassing the tyrosine residue is provided in Column E (lower case y=the tyrosine (identified in Column D)) at which phosphorylation occurs. Table 1 above is identical to FIG. 2, except that the latter includes the disease and cell type(s) in which the particular phosphorylation site was identified (Columns F and G).


The identification of these 123 phosphorylation sites is described in more detail in Part A below and in Example 1.


DEFINITIONS

As used herein, the following terms have the meanings indicated:


“Antibody” or “antibodies” refers to all types of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE, including Fab or antigen-recognition fragments thereof, including chimeric, polyclonal, and monoclonal antibodies. The term “does not bind” with respect to an antibody's binding to one phospho-form of a sequence means does not substantially react with as compared to the antibody's binding to the other phospho-form of the sequence for which the antibody is specific.


“Leukemia-related signaling protein” means any protein (or poly-peptide derived therefrom) enumerated in Column A of Table 1/FIG. 2, which is disclosed herein as being phosphorylated in one or more leukemia cell line(s). Leukemia-related signaling proteins may be tyrosine kinases, such as TTN or BCR, or serine/threonine kinases, or direct substrates of such kinases, or may be indirect substrates downstream of such kinases in signaling pathways. A Leukemia-related signaling protein may also be phosphorylated in other cell lines (non-leukemic) harboring activated kinase activity.


“Heavy-isotope labeled peptide” (used interchangeably with AQUA peptide) means a peptide comprising at least one heavy-isotope label, which is suitable for absolute quantification or detection of a protein as described in WO/03016861, “Absolute Quantification of Proteins and Modified Forms Thereof by Multistage Mass Spectrometry” (Gygi et al.), further discussed below.


“Protein” is used interchangeably with polypeptide, and includes protein fragments and domains as well as whole protein.


“Phosphorylatable amino acid” means any amino acid that is capable of being modified by addition of a phosphate group, and includes both forms of such amino acid.


“Phosphorylatable peptide sequence” means a peptide sequence comprising a phosphorylatable amino acid.


“Phosphorylation site-specific antibody” means an antibody that specifically binds a phosphorylatable peptide sequence/epitope only when phosphorylated, or only when not phosphorylated, respectively. The term is used interchangeably with “phospho-specific” antibody.


A. Identification of Novel Leukemia-related Protein Phosphorylation Sites.

The nearly 123 novel Leukemia-related signaling protein phosphorylation sites disclosed herein and listed in Table 1/FIG. 2 were discovered by employing the modified peptide isolation and characterization techniques described in “Immunoaffinity Isolation of Modified Peptides From Complex Mixtures,” U.S. Patent Publication No. 20030044848, Rush et al. (the teaching of which is hereby incorporated herein by reference, in its entirety) using cellular extracts from the following cell lines and patient samples: human platelets, human umbilical vein endothelial cells, K562 (human CML), CMK (human AML), MOLT15 (human ALL), MKPL-1 (human AML), Molm14 (human AML), CHRF (human AML), H520 (human non-small cell lung carcinoma), SW480 (human colorectal carcinoma), OPM-1 (human multiple myeloma), UT-7 (human AML), H3255 (human non-small cell lung carcinoma), H1648 (human non-small cell lung carcinoma), Calu-3 (human non-small cell lung carcinoma), and Baf3 (mouse CML) cells expressing either a wild type or mutant exogenous protein (Bcr-Abl, Flt3, Jak2, thrombopoietin receptor, Tyk2). The isolation and identification of phosphopeptides from these cell lines, using an immobilized general phosphotyrosine-specific antibody, or an antibody recognizing the phosphorylated motif PXpSP is described in detail in Example 1 below. In addition to the nearly 123 previously unknown protein phosphorylation sites (tyrosine) discovered, many known phosphorylation sites were also identified (not described herein). The immunoaffinity/mass spectrometric technique described in the '848 patent Publication (the “IAP” method)—and employed as described in detail in the Examples—is briefly summarized below.


The IAP method employed generally comprises the following steps: (a) a proteinaceous preparation (e.g. a digested cell extract) comprising phosphopeptides from two or more different proteins is obtained from an organism; (b) the preparation is contacted with at least one immobilized general phosphotyrosine-specific antibody; (c) at least one phosphopeptide specifically bound by the immobilized antibody in step (b) is isolated; and (d) the modified peptide isolated in step (c) is characterized by mass spectrometry (MS) and/or tandem mass spectrometry (MS-MS). Subsequently, (e) a search program (e.g. Sequest) may be utilized to substantially match the spectra obtained for the isolated, modified peptide during the characterization of step (d) with the spectra for a known peptide sequence. A quantification step employing, e.g. SILAC or AQUA, may also be employed to quantify isolated peptides in order to compare peptide levels in a sample to a baseline.


In the IAP method as employed herein, a general phosphotyrosine-specific monoclonal antibody (commercially available from Cell Signaling Technology, Inc., Beverly, Mass., Cat #9411 (p-Tyr-100)) was used in the immunoaffinity step to isolate the widest possible number of phospho-tyrosine and phospho-serine containing peptides from the cell extracts.


Extracts from the following human Leukemia cell lines (ALL, AML, CLL, CML, respectively) and patient samples were employed: human platelets, human umbilical vein endothelial cells, K562 (human CML), CMK (human AML), MOLT15 (human ALL), MKPL-1 (human AML), Molm14 (human AML), CHRF (human AML), H520 (human non-small cell lung carcinoma), SW480 (human colorectal carcinoma), OPM-1 (human multiple myeloma), UT-7 (human AML), H3255 (human non-small cell lung carcinoma), H1648 (human non-small cell lung carcinoma), Calu-3 (human non-small cell lung carcinoma), and Baf3 (mouse CML) cells expressing either a wild type or mutant exogenous protein (Bcr-Abl, Flt3, Jak2, thrombopoietin receptor, Tyk2).


As described in more detail in the Examples, lysates were prepared from these cell lines and digested with trypsin after treatment with DTT and iodoacetamide to alkylate cysteine residues. Before the immunoaffinity step, peptides were pre-fractionated by reversed-phase solid phase extraction using Sep-Pak C18 columns to separate peptides from other cellular components. The solid phase extraction cartridges were eluted with varying steps of acetonitrile. Each lyophilized peptide fraction was redissolved in MOPS IP buffer and treated with phosphotyrosine (P-Tyr-100, CST #9411) immobilized on protein G-Sepharose or Protein A-Sepharose. Immunoaffinity-purified peptides were eluted with 0.1% TFA and a portion of this fraction was concentrated with Stage or Zip tips and analyzed by LC-MS/MS, using a ThermoFinnigan LTQ ion trap mass spectrometer. Peptides were eluted from a 10 cm×75 μm reversed-phase column with a 45-min linear gradient of acetonitrile. MS/MS spectra were evaluated using the program Sequest with the NCBI human protein database.


This revealed a total of 123 novel tyrosine phosphorylation sites in signaling pathways affected by kinase activation or active in leukemia cells. The identified phosphorylation sites and their parent proteins are enumerated in Table 1/FIG. 2. The tyrosine at which phosphorylation occurs is provided in Column D, and the peptide sequence encompassing the phosphorylatable tyrosine residue at the site is provided in Column E. If a phosphorylated tyrosine was found in mouse, the orthologous site in human was identified using either Homologene or BLAST at NCBI; the sequence reported in column E is the phosphorylation site flanked by 7 amino acids on each side. FIG. 2 also shows the particular type of leukemic disease (see Column G) and cell line(s) (see Column F) in which a particular phosphorylation site was discovered.


As a result of the discovery of these phosphorylation sites, phospho-specific antibodies and AQUA peptides for the detection of and quantification of these sites and their parent proteins may now be produced by standard methods, described below. These new reagents will prove highly useful in, e.g., studying the signaling pathways and events underlying the progression of leukemias and the identification of new biomarkers and targets for diagnosis and treatment of such diseases.


B. Antibodies and Cell Lines

Isolated phosphorylation site-specific antibodies that specifically bind a Leukemia-related signaling protein disclosed in Column A of Table 1 only when phosphorylated (or only when not phosphorylated) at the corresponding amino acid and phosphorylation site listed in Columns D and E of Table 1/FIG. 2 may now be produced by standard antibody production methods, such as anti-peptide antibody methods, using the phosphorylation site sequence information provided in Column E of Table 1. For example, a previously unknown OSTF1 adaptor/scaffold phosphorylation site (tyrosine 152) (see Rows 12 of Table 1/FIG. 2) is presently disclosed. Thus, an antibody that specifically binds this novel OSTF1 adaptor/scaffold site can now be produced, e.g. by immunizing an animal with a peptide antigen comprising all or part of the amino acid sequence encompassing the respective phosphorylated residue (e.g. a peptide antigen comprising the sequence set forth in Rows 12, Column E, of Table 1, SEQ ID NOs: 8 and 9, respectively) (which encompasses the phosphorylated tyrosine at position 152 in OSTF1, to produce an antibody that only binds OSTF1 adaptor/scaffold when phosphorylated at that site.


Polyclonal antibodies of the invention may be produced according to standard techniques by immunizing a suitable animal (e.g., rabbit, goat, etc.) with a peptide antigen corresponding to the Leukemia-related phosphorylation site of interest (i.e. a phosphorylation site enumerated in Column E of Table 1, which comprises the corresponding phosphorylatable amino acid listed in Column D of Table 1), collecting immune serum from the animal, and separating the polyclonal antibodies from the immune serum, in accordance with known procedures. For example, a peptide antigen corresponding to all or part of the novel RHOA G-Protein phosphorylation site disclosed herein (SEQ ID NO: 43=NRIGAFGyMECSAKT, encompassing phosphorylated tyrosine 156 (see Row 44 of Table 1)) may be employed to produce antibodies that only bind RHOA when phosphorylated at Tyr 156. Similarly, a peptide comprising all or part of any one of the phosphorylation site sequences provided in Column E of Table 1 may employed as an antigen to produce an antibody that only binds the corresponding protein listed in Column A of Table 1 when phosphorylated (or when not phosphorylated) at the corresponding residue listed in Column D. If an antibody that only binds the protein when phosphorylated at the disclosed site is desired, the peptide antigen includes the phosphorylated form of the amino acid. Conversely, if an antibody that only binds the protein when not phosphorylated at the disclosed site is desired, the peptide antigen includes the non-phosphorylated form of the amino acid.


Peptide antigens suitable for producing antibodies of the invention may be designed, constructed and employed in accordance with well-known techniques. See, e.g., ANTIBODIES: A LABORATORY MANUAL, Chapter 5, p. 75-76, Harlow & Lane Eds., Cold Spring Harbor Laboratory (1988); Czernik, Methods In Enzymology, 201: 264-283 (1991); Merrifield, J. Am. Chem. Soc. 85: 21-49 (1962)).


It will be appreciated by those of skill in the art that longer or shorter phosphopeptide antigens may be employed. See Id. For example, a peptide antigen may comprise the full sequence disclosed in Column E of Table 1/FIG. 2, or it may comprise additional amino acids flanking such disclosed sequence, or may comprise of only a portion of the disclosed sequence immediately flanking the phosphorylatable amino acid (indicated in Column E by lowercase “y”). Typically, a desirable peptide antigen will comprise four or more amino acids flanking each side of the phosphorylatable amino acid and encompassing it. Polyclonal antibodies produced as described herein may be screened as further described below.


Monoclonal antibodies of the invention may be produced in a hybridoma cell line according to the well-known technique of Kohler and Milstein. See Nature 265: 495-97 (1975); Kohler and Milstein, Eur. J. Immunol. 6: 511 (1976); see also, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Ausubel et al. Eds. (1989). Monoclonal antibodies so produced are highly specific, and improve the selectivity and specificity of diagnostic assay methods provided by the invention. For example, a solution containing the appropriate antigen may be injected into a mouse or other species and, after a sufficient time (in keeping with conventional techniques), the animal is sacrificed and spleen cells obtained. The spleen cells are then immortalized by fusing them with myeloma cells, typically in the presence of polyethylene glycol, to produce hybridoma cells. Rabbit fusion hybridomas, for example, may be produced as described in U.S. Pat. No. 5,675,063, C. Knight, Issued Oct. 7, 1997. The hybridoma cells are then grown in a suitable selection media, such as hypoxanthine-aminopterin-thymidine (HAT), and the supernatant screened for monoclonal antibodies having the desired specificity, as described below. The secreted antibody may be recovered from tissue culture supernatant by conventional methods such as precipitation, ion exchange or affinity chromatography, or the like.


Monoclonal Fab fragments may also be produced in Escherichia coli by recombinant techniques known to those skilled in the art. See, e.g., W. Huse, Science 246: 1275-81 (1989); Mullinax et al., Proc. Nat'l Acad. Sci. 87: 8095 (1990). If monoclonal antibodies of one isotype are preferred for a particular application, particular isotypes can be prepared directly, by selecting from the initial fusion, or prepared secondarily, from a parental hybridoma secreting a monoclonal antibody of different isotype by using the sib selection technique to isolate class-switch variants (Steplewski, et al., Proc. Nat'l. Acad. Sci., 82: 8653 (1985); Spira et al., J. Immunol. Methods, 74: 307 (1984)).


The preferred epitope of a phosphorylation-site specific antibody of the invention is a peptide fragment consisting essentially of about 8 to 17 amino acids including the phosphorylatable tyrosine, wherein about 3 to 8 amino acids are positioned on each side of the phosphorylatable tyrosine (for example, the RHOA tyrosine 156 phosphorylation site sequence disclosed in Row 44, Column E of Table 1), and antibodies of the invention thus specifically bind a target Leukemia-related signaling polypeptide comprising such epitopic sequence. Particularly preferred epitopes bound by the antibodies of the invention comprise all or part of a phosphorylatable site sequence listed in Column E of Table 1, including the phosphorylatable amino acid.


Included in the scope of the invention are equivalent non-antibody molecules, such as protein binding domains or nucleic acid aptamers, which bind, in a phospho-specific manner, to essentially the same phosphorylatable epitope to which the phospho-specific antibodies of the invention bind. See, e.g., Neuberger et al., Nature 312: 604 (1984). Such equivalent non-antibody reagents may be suitably employed in the methods of the invention further described below.


Antibodies provided by the invention may be any type of immunoglobulins, including IgG, IgM, IgA, IgD, and IgE, including Fab or antigen-recognition fragments thereof. The antibodies may be monoclonal or polyclonal and may be of any species of origin, including (for example) mouse, rat, rabbit, horse, or human, or may be chimeric antibodies. See, e.g., M. Walker et al., Molec. Immunol. 26:403-11 (1989); Morrision et al., Proc. Nat'l. Acad. Sci. 81: 6851 (1984); Neuberger et al., Nature 312: 604 (1984)). The antibodies may be recombinant monoclonal antibodies produced according to the methods disclosed in U.S. Pat. No. 4,474,893 (Reading) or U.S. Pat. No. 4,816,567 (Cabilly et al.) The antibodies may also be chemically constructed by specific antibodies made according to the method disclosed in U.S. Pat. No. 4,676,980 (Segel et al.)


The invention also provides immortalized cell lines that produce an antibody of the invention. For example, hybridoma clones, constructed as described above, that produce monoclonal antibodies to the Leukemia-related signaling protein phosphorylation sites disclosed herein are also provided. Similarly, the invention includes recombinant cells producing an antibody of the invention, which cells may be constructed by well known techniques; for example the antigen combining site of the monoclonal antibody can be cloned by PCR and single-chain antibodies produced as phage-displayed recombinant antibodies or soluble antibodies in E. coli (see, e.g., ANTIBODY ENGINEERING PROTOCOLS, 1995, Humana Press, Sudhir Paul editor.)


Phosphorylation site-specific antibodies of the invention, whether polyclonal or monoclonal, may be screened for epitope and phospho-specificity according to standard techniques. See, e.g. Czemik et al., Methods in Enzymology, 201: 264-283 (1991). For example, the antibodies may be screened against the phospho and non-phospho peptide library by ELISA to ensure specificity for both the desired antigen (i.e. that epitope including a phosphorylation site sequence enumerated in Column E of Table 1) and for reactivity only with the phosphorylated (or non-phosphorylated) form of the antigen. Peptide competition assays may be carried out to confirm lack of reactivity with other phospho-epitopes on the given Leukemia-related signaling protein. The antibodies may also be tested by Western blotting against cell preparations containing the signaling protein, e.g. cell lines over-expressing the target protein, to confirm reactivity with the desired phosphorylated epitope/target.


Specificity against the desired phosphorylated epitope may also be examined by constructing mutants lacking phosphorylatable residues at positions outside the desired epitope that are known to be phosphorylated, or by mutating the desired phospho-epitope and confirming lack of reactivity. Phosphorylation-site specific antibodies of the invention may exhibit some limited cross-reactivity to related epitopes in non-target proteins. This is not unexpected as most antibodies exhibit some degree of cross-reactivity, and anti-peptide antibodies will often cross-react with epitopes having high homology to the immunizing peptide. See, e.g., Czernik, supra. Cross-reactivity with non-target proteins is readily characterized by Western blotting alongside markers of known molecular weight. Amino acid sequences of cross-reacting proteins may be examined to identify sites highly homologous to the Leukemia-related signaling protein epitope for which the antibody of the invention is specific.


In certain cases, polyclonal antisera may exhibit some undesirable general cross-reactivity to phosphotyrosine or phosphoserine itself, which may be removed by further purification of antisera, e.g. over a phosphotyramine column. Antibodies of the invention specifically bind their target protein (i.e. a protein listed in Column A of Table 1) only when phosphorylated (or only when not phosphorylated, as the case may be) at the site disclosed in corresponding Columns D/E, and do not (substantially) bind to the other form (as compared to the form for which the antibody is specific).


Antibodies may be further characterized via immunohistochemical (IHC) staining using normal and diseased tissues to examine Leukemia-related phosphorylation and activation status in diseased tissue. IHC may be carried out according to well-known techniques. See, e.g., ANTIBODIES: A LABORATORY MANUAL, Chapter 10, Harlow & Lane Eds., Cold Spring Harbor Laboratory (1988). Briefly, paraffin-embedded tissue (e.g. tumor tissue) is prepared for immunohistochemical staining by deparaffinizing tissue sections with xylene followed by ethanol; hydrating in water then PBS; unmasking antigen by heating slide in sodium citrate buffer; incubating sections in hydrogen peroxide; blocking in blocking solution; incubating slide in primary antibody and secondary antibody; and finally detecting using ABC avidin/biotin method according to manufacturer's instructions.


Antibodies may be further characterized by flow cytometry carried out according to standard methods. See Chow et al., Cytometry (Communications in Clinical Cytometry) 46: 72-78 (2001). Briefly and by way of example, the following protocol for cytometric analysis may be employed: samples may be centrifuged on Ficoll gradients to remove erythrocytes, and cells may then be fixed with 2% paraformaldehyde for 10 minutes at 37° C. followed by permeabilization in 90% methanol for 30 minutes on ice. Cells may then be stained with the primary phosphorylation-site specific antibody of the invention (which detects a Leukemia-related signal transduction protein enumerated in Table 1), washed and labeled with a fluorescent-labeled secondary antibody. Additional fluorochrome-conjugated marker antibodies (e.g. CD45, CD34) may also be added at this time to aid in the subsequent identification of specific hematopoietic cell types. The cells would then be analyzed on a flow cytometer (e.g. a Beckman Coulter FC500) according to the specific protocols of the instrument used.


Antibodies of the invention may also be advantageously conjugated to fluorescent dyes (e.g. Alexa488, PE) for use in multi-parametric analyses along with other signal transduction (phospho-CrkL, phospho-Erk 1/2) and/or cell marker (CD34) antibodies.


Phosphorylation-site specific antibodies of the invention specifically bind to a human Leukemia-related signal transduction protein or polypeptide only when phosphorylated at a disclosed site, but are not limited only to binding the human species, per se. The invention includes antibodies that also bind conserved and highly homologous or identical phosphorylation sites in respective Leukemia-related proteins from other species (e.g. mouse, rat, monkey, yeast), in addition to binding the human phosphorylation site. Highly homologous or identical sites conserved in other species can readily be identified by standard sequence comparisons, such as using BLAST, with the human Leukemia-related signal transduction protein phosphorylation sites disclosed herein.


C. Heavy-isotope Labeled Peptides (AQUA Peptides).

The novel Leukemia-related signaling protein phosphorylation sites disclosed herein now enable the production of corresponding heavy-isotope labeled peptides for the absolute quantification of such signaling proteins (both phosphorylated and not phosphorylated at a disclosed site) in biological samples. The production and use of AQUA peptides for the absolute quantification of proteins (AQUA) in complex mixtures has been described. See WO/03016861, “Absolute Quantification of Proteins and Modified Forms Thereof by Multistage Mass Spectrometry,” Gygi et al. and also Gerber et al. Proc. Natl. Acad. Sci. U.S.A. 100: 6940-5 (2003) (the teachings of which are hereby incorporated herein by reference, in their entirety).


The AQUA methodology employs the introduction of a known quantity of at least one heavy-isotope labeled peptide standard (which has a unique signature detectable by LC-SRM chromatography) into a digested biological sample in order to determine, by comparison to the peptide standard, the absolute quantity of a peptide with the same sequence and protein modification in the biological sample. Briefly, the AQUA methodology has two stages: peptide internal standard selection and validation and method development; and implementation using validated peptide internal standards to detect and quantify a target protein in sample. The method is a powerful technique for detecting and quantifying a given peptide/protein within a complex biological mixture, such as a cell lysate, and may be employed, e.g., to quantify change in protein phosphorylation as a result of drug treatment, or to quantify differences in the level of a protein in different biological states.


Generally, to develop a suitable internal standard, a particular peptide (or modified peptide) within a target protein sequence is chosen based on its amino acid sequence and the particular protease to be used to digest. The peptide is then generated by solid-phase peptide synthesis such that one residue is replaced with that same residue containing stable isotopes (13C, 15N). The result is a peptide that is chemically identical to its native counterpart formed by proteolysis, but is easily distinguishable by MS via a 7-Da mass shift. A newly synthesized AQUA internal standard peptide is then evaluated by LC-MS/MS. This process provides qualitative information about peptide retention by reverse-phase chromatography, ionization efficiency, and fragmentation via collision-induced dissociation. Informative and abundant fragment ions for sets of native and internal standard peptides are chosen and then specifically monitored in rapid succession as a function of chromatographic retention to form a selected reaction monitoring (LC-SRM) method based on the unique profile of the peptide standard.


The second stage of the AQUA strategy is its implementation to measure the amount of a protein or modified protein from complex mixtures. Whole cell lysates are typically fractionated by SDS-PAGE gel electrophoresis, and regions of the gel consistent with protein migration are excised. This process is followed by in-gel proteolysis in the presence of the AQUA peptides and LC-SRM analysis. (See Gerber et al. supra.) AQUA peptides are spiked in to the complex peptide mixture obtained by digestion of the whole cell lysate with a proteolytic enzyme and subjected to immunoaffinity purification as described above. The retention time and fragmentation pattern of the native peptide formed by digestion (e.g. trypsinization) is identical to that of the AQUA internal standard peptide determined previously; thus, LC-MS/MS analysis using an SRM experiment results in the highly specific and sensitive measurement of both internal standard and analyte directly from extremely complex peptide mixtures. Because an absolute amount of the AQUA peptide is added (e.g. 250 fmol), the ratio of the areas under the curve can be used to determine the precise expression levels of a protein or phosphorylated form of a protein in the original cell lysate. In addition, the internal standard is present during in-gel digestion as native peptides are formed, such that peptide extraction efficiency from gel pieces, absolute losses during sample handling (including vacuum centrifugation), and variability during introduction into the LC-MS system do not affect the determined ratio of native and AQUA peptide abundances.


An AQUA peptide standard is developed for a known phosphorylation site sequence previously identified by the IAP-LC-MS/MS method within a target protein. One AQUA peptide incorporating the phosphorylated form of the particular residue within the site may be developed, and a second AQUA peptide incorporating the non-phosphorylated form of the residue developed. In this way, the two standards may be used to detect and quantify both the phosphorylated and non-phosphorylated forms of the site in a biological sample.


Peptide internal standards may also be generated by examining the primary amino acid sequence of a protein and determining the boundaries of peptides produced by protease cleavage. Alternatively, a protein may actually be digested with a protease and a particular peptide fragment produced can then sequenced. Suitable proteases include, but are not limited to, serine proteases (e.g. trypsin, hepsin), metallo proteases (e.g. PUMP1), chymotrypsin, cathepsin, pepsin, thermolysin, carboxypeptidases, etc.


A peptide sequence within a target protein is selected according to one or more criteria to optimize the use of the peptide as an internal standard. Preferably, the size of the peptide is selected to minimize the chances that the peptide sequence will be repeated elsewhere in other non-target proteins. Thus, a peptide is preferably at least about 6 amino acids. The size of the peptide is also optimized to maximize ionization frequency. Thus, peptides longer than about 20 amino acids are not preferred. The preferred ranged is about 7 to 15 amino acids. A peptide sequence is also selected that is not likely to be chemically reactive during mass spectrometry, thus sequences comprising cysteine, tryptophan, or methionine are avoided.


A peptide sequence that does not include a modified region of the target region may be selected so that the peptide internal standard can be used to determine the quantity of all forms of the protein. Alternatively, a peptide internal standard encompassing a modified amino acid may be desirable to detect and quantify only the modified form of the target protein. Peptide standards for both modified and unmodified regions can be used together, to determine the extent of a modification in a particular sample (i.e. to determine what fraction of the total amount of protein is represented by the modified form). For example, peptide standards for both the phosphorylated and unphosphorylated form of a protein known to be phosphorylated at a particular site can be used to quantify the amount of phosphorylated form in a sample.


The peptide is labeled using one or more labeled amino acids (i.e. the label is an actual part of the peptide) or less preferably, labels may be attached after synthesis according to standard methods. Preferably, the label is a mass-altering label selected based on the following considerations: The mass should be unique to shift fragment masses produced by MS analysis to regions of the spectrum with low background; the ion mass signature component is the portion of the labeling moiety that preferably exhibits a unique ion mass signature in MS analysis; the sum of the masses of the constituent atoms of the label is preferably uniquely different than the fragments of all the possible amino acids. As a result, the labeled amino acids and peptides are readily distinguished from unlabeled ones by the ion/mass pattern in the resulting mass spectrum. Preferably, the ion mass signature component imparts a mass to a protein fragment that does not match the residue mass for any of the 20 natural amino acids.


The label should be robust under the fragmentation conditions of MS and not undergo unfavorable fragmentation. Labeling chemistry should be efficient under a range of conditions, particularly denaturing conditions, and the labeled tag preferably remains soluble in the MS buffer system of choice. The label preferably does not suppress the ionization efficiency of the protein and is not chemically reactive. The label may contain a mixture of two or more isotopically distinct species to generate a unique mass spectrometric pattern at each labeled fragment position. Stable isotopes, such as 2H, 13C, 15N, 17O, 18O, or 34S, are among preferred labels. Pairs of peptide internal standards that incorporate a different isotope label may also be prepared. Preferred amino acid residues into which a heavy isotope label may be incorporated include leucine, proline, valine, and phenylalanine.


Peptide internal standards are characterized according to their mass-to-charge (m/z) ratio, and preferably, also according to their retention time on a chromatographic column (e.g. an HPLC column). Internal standards that co-elute with unlabeled peptides of identical sequence are selected as optimal internal standards. The internal standard is then analyzed by fragmenting the peptide by any suitable means, for example by collision-induced dissociation (CID) using, e.g., argon or helium as a collision gas. The fragments are then analyzed, for example by multi-stage mass spectrometry (MSn) to obtain a fragment ion spectrum, to obtain a peptide fragmentation signature. Preferably, peptide fragments have significant differences in m/z ratios to enable peaks corresponding to each fragment to be well separated, and a signature that is unique for the target peptide is obtained. If a suitable fragment signature is not obtained at the first stage, additional stages of MS are performed until a unique signature is obtained.


Fragment ions in the MS/MS and MS3 spectra are typically highly specific for the peptide of interest, and, in conjunction with LC methods, allow a highly selective means of detecting and quantifying a target peptide/protein in a complex protein mixture, such as a cell lysate, containing many thousands or tens of thousands of proteins. Any biological sample potentially containing a target protein/peptide of interest may be assayed. Crude or partially purified cell extracts are preferably employed. Generally, the sample has at least 0.01 mg of protein, typically a concentration of 0.1-10 mg/mL, and may be adjusted to a desired buffer concentration and pH.


A known amount of a labeled peptide internal standard, preferably about 10 femtomoles, corresponding to a target protein to be detected/quantified is then added to a biological sample, such as a cell lysate. The spiked sample is then digested with one or more protease(s) for a suitable time period to allow digestion. A separation is then performed (e.g. by HPLC, reverse-phase HPLC, capillary electrophoresis, ion exchange chromatography, etc.) to isolate the labeled internal standard and its corresponding target peptide from other peptides in the sample. Microcapillary LC is a preferred method.


Each isolated peptide is then examined by monitoring of a selected reaction in the MS. This involves using the prior knowledge gained by the characterization of the peptide internal standard and then requiring the MS to continuously monitor a specific ion in the MS/MS or MSn spectrum for both the peptide of interest and the internal standard. After elution, the area under the curve (AUC) for both peptide standard and target peptide peaks are calculated. The ratio of the two areas provides the absolute quantification that can be normalized for the number of cells used in the analysis and the protein's molecular weight, to provide the precise number of copies of the protein per cell. Further details of the AQUA methodology are described in Gygi et al., and Gerber et al. supra.


In accordance with the present invention, AQUA internal peptide standards (heavy-isotope labeled peptides) may now be produced, as described above, for any of the 123 novel Leukemia-related signaling protein phosphorylation sites disclosed herein (see Table 1/FIG. 2). Peptide standards for a given phosphorylation site (e.g. the tyrosine 1253 in FASN—see Row 42 of Table 1) may be produced for both the phosphorylated and non-phosphorylated forms of the site (e.g. see FASN site sequence in Column E, Row 42 of Table 1 (SEQ ID NO: 41) and such standards employed in the AQUA methodology to detect and quantify both forms of such phosphorylation site in a biological sample.


AQUA peptides of the invention may comprise all, or part of, a phosphorylation site peptide sequence disclosed herein (see Column E of Table 1/FIG. 2). In a preferred embodiment, an AQUA peptide of the invention comprises a phosphorylation site sequence disclosed herein in Table 1/FIG. 2. For example, an AQUA peptide of the invention for detection/quantification of DDB1 DNA binding protein when phosphorylated at tyrosine Y660 may comprise the sequence SDRPTVIySSNHKLV (y=phosphotyrosine), which comprises phosphorylatable tyrosine 660(see Row 36, Column E; (SEQ ID NO: 660)). Heavy-isotope labeled equivalents of the peptides enumerated in Table 1/FIG. 2 (both in phosphorylated and unphosphorylated form) can be readily synthesized and their unique MS and LC-SRM signature determined, so that the peptides are validated as AQUA peptides and ready for use in quantification experiments.


The phosphorylation site peptide sequences disclosed herein (see Column E of Table 1/FIG. 2) are particularly well suited for development of corresponding AQUA peptides, since the IAP method by which they were identified (see Part A above and Example 1) inherently confirmed that such peptides are in fact produced by enzymatic digestion (trypsinization) and are in fact suitably fractionated/ionized in MS/MS. Thus, heavy-isotope labeled equivalents of these peptides (both in phosphorylated and unphosphorylated form) can be readily synthesized and their unique MS and LC-SRM signature determined, so that the peptides are validated as AQUA peptides and ready for use in quantification experiments.


Accordingly, the invention provides heavy-isotope labeled peptides (AQUA peptides) for the detection and/or quantification of any of the Leukemia-related phosphorylation sites disclosed in Table 1/FIG. 2 (see Column E) and/or their corresponding parent proteins/polypeptides (see Column A). A phosphopeptide sequence comprising any of the phosphorylation sequences listed in Table 1 may be considered a preferred AQUA peptide of the invention. For example, an AQUA peptide comprising the sequence ISVYYNEAyGR (SEQ ID NO: 22) (where y may be either phosphotyrosine or tyrosine, and where V=labeled valine (e.g. 14C)) is provided for the quantification of phosphorylated (or non-phosphorylated) TUBB1 (Tyr55) in a biological sample (see Row 23 of Table 1, tyrosine 55 being the phosphorylatable residue within the site). However, it will be appreciated that a larger AQUA peptide comprising a disclosed phosphorylation, site sequence (and additional residues downstream or upstream of it) may also be constructed. Similarly, a smaller AQUA peptide comprising less than all of the residues of a disclosed phosphorylation site sequence (but still comprising the phosphorylatable residue enumerated in Column D of Table 1/FIG. 2) may alternatively be constructed. Such larger or shorter AQUA peptides are within the scope of the present invention, and the selection and production of preferred AQUA peptides may be carried out as described above (see Gygi et al., Gerber et al. supra.).


Certain particularly preferred subsets of AQUA peptides provided by the invention are described above (corresponding to particular protein types/groups in Table 1, for example, Tyrosine Protein Kinases or Protein Phosphatases). Example 4 is provided to further illustrate the construction and use, by standard methods described above, of exemplary AQUA peptides provided by the invention. For example, the above-described AQUA peptides corresponding to both the phosphorylated and non-phosphorylated forms of the disclosed SOS2 G protein tyrosine 213 phosphorylation site (see Row 49 of Table 1/FIG. 2) may be used to quantify the amount of phosphorylated SOS2 (Tyr 213) in a biological sample, e.g. a tumor cell sample (or a sample before or after treatment with a test drug).


AQUA peptides of the invention may also be employed within a kit that comprises one or multiple AQUA peptide(s) provided herein (for the quantification of a Leukemia-related signal transduction protein disclosed in Table 1/FIG. 2), and, optionally, a second detecting reagent conjugated to a detectable group. For example, a kit may include AQUA peptides for both the phosphorylated and non-phosphorylated form of a phosphorylation site disclosed herein. The reagents may also include ancillary agents such as buffering agents and protein stabilizing agents, e.g., polysaccharides and the like. The kit may further include, where necessary, other members of the signal-producing system of which system the detectable group is a member (e.g., enzyme substrates), agents for reducing background interference in a test, control reagents, apparatus for conducting a test, and the like. The test kit may be packaged in any suitable manner, typically with all elements in a single container along with a sheet of printed instructions for carrying out the test.


AQUA peptides provided by the invention will be highly useful in the further study of signal transduction anomalies underlying cancer, including leukemias, and in identifying diagnostic/bio-markers of these diseases, new potential drug targets, and/or in monitoring the effects of test compounds on Leukemia-related signal transduction proteins and pathways.


D. Immunoassay Formats

Antibodies provided by the invention may be advantageously employed in a variety of standard immunological assays (the use of AQUA peptides provided by the invention is described separately above). Assays may be homogeneous assays or heterogeneous assays. In a homogeneous assay the immunological reaction usually involves a phosphorylation-site specific antibody of the invention), a labeled analyte, and the sample of interest. The signal arising from the label is modified, directly or indirectly, upon the binding of the antibody to the labeled analyte. Both the immunological reaction and detection of the extent thereof are carried out in a homogeneous solution. Immunochemical labels that may be employed include free radicals, radioisotopes, fluorescent dyes, enzymes, bacteriophages, coenzymes, and so forth.


In a heterogeneous assay approach, the reagents are usually the specimen, a phosphorylation-site specific antibody of the invention, and suitable means for producing a detectable signal. Similar specimens as described above may be used. The antibody is generally immobilized on a support, such as a bead, plate or slide, and contacted with the specimen suspected of containing the antigen in a liquid phase. The support is then separated from the liquid phase and either the support phase or the liquid phase is examined for a detectable signal employing means for producing such signal. The signal is related to the presence of the analyte in the specimen. Means for producing a detectable signal include the use of radioactive labels, fluorescent labels, enzyme labels, and so forth. For example, if the antigen to be detected contains a second binding site, an antibody which binds to that site can be conjugated to a detectable group and added to the liquid phase reaction solution before the separation step. The presence of the detectable group on the solid support indicates the presence of the antigen in the test sample. Examples of suitable immunoassays are the radioimmunoassay, immunofluorescence methods, enzyme-linked immunoassays, and the like.


Immunoassay formats and variations thereof that may be useful for carrying out the methods disclosed herein are well known in the art. See generally E. Maggio, Enzyme-Immunoassay, (1980) (CRC Press, Inc., Boca Raton, Fla.); see also, e.g., U.S. Pat. No. 4,727,022 (Skold et al., “Methods for Modulating Ligand-Receptor Interactions and their Application”); U.S. Pat. No. 4,659,678 (Forrest et al., “Immunoassay of Antigens”); U.S. Pat. No. 4,376,110 (David et al., “Immunometric Assays Using Monoclonal Antibodies”). Conditions suitable for the formation of reagent-antibody complexes are well described. See id. Monoclonal antibodies of the invention may be used in a “two-site” or “sandwich” assay, with a single cell line serving as a source for both the labeled monoclonal antibody and the bound monoclonal antibody. Such assays are described in U.S. Pat. No. 4,376,110. The concentration of detectable reagent should be sufficient such that the binding of a target Leukemia-related signal transduction protein is detectable compared to background.


Phosphorylation site-specific antibodies disclosed herein may be conjugated to a solid support suitable for a diagnostic assay (e.g., beads, plates, slides or wells formed from materials such as latex or polystyrene) in accordance with known techniques, such as precipitation. Antibodies, or other target protein or target site-binding reagents, may likewise be conjugated to detectable groups such as radiolabels (e.g., 35S, 125I, 131I), enzyme labels (e.g., horseradish peroxidase, alkaline phosphatase), and fluorescent labels (e.g., fluorescein) in accordance with known techniques.


Antibodies of the invention may also be optimized for use in a flow cytometry (FC) assay to determine the activation/phosphorylation status of a target Leukemia-related signal transduction protein in patients before, during, and after treatment with a drug targeted at inhibiting phosphorylation of such a protein at the phosphorylation site disclosed herein. For example, bone marrow cells or peripheral blood cells from patients may be analyzed by flow cytometry for target Leukemia-related signal transduction protein phosphorylation, as well as for markers identifying various hematopoietic cell types. In this manner, activation status of the malignant cells may be specifically characterized. Flow cytometry may be carried out according to standard methods. See, e.g. Chow et al., Cytometry (Communications in Clinical Cytometry) 46: 72-78 (2001). Briefly and by way of example, the following protocol for cytometric analysis may be employed: fixation of the cells with 1% para-formaldehyde for 10 minutes at 37° C. followed by permeabilization in 90% methanol for 30 minutes on ice. Cells may then be stained with the primary antibody (a phospho-specific antibody of the invention), washed and labeled with a fluorescent-labeled secondary antibody. Alternatively, the cells may be stained with a fluorescent-labeled primary antibody. The cells would then be analyzed on a flow cytometer (e.g. a Beckman Coulter EPICS-XL) according to the specific protocols of the instrument used. Such an analysis would identify the presence of activated Leukemia-related signal transduction protein(s) in the malignant cells and reveal the drug response on the targeted protein.


Alternatively, antibodies of the invention may be employed in immunohistochemical (IHC) staining to detect differences in signal transduction or protein activity using normal and diseased tissues. IHC may be carried out according to well-known techniques. See, e.g., ANTIBODIES: A LABORATORY MANUAL, supra. Briefly, paraffin-embedded tissue (e.g. tumor tissue) is prepared for immunohistochemical staining by deparaffinizing tissue sections with xylene followed by ethanol; hydrating in water then PBS; unmasking antigen by heating slide in sodium citrate buffer; incubating sections in hydrogen peroxide; blocking in blocking solution; incubating slide in primary antibody and secondary antibody; and finally detecting using ABC avidin/biotin method according to manufacturer's instructions.


Antibodies of the invention may be also be optimized for use in other clinically-suitable applications, for example bead-based multiplex-type assays, such as IGEN, Luminex™ and/or Bioplex™ assay formats, or otherwise optimized for antibody array formats, such as reversed-phase array applications (see, e.g. Paweletz et al., Oncogene 20(16): 1981-89 (2001)). Accordingly, in another embodiment, the invention provides a method for the multiplex detection of Leukemia-related protein phosphorylation in a biological sample, the method comprising utilizing two or more antibodies or AQUA peptides of the invention to detect the presence of two or more phosphorylated Leukemia-related signaling proteins enumerated in Column A of Table 1/FIG. 2. In one preferred embodiment, two to five antibodies or AQUA peptides of the invention are employed in the method. In another preferred embodiment, six to ten antibodies or AQUA peptides of the invention are employed, while in another preferred embodiment eleven to twenty such reagents are employed.


Antibodies and/or AQUA peptides of the invention may also be employed within a kit that comprises at least one phosphorylation site-specific antibody or AQUA peptide of the invention (which binds to or detects a Leukemia-related signal transduction protein disclosed in Table 1/FIG. 2), and, optionally, a second antibody conjugated to a detectable group. In some embodies, the kit is suitable for multiplex assays and comprises two or more antibodies or AQUA peptides of the invention, and in some embodiments, comprises two to five, six to ten, or eleven to twenty reagents of the invention. The kit may also include ancillary agents such as buffering agents and protein stabilizing agents, e.g., polysaccharides and the like the kit may further include, where necessary, other members of the signal-producing system of which system the detectable group is a member (e.g., enzyme substrates), agents for reducing background interference in a test, control reagents, apparatus for conducting a test, and the like. The test kit may be packaged in any suitable manner, typically with all elements in a single container along with a sheet of printed instructions for carrying out the test.


The following Examples are provided only to further illustrate the invention, and are not intended to limit its scope, except as provided in the claims appended hereto. The present invention encompasses modifications and variations of the methods taught herein which would be obvious to one of ordinary skill in the art.


Example 1
Isolation of Phosphotyrosine-Containing Peptides from Extracts of Leukemia Cell Lines and Identification of Novel Phosphorylation Sites

In order to discover previously unknown Leukemia-related signal transduction protein phosphorylation sites, IAP isolation techniques were employed to identify phosphotyrosine- and/or phosphoserine-containing peptides in cell extracts from the following human Leukemia cell lines and patient cell lines: human platelets, human umbilical vein endothelial cells, K562 (human CML), CMK (human AML), MOLT15 (human ALL), MKPL-1 (human AML), Molm14 (human AML), CHRF (human AML), H520 (human non-small cell lung carcinoma), SW480 (human colorectal carcinoma), OPM-1 (human multiple myeloma), UT-7 (human AML), H3255 (human non-small cell lung carcinoma), H1648 (human non-small cell lung carcinoma), Calu-3 (human non-small cell lung carcinoma), and Baf3 (mouse CML) cells expressing either a wild type or mutant exogenous protein (Bcr-Abl, Flt3, Jak2, thrombopoietin receptor, Tyk2).


Tryptic phosphotyrosine- and phosphoserine-containing peptides were purified and analyzed from extracts of each of the 16 cell lines mentioned above, as follows. Cells were cultured in DMEM medium or RPMI 1640 medium supplemented with 10% fetal bovine serum and penicillin/streptomycin.


Suspension cells were harvested by low speed centrifugation. After complete aspiration of medium, cells were resuspended in 1 mL lysis buffer per 1.25×108 cells (20 mM HEPES pH 8.0, 9 M urea, 1 mM sodium vanadate, supplemented or not with 2.5 mM sodium pyro-phosphate, 1 mM β-glycerol-phosphate) and sonicated.


Sonicated cell lysates were cleared by centrifugation at 20,000×g, and proteins were reduced with DTT at a final concentration of 4.1 mM and alkylated with iodoacetamide at 8.3 mM. For digestion with trypsin, protein extracts were diluted in 20 mM HEPES pH 8.0 to a final concentration of 2 M urea and soluble TLCK-trypsin (Worthington) was added at 10-20 μg/mL. Digestion was performed for 1-2 days at room temperature.


Trifluoroacetic acid (TFA) was added to protein digests to a final concentration of 1%, precipitate was removed by centrifugation, and digests were loaded onto Sep-Pak C18 columns (Waters) equilibrated with 0.1% TFA. A column volume of 0.7-1.0 ml was used per 2×108 cells. Columns were washed with 15 volumes of 0.1% TFA, followed by 4 volumes of 5% acetonitrile (MeCN) in 0.1% TFA. Peptide fraction I was obtained by eluting columns with 2 volumes each of 8, 12, and 15% MeCN in 0.1% TFA and combining the eluates. Fractions II and III were a combination of eluates after eluting columns with 18, 22, 25% MeCN in 0.1% TFA and with 30, 35, 40% MeCN in 0.1% TFA, respectively. All peptide fractions were lyophilized.


Peptides from each fraction corresponding to 2×108 cells were dissolved in 1 ml of IAP buffer (20 mM Tris/HCl or 50 mM MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NaCl) and insoluble matter (mainly in peptide fractions III) was removed by centrifugation. IAP was performed on each peptide fraction separately. The phosphotyrosine monoclonal antibody P-Tyr-100 (Cell Signaling Technology, Inc., catalog number 9411) was coupled at 4 mg/ml beads to protein G or protein A agarose (Roche), respectively. Immobilized antibody (15 μl, 60 μg) was added as 1:1 slurry in IAP buffer to 1 ml of each peptide fraction, and the mixture was incubated overnight at 4° C. with gentle rotation. The immobilized antibody beads were washed three times with 1 ml IAP buffer and twice with 1 ml water, all at 4° C. Peptides were eluted from beads by incubation with 75 μl of 0.1% TFA at room temperature for 10 minutes.


Alternatively, one single peptide fraction was obtained from Sep-Pak C18 columns by elution with 2 volumes each of 10%, 15%, 20%, 25%, 30%, 35% and 40% acetonitrile in 0.1% TFA and combination of all eluates. IAP on this peptide fraction was performed as follows: After lyophilization, peptide was dissolved in 1.4 ml IAP buffer (MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NaCl) and insoluble matter was removed by centrifugation. Immobilized antibody (40 μl, 160 μg) was added as 1:1 slurry in IAP buffer, and the mixture was incubated overnight at 4° C. with gentle shaking. The immobilized antibody beads were washed three times with 1 ml IAP buffer and twice with 1 ml water, all at 4° C. Peptides were eluted from beads by incubation with 55 μl of 0.15% TFA at room temperature for 10 min (eluate 1), followed by a wash of the beads (eluate 2) with 45 μl of 0.15% TFA. Both eluates were combined.


Analysis by LC-MS/MS Mass Spectrometry.

40 μl or more of IAP eluate were purified by 0.2 μl StageTips or ZipTips. Peptides were eluted from the microcolumns with 1 μl of 40% MeCN, 0.1% TFA (fractions I and II) or 1 μl of 60% MeCN, 0.1% TFA (fraction III) into 7.6 μl of 0.4% acetic acid/0.005% heptafluorobutyric acid. This sample was loaded onto a 10 cm×75 μm PicoFrit capillary column (New Objective) packed with Magic C18 AQ reversed-phase resin (Michrom Bioresources) using a Famos autosampler with an inert sample injection valve (Dionex). The column was then developed with a 45-min linear gradient of acetonitrile delivered at 200 nl/min (Ultimate, Dionex), and tandem mass spectra were collected in a data-dependent manner with an LTQ ion trap mass spectrometer essentially as described by Gygi et al., supra.


Database Analysis & Assignments.

MS/MS spectra were evaluated using TurboSequest in the Sequest Browser package (v. 27, rev. 12) supplied as part of BioWorks 3.0 (ThermoFinnigan). Individual MS/MS spectra were extracted from the raw data file using the Sequest Browser program CreateDta, with the following settings: bottom MW, 700; top MW, 4,500; minimum number of ions, 20; minimum TIC, 4×105; and precursor charge state, unspecified. Spectra were extracted from the beginning of the raw data file before sample injection to the end of the eluting gradient. The IonQuest and VuDta programs were not used to further select MS/MS spectra for Sequest analysis. MS/MS spectra were evaluated with the following TurboSequest parameters: peptide mass tolerance, 2.5; fragment ion tolerance, 0.0; maximum number of differential amino acids per modification, 4; mass type parent, average; mass type fragment, average; maximum number of internal cleavage sites, 10; neutral losses of water and ammonia from b and y ions were considered in the correlation analysis. Proteolytic enzyme was specified except for spectra collected from elastase digests.


Searches were performed against the current NCBI human protein database. Cysteine carboxamidomethylation was specified as a static modification, and phosphorylation was allowed as a variable modification on serine, threonine, and tyrosine residues or on tyrosine residues alone. It was determined that restricting phosphorylation to tyrosine residues had little effect on the number of phosphorylation sites assigned. Furthermore, it should be noted that certain peptides were originally isolated in mouse and later normalized to human sequences as shown by Table 1/FIG. 2.


In proteomics research, it is desirable to validate protein identifications based solely on the observation of a single peptide in one experimental result, in order to indicate that the protein is, in fact, present in a sample. This has led to the development of statistical methods for validating peptide assignments, which are not yet universally accepted, and guidelines for the publication of protein and peptide identification results (see Carr et al., Mol. Cell. Proteomics 3: 531-533 (2004)), which were followed in this Example. However, because the immunoaffinity strategy separates phosphorylated peptides from unphosphorylated peptides, observing just one phosphopeptide from a protein is a common result, since many phosphorylated proteins have only one tyrosine-phosphorylated site. For this reason, it is appropriate to use additional criteria to validate phosphopeptide assignments. Assignments are likely to be correct if any of these additional criteria are met: (i) the same sequence is assigned to co-eluting ions with different charge states, since the MS/MS spectrum changes markedly with charge state; (ii) the site is found in more than one peptide sequence context due to sequence overlaps from incomplete proteolysis or use of proteases other than trypsin; (iii) the site is found in more than one peptide sequence context due to homologous but not identical protein isoforms; (iv) the site is found in more than one peptide sequence context due to homologous but not identical proteins among species; and (v) sites validated by MS/MS analysis of synthetic phosphopeptides corresponding to assigned sequences, since the ion trap mass spectrometer produces highly reproducible MS/MS spectra. The last criterion is routinely employed to confirm novel site assignments of particular interest.


All spectra and all sequence assignments made by Sequest were imported into a relational database. The following Sequest scoring thresholds were used to select phosphopeptide assignments that are likely to be correct: RSp<6, XCorr≧2.2, and DeltaCN>0.099. Further, the assigned sequences could be accepted or rejected with respect to accuracy by using the following conservative, two-step process.


In the first step, a subset of high-scoring sequence assignments should be selected by filtering for XCorr values of at least 1.5 for a charge state of +1, 2.2 for +2, and 3.3 for +3, allowing a maximum RSp value of 10. Assignments in this subset should be rejected if any of the following criteria were satisfied: (i) the spectrum contains at least one major peak (at least 10% as intense as the most intense ion in the spectrum) that can not be mapped to the assigned sequence as an a, b, or y ion, as an ion arising from neutral-loss of water or ammonia from a b or y ion, or as a multiply protonated ion; (ii) the spectrum does not contain a series of b or y ions equivalent to at least six uninterrupted residues; or (iii) the sequence is not observed at least five times in all the studies conducted (except for overlapping sequences due to incomplete proteolysis or use of proteases other than trypsin).


In the second step, assignments with below-threshold scores should be accepted if the low-scoring spectrum shows a high degree of similarity to a high-scoring spectrum collected in another study, which simulates a true reference library-searching strategy.


Example 2
Production of Phospho-Specific Polyclonal Antibodies for the Detection of Leukemia-related Signaling Protein Phosphorylation

Polyclonal antibodies that specifically bind a Leukemia-related signal transduction protein only when phosphorylated at the respective phosphorylation site disclosed herein (see Table 1/FIG. 2) are produced according to standard methods by first constructing a synthetic peptide antigen comprising the phosphorylation site sequence and then immunizing an animal to raise antibodies against the antigen, as further described below. Production of exemplary polyclonal antibodies is provided below.


A. PIK3CB (Tyrosine 425).

A 15 amino acid phospho-peptide antigen, KTINPSKy*QTIRKAG (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 425 phosphorylation site in human PIK3CB vesicle protein (see Row 60 of Table 1; SEQ ID NO: 59), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phospho-specific SCAMP3 (tyr41) polyclonal antibodies as described in Immunization/Screening below.


B. CRK (Tyrosine 108).

A 12 amino acid phospho-peptide antigen, EFYKIHy*WDTTT (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 108 phosphorylation site in human CRK apoptosis protein (see Row 38 of Table 1 (SEQ ID NO: 37)), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phospho-specific CRK (tyr 108) polyclonal antibodies as described in Immunization/Screening below.


C. PTPRN2 (Tyrosine 955).

A 13 amino acid phospho-peptide antigen, GAGRSGTy*VLIDM (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 955 phosphorylation site in human PTPRN2 phosphatase protein (see Row 87 of Table 1 (SEQ ID NO: 86), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals to produce (and subsequently screen) phospho-specific PTPRN2 (tyr 955) antibodies as described in Immunization/Screening below.


Immunization/Screening.

A synthetic phospho-peptide antigen as described in A-C above is coupled to KLH, and rabbits are injected intradermally (ID) on the back with antigen in complete Freunds adjuvant (500 μg antigen per rabbit). The rabbits are boosted with same antigen in incomplete Freund adjuvant (250 μg antigen per rabbit) every three weeks. After the fifth boost, bleeds are collected. The sera are purified by Protein A-affinity chromatography by standard methods (see ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor, supra.). The eluted immunoglobulins are further loaded onto a non-phosphorylated synthetic peptide antigen-resin Knotes column to pull out antibodies that bind the non-phosphorylated form of the phosphorylation site. The flow through fraction is collected and applied onto a phospho-synthetic peptide antigen-resin column to isolate antibodies that bind the phosphorylated form of the site. After washing the column extensively, the bound antibodies (i.e. antibodies that bind a phosphorylated peptide described in A-C above, but do not bind the non-phosphorylated form of the peptide) are eluted and kept in antibody storage buffer.


The isolated antibody is then tested for phospho-specificity using Western blot assay using an appropriate cell line that expresses (or overexpresses) target phospho-protein (i.e. phosphorylated SCAMP3, PUM1 or BIRC4BP), for example, SEM and Jurkat cells, respectively. Cells are cultured in DMEM or RPMI supplemented with 10% FCS. Cell are collected, washed with PBS and directly lysed in cell lysis buffer. The protein concentration of cell lysates is then measured. The loading buffer is added into cell lysate and the mixture is boiled at 100° C. for 5 minutes. 20 μl (10 μg protein) of sample is then added onto 7.5% SDS-PAGE gel.


A standard Western blot may be performed according to the Immunoblotting Protocol set out in the CELL SIGNALING TECHNOLOGY, INC. 2003-04 Catalogue, p. 390. The isolated phospho-specific antibody is used at dilution 1:1000. Phosphorylation-site specificity of the antibody will be shown by binding of only the phosphorylated form of the target protein. Isolated phospho-specific polyclonal antibody does not (substantially) recognize the target protein when not phosphorylated at the appropriate phosphorylation site in the non-stimulated cells (e.g. SCAMP3 is not bound when not phosphorylated at tyrosine 41).


In order to confirm the specificity of the isolated antibody, different cell lysates containing various phosphorylated signal transduction proteins other than the target protein are prepared. The Western blot assay is performed again using these cell lysates. The phospho-specific polyclonal antibody isolated as described above is used (1:1000 dilution) to test reactivity with the different phosphorylated non-target proteins on Western blot membrane. The phospho-specific antibody does not significantly cross-react with other phosphorylated signal transduction proteins, although occasionally slight binding with a highly homologous phosphorylation-site on another protein may be observed. In such case the antibody may be further purified using affinity chromatography, or the specific immunoreactivity cloned by rabbit hybridoma technology.


Example 3
Production of Phospho-Specific Monoclonal Antibodies for the Detection of Leukemia-Related Signaling Protein Phosphorylation

Monoclonal antibodies that specifically bind a Leukemia-related signal transduction protein only when phosphorylated at the respective phosphorylation site disclosed herein (see Table 1/FIG. 2) are produced according to standard methods by first constructing a synthetic peptide antigen comprising the phosphorylation site sequence and then immunizing an animal to raise antibodies against the antigen, and harvesting spleen cells from such animals to produce fusion hybridomas, as further described below. Production of exemplary monoclonal antibodies is provided below.


A. VIL2 (Tyrosine 270).

A 14 amino acid phospho-peptide antigen, KAPDFVFy*APRLRI (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 270 phosphorylation site in human VIL2 protease (see Row 30 of Table 1 (SEQ ID NO: 29)), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phospho-specific monoclonal VIL2 (tyr 270) antibodies as described in Immunization/Fusion/Screening below.


B. DDB1 (Tyrosine 660).

An 11 amino acid phospho-peptide antigen, RPTVIy*SSNHK (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 660 phosphorylation site in human DDB1 kinase (see Row 36 of Table 1 (SEQ ID NO: 35)), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phospho-specific monoclonal DDB1 (tyr660) antibodies as described in Immunization/Fusion/Screening below.


C. LRRK1 (Tyrosine 612).

A 10 amino acid phospho-peptide antigen, GTVIy*RARY (where y*=phosphotyrosine) that corresponds to the sequence encompassing the tyrosine 612 phosphorylation site in human LRRK1 RNA protein kinase (see Row 63 of Table 1 (SEQ ID NO: 62), plus cysteine on the C-terminal for coupling, is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer. See ANTIBODIES: A LABORATORY MANUAL, supra.; Merrifield, supra. This peptide is then coupled to KLH and used to immunize animals and harvest spleen cells for generation (and subsequent screening) of phospho-specific monoclonal LRRK1 (tyr612) antibodies as described in Immunization/Fusion/Screening below.


Immunization/Fusion/Screening.

A synthetic phospho-peptide antigen as described in A-C above is coupled to KLH, and BALB/C mice are injected intradermally (ID) on the back with antigen in complete Freunds adjuvant (e.g. 50 μg antigen per mouse). The mice are boosted with same antigen in incomplete Freund adjuvant (e.g. 25 μg antigen per mouse) every three weeks. After the fifth boost, the animals are sacrificed and spleens are harvested.


Harvested spleen cells are fused to SP2/0 mouse myeloma fusion partner cells according to the standard protocol of Kohler and Milstein (1975). Colonies originating from the fusion are screened by ELISA for reactivity to the phospho-peptide and non-phospho-peptide forms of the antigen and by Western blot analysis (as described in Example 1 above). Colonies found to be positive by ELISA to the phospho-peptide while negative to the non-phospho-peptide are further characterized by Western blot analysis. Colonies found to be positive by Western blot analysis are subcloned by limited dilution. Mouse ascites are produced from a single clone obtained from subcloning, and tested for phospho-specificity (against the VIL2, DDB1 or LRRK1 phospho-peptide antigen, as the case may be) on ELISA. Clones identified as positive on Western blot analysis using cell culture supernatant as having phospho-specificity, as indicated by a strong band in the induced lane and a weak band in the uninduced lane of the blot, are isolated and subcloned as clones producing monoclonal antibodies with the desired specificity.


Ascites fluid from isolated clones may be further tested by Western blot analysis. The ascites fluid should produce similar results on Western blot analysis as observed previously with the cell culture supernatant, indicating phospho-specificity against the phosphorylated target (e.g. LRRK1 phosphorylated at tyrosine 612).


Example 4
Production and Use of AQUA Peptides for the Quantification of Leukemia-related Signaling Protein Phosphorylation

Heavy-isotope labeled peptides (AQUA peptides (internal standards)) for the detection and quantification of a Leukemia-related signal transduction protein only when phosphorylated at the respective phosphorylation site disclosed herein (see Table 1/FIG. 2) are produced according to the standard AQUA methodology (see Gygi et al., Gerber et al., supra.) methods by first constructing a synthetic peptide standard corresponding to the phosphorylation site sequence and incorporating a heavy-isotope label. Subsequently, the MSn and LC-SRM signature of the peptide standard is validated, and the AQUA peptide is used to quantify native peptide in a biological sample, such as a digested cell extract. Production and use of exemplary AQUA peptides is provided below.


A. TTN (Tyrosine 215).

An AQUA peptide comprising the sequence, GGHKLTGy*IVEKRDL (y*=phosphotyrosine; sequence incorporating 14C/15N-labeled leucine (indicated by bold L), which corresponds to the tyrosine 215 phosphorylation site in human TTN protein kinase (see Row 65 in Table 1 (SEQ ID NO: 64)), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The TTN (tyr 215) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated TTN (tyr 215) in the sample, as further described below in Analysis & Quantification.


B. ABL1 (tyrosine 172).


An AQUA peptide comprising the sequence LRYEGRVy*HYRINTA (y*=phosphotyrosine; sequence incorporating 14C/15N-labeled leucine (indicated by bold L), which corresponds to the tyrosine 172 phosphorylation site in human ABL1 protein kinase (see Row 67 in Table 1 (SEQ ID NO: 66)), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The ABL1 (tyr172) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated ABL1 (tyr172) in the sample, as further described below in Analysis & Quantification.


C. EIF4 μl (Tyrosine 197)

An AQUA peptide comprising the sequence, RGFKDQIy*DIFQKLN (y*=phosphotyrosine; sequence incorporating 14C/15N-labeled phenylalanine (indicated by bold F), which corresponds to the tyrosine 197 phosphorylation site in human EIF4A1 translation protein (see Row 117 in Table 1 (SEQ ID NO: 116)), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The EIF4A1 (tyr197) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated EIF4A1 (tyr197) in the sample, as further described below in Analysis & Quantification.


D. EIFS1 (Tyrosine 147).

An AQUA peptide comprising the sequence, DKYKRPGy*GAYDAFK (y*=phosphotyrosine; sequence incorporating 14C/15N-labeled proline (indicated by bold P), which corresponds to the tyrosine 147 phosphorylation site in human EIF2S1 translation protein (see Row 110 in Table 1 (SEQ ID NO: 109)), is constructed according to standard synthesis techniques using, e.g., a Rainin/Protein Technologies, Inc., Symphony peptide synthesizer (see Merrifield, supra.) as further described below in Synthesis & MS/MS Signature. The EIF2S1 (tyr147) AQUA peptide is then spiked into a biological sample to quantify the amount of phosphorylated EIF2S1 (tyr147) in the sample, as further described below in Analysis & Quantification.


Synthesis & MS/MS Spectra.

Fluorenylmethoxycarbonyl (Fmoc)-derivatized amino acid monomers may be obtained from AnaSpec (San Jose, Calif.). Fmoc-derivatized stable-isotope monomers containing one 15N and five to nine 13C atoms may be obtained from Cambridge Isotope Laboratories (Andover, Mass.). Preloaded Wang resins may be obtained from Applied Biosystems. Synthesis scales may vary from 5 to 25 μmol. Amino acids are activated in situ with 1-H-benzotriazolium, 1-bis(dimethylamino) methylene]-hexafluorophosphate (1-),3-oxide:1-hydroxybenzotriazole hydrate and coupled at a 5-fold molar excess over peptide. Each coupling cycle is followed by capping with acetic anhydride to avoid accumulation of one-residue deletion peptide by-products. After synthesis peptide-resins are treated with a standard scavenger-containing trifluoroacetic acid (TFA)-water cleavage solution, and the peptides are precipitated by addition to cold ether. Peptides (i.e. a desired AQUA peptide described in A-D above) are purified by reversed-phase C18 HPLC using standard TFA/acetonitrile gradients and characterized by matrix-assisted laser desorption ionization-time of flight (Biflex III, Bruker Daltonics, Billerica, Mass.) and ion-trap (ThermoFinnigan, LCQ DecaXP) MS.


MS/MS spectra for each AQUA peptide should exhibit a strong y-type ion peak as the most intense fragment ion that is suitable for use in an SRM monitoring/analysis. Reverse-phase microcapillary columns (0.1 A-150-220 mm) are prepared according to standard methods. An Agilent 1100 liquid chromatograph may be used to develop and deliver a solvent gradient [0.4% acetic acid/0.005% heptafluorobutyric acid (HFBA)/7% methanol and 0.4% acetic acid/0.005% HFBA/65% methanol/35% acetonitrile] to the microcapillary column by means of a flow splitter. Samples are then directly loaded onto the microcapillary column by using a FAMOS inert capillary autosampler (LC Packings, San Francisco) after the flow split. Peptides are reconstituted in 6% acetic acid/0.01% TFA before injection.


Analysis & Quantification.

Target protein (e.g. a phosphorylated protein of A-D above) in a biological sample is quantified using a validated AQUA peptide (as described above). The IAP method is then applied to the complex mixture of peptides derived from proteolytic cleavage of crude cell extracts to which the AQUA peptides have been spiked in.


LC-SRM of the entire sample is then carried out. MS/MS may be performed by using a ThermoFinnigan (San Jose, Calif.) mass spectrometer (LTQ ion trap or TSQ Quantum triple quadrupole). On the LTQ, parent ions are isolated at 1.6 m/z width, the ion injection time being limited to 100 ms per microscan, with one microscans per peptide, and with an AGC setting of 1×105; on the Quantum, Q1 is kept at 0.4 and Q3 at 0.8 m/z with a scan time of 200 ms per peptide. On both instruments, analyte and internal standard are analyzed in alternation within a previously known reverse-phase retention window; well-resolved pairs of internal standard and analyte are analyzed in separate retention segments to improve duty cycle. Data are processed by integrating the appropriate peaks in an extracted ion chromatogram (60.15 m/z from the fragment monitored) for the native and internal standard, followed by calculation of the ratio of peak areas multiplied by the absolute amount of internal standard (e.g., 500 fmol).

Claims
  • 1. (canceled)
  • 2. (canceled)
  • 3. (canceled)
  • 4. (canceled)
  • 5. (canceled)
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. (canceled)
  • 10. (canceled)
  • 11. (canceled)
  • 12. (canceled)
  • 13. (canceled)
  • 14. (canceled)
  • 15. (canceled)
  • 16. (canceled)
  • 17. (canceled)
  • 18. (canceled)
  • 19. An isolated phosphorylation site-specific antibody that specifically binds a human Leukemia-related signaling protein selected from Column A of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 5-18, 24-26, 28, 30-50, 54-67, 69-72, 74-78, 80-81, 83, 86-95, 97-100 and 102-123), wherein said antibody does not bind said signaling protein when not phosphorylated at said tyrosine.
  • 20. An isolated phosphorylation site-specific antibody that specifically binds a human Leukemia-related signaling protein selected from Column A of Table 1 only when not phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 5-18, 24-26, 28, 30-50, 54-67, 69-72, 74-78, 80-81, 83, 86-95, 97-100 and 102-123), wherein said antibody does not bind said signaling protein when phosphorylated at said tyrosine.
  • 21. (canceled)
  • 22. (canceled)
  • 23. (canceled)
  • 24. (canceled)
  • 25. (canceled)
  • 26. (canceled)
  • 27. (canceled)
  • 28. (canceled)
  • 29. (canceled)
  • 30. (canceled)
  • 31. (canceled)
  • 32. (canceled)
  • 33. (canceled)
  • 34. (canceled)
  • 35. (canceled)
  • 36. (canceled)
  • 37. (canceled)
  • 38. (canceled)
  • 39. (canceled)
  • 40. (canceled)
  • 41. (canceled)
  • 42. (canceled)
  • 43. (canceled)
  • 44. (canceled)
  • 45. (canceled)
  • 46. (canceled)
  • 47. (canceled)
  • 48. (canceled)
  • 49. (canceled)
  • 50. (canceled)
  • 51. (canceled)
  • 52. (canceled)
  • 53. (canceled)
  • 54. (canceled)
  • 55. (canceled)
  • 56. (canceled)
  • 57. (canceled)
  • 58. (canceled)
  • 59. (canceled)
  • 60. (canceled)
  • 61. (canceled)
  • 62. An isolated phosphorylation site-specific antibody according to claim 19, that specifically binds a human Leukemia-related signaling protein selected from Column A, Rows 8, 61, 64, 66, 67, 68 and 72 of Table 1 only when phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 7, 60, 63, 65, 66, 67 and 71), wherein said antibody does not bind said signaling protein when not phosphorylated at said tyrosine.
  • 63. An isolated phosphorylation site-specific antibody according to claim 20, that specifically binds a human Leukemia-related signaling protein selected from Column A, Rows 8, 61, 64, 66, 67, 68 and 72 of Table 1 only when not phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: SEQ ID NOs: 7, 60, 63, 65, 66, 67 and 71), wherein said antibody does not bind said signaling protein when phosphorylated at said tyrosine.
  • 64. A method selected from the group consisting of: (a) a method for detecting a human Leukemia-related signaling protein selected from Column A of Table 1, wherein said human Leukemia-related signaling protein is phosphorylated at the tyrosine listed in corresponding Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 5-18, 24-26, 28, 30-50, 54-67, 69-72, 74-78, 80-81, 83, 86-95, 97-100 and 102-123), comprising the step of adding an isolated phosphorylation-specific antibody according to claim 19, to a sample comprising said human Leukemia-related signaling protein under conditions that permit the binding of said antibody to said human Leukemia-related signaling protein, and detecting bound antibody;(b) a method for quantifying the amount of a human Leukemia-related signaling protein listed in Column A of Table 1 that is phosphorylated at the corresponding tyrosine listed in Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 (SEQ ID NOs: 5-18, 24-26, 28, 30-50, 54-67, 69-72, 74-78, 80-81, 83, 86-95, 97-100 and 102-123), in a sample using a heavy-isotope labeled peptide (AQUA™ peptide), said labeled peptide comprising a phosphorylated tyrosine at said corresponding tyrosine listed Column D of Table 1, comprised within the phosphorylatable peptide sequence listed in corresponding Column E of Table 1 as an internal standard; and(c) a method comprising step (a) followed by step (b).
  • 65. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ABL1 only when phosphorylated at Y172, comprised within the phosphorylatable peptide sequence listed in Column E, Row 67, of Table 1 (SEQ ID NO: 66), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 66. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ABL1 only when not phosphorylated at Y172, comprised within the phosphorylatable peptide sequence listed in Column E, Row 67, of Table 1 (SEQ ID NO: 66), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 67. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ABL1 only when phosphorylated at Y174, comprised within the phosphorylatable peptide sequence listed in Column E, Row 68, of Table 1 (SEQ ID NO: 67), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 68. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ABL1 only when not phosphorylated at Y174, comprised within the phosphorylatable peptide sequence listed in Column E, Row 68, of Table 1 (SEQ ID NO: 67), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 69. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding PIK3R1 only when phosphorylated at Y679, comprised within the phosphorylatable peptide sequence listed in Column E, Row 61, of Table 1 (SEQ ID NO: 60), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 70. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding PIK3R1 only when not phosphorylated at Y679, comprised within the phosphorylatable peptide sequence listed in Column E, Row 61, of Table 1 (SEQ ID NO: 60), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 71. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding BCR only when phosphorylated at Y844, comprised within the phosphorylatable peptide sequence listed in Column E, Row 66, of Table 1 (SEQ ID NO: 65), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 72. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding BCR only when not phosphorylated at Y844, comprised within the phosphorylatable peptide sequence listed in Column E, Row 66, of Table 1 (SEQ ID NO: 65), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 73. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ZAP70 only when phosphorylated at Y525, comprised within the phosphorylatable peptide sequence listed in Column E, Row 72, of Table 1 (SEQ ID NO: 71), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 74. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding ZAP70 only when not phosphorylated at Y525, comprised within the phosphorylatable peptide sequence listed in Column E, Row 72, of Table 1 (SEQ ID NO: 71), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 75. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding CRK only when phosphorylated at Y108, comprised within the phosphorylatable peptide sequence listed in Column E, Row 8, of Table 1 (SEQ ID NO: 7), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 76. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding CRK only when not phosphorylated at Y108, comprised within the phosphorylatable peptide sequence listed in Column E, Row 8, of Table 1 (SEQ ID NO: 7), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
  • 77. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding CRK only when phosphorylated at Y108, comprised within the phosphorylatable peptide sequence listed in Column E, Row 64, of Table 1 (SEQ ID NO: 63), wherein said antibody does not bind said protein when not phosphorylated at said tyrosine.
  • 78. The method of claim 64, wherein said isolated phosphorylation-specific antibody is capable of specifically binding CRK only when not phosphorylated at Y108, comprised within the phosphorylatable peptide sequence listed in Column E, Row 64, of Table 1 (SEQ ID NO: 63), wherein said antibody does not bind said protein when phosphorylated at said tyrosine.
RELATED APPLICATIONS

This application claims the benefit of, and priority to, U.S. Ser. No. 60/740,826 filed Nov. 30, 2005 and PCT/US0/45760 filed on Nov. 29, 2006, presently pending, the disclosure of which is incorporated herein, in its entirety, by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US06/45760 11/29/2006 WO 00 4/16/2009
Provisional Applications (1)
Number Date Country
60740826 Nov 2005 US