Real-time arc control in electrosurgical generators

Information

  • Patent Grant
  • 9271790
  • Patent Number
    9,271,790
  • Date Filed
    Tuesday, August 20, 2013
    11 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
Abstract
An electrosurgical generator is disclosed. The generator includes a radio frequency output stage configured to generate a radio frequency waveform and a sensor circuit configured to measure a property of the radio frequency waveform during a predetermined sampling period to determine whether an arc event has occurred. The generator also includes a controller configured to determine a total charge and/or total energy deposited by the radio frequency waveform during the predetermined sampling period associated with the arc event. The controller is further configured to adjust the output of the electrosurgical generator based on at least one parameter to limit arcing.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to electrosurgical apparatuses, systems and methods. More particularly, the present disclosure is directed to electrosurgical generators configured to control energy output on a per arc basis. The generator detects aberrations within continuous or pulsed waveforms indicative of sudden changes in the current. In particular the generator monitors for deviations from the sinusoidal or pulsed sinusoidal current waveforms as compared to the voltage waveform.


2. Background of Related Art


Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, heat, laser, etc.) are applied to tissue to achieve a desired result. Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate or seal tissue. In monopolar electrosurgery, an active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the active electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator.


Ablation is most commonly a monopolar procedure that is particularly useful in the field of cancer treatment, where one or more RF ablation needle electrodes (usually having elongated cylindrical geometry) are inserted into a living body and placed in the tumor region of an affected organ. A typical form of such needle electrodes incorporates an insulated sheath from which an exposed (uninsulated) tip extends. When an RF energy is provided between the return electrode and the inserted ablation electrode, RF current flows from the needle electrode through the body. Typically, the current density is very high near the tip of the needle electrode, which tends to heat and destroy surrounding issue.


In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned immediately adjacent the electrodes. When the electrodes are sufficiently separated from one another, the electrical circuit is open and thus inadvertent contact with body tissue with either of the separated electrodes does not cause current to flow.


During electrosurgical procedures, the magnitude and temporal characteristics of the voltage and current as supplied by the electrosurgical generator determine energy density pathways and tissue temperatures. This may be accomplished by keeping the total delivered power constant while varying other energy properties, such as voltage, current, etc. These configurations are not configured for detecting and controlling arcing conditions between the active electrode and tissue. It is particularly desirable to prevent the occurrence of uncontrolled electrical arcs and concomitant energy deposition on a half cycle or shorter time scale, in order to avoid inadvertent tissue damage and to achieve optimum conditions. Thus, there is a continual need for electrosurgical generators which are configured to sense tissue and energy properties to determine arcing conditions and control energy output based on these determinations.


SUMMARY

According to one aspect of the present disclosure, an electrosurgical generator is disclosed. The generator includes a radio frequency output stage configured to generate a radio frequency waveform and a sensor circuit configured to measure a property of the radio frequency waveform during a predetermined sampling period. The generator also includes a controller configured to determine a total charge transported and/or total energy deposited by the radio frequency waveform during the predetermined sampling period to determine an arc event. In particular the arc duration of special interest as determined by the deviation of the current and voltage waveforms, as well as the integral of this difference to determine the total change in the arc. Arcing can be characterized by an uncontrolled disparity between the voltage and current waveforms with the current waveform being much larger for a short period compared to the characteristic waveforms. The controller is further configured to adjust the output of the electrosurgical generator based on at least one parameter associated with the arc event.


A method for operating an electrosurgical generator is also contemplated by the present disclosure. The method includes the steps of selecting duration of sampling period, measuring voltage and current of a radio frequency waveform having a current waveform and a voltage waveform across a series resistor of the electrosurgical generator during the sampling period and temporally integrating voltage across the series resistor to determine total charge deposited into tissue by the radio frequency waveform during the sampling period and in particular during the arc duration. The method also includes the steps of temporally integrating power of the at least one radio frequency waveform during the sampling period to determine total energy deposited into tissue by the radio frequency waveform during the sampling period, by isolating the interval during which the current waveform is different from the voltage waveform to determine energy per arc event as a function of the total charge and total energy delivered and determining the amount of energy to be deposited into tissue per arc event.


According to a further embodiment of the present disclosure, an electrosurgical generator is disclosed. The electrosurgical generator includes a radio frequency output stage configured to generate a radio frequency waveform having a current waveform and a voltage waveform, a sensor circuit configured to measure voltage and current of a radio frequency waveform during a predetermined sampling period, and a controller configured to compare the voltage waveform and the current waveform and to provide a signal representative of the comparison. The controller includes a total charge calculator module configured to temporally integrate current of the radio frequency waveform and in particular the current during the interval when the current waveform departs from the voltage waveform to determine the total charge deposited by the radio frequency waveform during the predetermined sampling period as well as during the arc events. The controller also includes a total energy calculator module configured to integrate total power deposited by the radio frequency waveform to determine the total energy deposited by the radio frequency waveform during the predetermined sampling period for the radio frequency waveform and for arc events. The controller is further configured to determine an arc event as a function of the total charge and total energy and to adjust the output of the electrosurgical generator if the arc event is determined to avoid undesired tissue damage by setting a threshold energy above which the arc event is extinguished.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described herein with reference to the drawings wherein:



FIGS. 1A-1B are schematic block diagrams of an electrosurgical system according to the present disclosure;



FIG. 2 is a schematic block diagram of a generator according to one embodiment of the present disclosure; and



FIG. 3 is a flow chart illustrating a method for determining energy of a radio frequency waveform and arc events thereof according to the present disclosure.





DETAILED DESCRIPTION

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


The generator according to the present disclosure can perform monopolar and bipolar electrosurgical procedures, including vessel sealing procedures. The generator may include a plurality of outputs for interfacing with various electrosurgical instruments (e.g., a monopolar active electrode, return electrode, bipolar electrosurgical forceps, footswitch, etc.). Further, the generator includes electronic circuitry configured for generating radio frequency power specifically suited for various electrosurgical modes (e.g., cutting, blending, division, etc.) and procedures (e.g., monopolar, bipolar, vessel sealing).



FIG. 1A is a schematic illustration of a monopolar electrosurgical system 1 according to one embodiment of the present disclosure. The system 1 includes an electrosurgical instrument 2 having one or more electrodes for treating tissue of a patient P. The instrument 2 is a monopolar type instrument including one or more active electrodes (e.g., electrosurgical cutting probe, ablation electrode(s), etc.). Electrosurgical RF energy is supplied to the instrument 2 by a generator 20 via a supply line 4, which is connected to an active terminal 30 (FIG. 2) of the generator 20, allowing the instrument 2 to coagulate, seal, ablate and/or otherwise treat tissue. The energy is returned to the generator 20 through a return electrode 6 via a return line 8 at a return terminal 32 (FIG. 2) of the generator 20. The active terminal 30 and the return terminal 32 are connectors configured to interface with plugs (not explicitly shown) of the instrument 2 and the return electrode 6, which are disposed at the ends of the supply line 4 and the return line 8, respectively.


The system 1 may include a plurality of return electrodes 6 that are arranged to minimize the chances of tissue damage by maximizing the overall contact area with the patient P. In addition, the generator 20 and the return electrode 6 may be configured for monitoring so-called “tissue-to-patient” contact to insure that sufficient contact exists therebetween to further minimize chances of tissue damage. In one embodiment, the active electrode 6 may be used to operate in a liquid environment, wherein the tissue is submerged in an electrolyte solution.



FIG. 1B is a schematic illustration of a bipolar electrosurgical system 3 according to the present disclosure. The system 3 includes a bipolar electrosurgical forceps 10 having one or more electrodes for treating tissue of a patient P. The electrosurgical forceps 10 include opposing jaw members having an active electrode 14 and a return electrode 16, respectively, disposed therein. The active electrode 14 and the return electrode 16 are connected to the generator 20 through cable 18, which includes the supply and return lines 4, 8 coupled to the active and return terminals 30, 32, respectively (FIG. 2). The electrosurgical forceps 10 are coupled to the generator 20 at a connector 21 having connections to the active and return terminals 30 and 32 (e.g., pins) via a plug disposed at the end of the cable 18, wherein the plug includes contacts from the supply and return lines 4, 8.


The generator 20 includes suitable input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 20. In addition, the generator 20 may include one or more display screens for providing the user with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). The controls allow the user to adjust power of the RF energy, waveform, as well as the level of maximum arc energy allowed which varies depending on desired tissue effects and other parameters to achieve the desired waveform suitable for a particular task (e.g., coagulating, tissue sealing, intensity setting, etc.). The instrument 2 may also include a plurality of input controls that may be redundant with certain input controls of the generator 20. Placing the input controls at the instrument 2 allows for easier and faster modification of RF energy parameters during the surgical procedure without requiring interaction with the generator 20.



FIG. 2 shows a schematic block diagram of the generator 20 having a controller 24, a high voltage DC power supply 27 (“HVPS”) and an RF output stage 28. The HVPS 27 is connected to a conventional AC source (e.g., electrical wall outlet) and provides high voltage DC power to an RF output stage 28, which then converts high voltage DC power into RF energy and delivers the RF energy to the active terminal 30. The energy is returned thereto via the return terminal 32.


In particular, the RF output stage 28 generates either continuous or pulsed sinusoidal waveforms of high RF energy. The RF output stage 28 is configured to generate a plurality of waveforms having various duty cycles, peak voltages, crest factors, and other suitable parameters. Certain types of waveforms are suitable for specific electrosurgical modes. For instance, the RF output stage 28 generates a 100% duty cycle sinusoidal waveform in cut mode, which is best suited for ablating, fusing and dissecting tissue and a 1-25% duty cycle waveform in coagulation mode, which is best used for cauterizing tissue to stop bleeding.


The radio frequency waveforms include a current and a voltage waveform. The present disclosure provides for a system and method which monitors and compares the voltage and current waveform to detect discrepancies between the waveform on a time scale substantially equal to one-half radio frequency cycle of the waveform.


The generator 20 may include a plurality of connectors to accommodate various types of electrosurgical instruments (e.g., instrument 2, electrosurgical forceps 10, etc.). Further, the generator 20 may operate in monopolar or bipolar modes by including a switching mechanism (e.g., relays) to switch the supply of RF energy between the connectors, such that, for instance, when the instrument 2 is connected to the generator 20, only the monopolar plug receives RF energy.


The controller 24 includes a microprocessor 25 operably connected to a memory 26, which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 25 includes an output port that is operably connected to the HVPS 27 and/or RF output stage 28 allowing the microprocessor 25 to control the output of the generator 20 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that the microprocessor 25 may be substituted by any logic processor or analog circuitry (e.g., control circuit) adapted to perform the calculations discussed herein.


The generator 20 may implement a closed and/or open loop control schemes which include a sensor circuit 22 having a plurality of sensors measuring a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output current and/or voltage, etc.), and providing feedback to the controller 24. A current sensor can be disposed at either the active or return current path or both and voltage can be sensed at the active electrode(s). The controller 24 compares voltage and current waveforms to identify arc events, the duration thereof and total energy of the arc event. The controller 24 then transmits appropriate signals to the HVPS 27 and/or RF output stage 28, which then adjust DC and/or RF power supply, respectively by using a maximum allowable arc energy which varies according to the selected mode. The controller 24 also receives input signals from the input controls of the generator 20 or the instrument 2. The controller 24 utilizes the input signals to adjust power output by the generator 20 and/or performs other control functions thereon.


The sensor circuit 22 measures the electrical current (I) and voltage (V) supplied by the RF output stage 28 in real time to characterize the electrosurgical process during both the matching sinusoidal and non-sinusoidal durations for a predetermined sampling period, the former being of short duration (e.g., half a cycle) and the latter being of long duration (e.g., 15 cycles). This allows for the measured electrical properties to be used as dynamic input control variables to achieve feedback control. The current and voltage values may also be used to derive other electrical parameters, such as power (P=V*I) and impedance (Z=V/I). The sensor circuit 22 also measures properties of the current and voltage waveforms and determines the shape thereof.


More specifically, the controller 20 includes a total charge calculator module 40 and a total energy calculator 42. The total charge calculator module 40 is configured to determine the total charge, “q,” delivered to the tissue in Coulombs both on average and during an arc event. This is accomplished by integrating the measured current over the two predetermined sampling periods, the sinusoidal and non-sinusoidal durations. The total energy calculator module 42 determines the total energy, “E,” delivered into the tissue during treatment. The total energy calculator module 42 determines the power delivered by generator 20 and then integrates the power over the sampling period. The sampling period can range from about a small fraction of the half-cycle of the electrosurgical waveform during arcs to a plurality of full cycles.


The controller 20 is also configured to determine deviations between one or more properties of the voltage waveform and the current waveform by comparing the waveforms. As stated above, a discrepancy between the voltage and current waveforms is indicative of an arc event, this allows the controller 20 to determine when an arc event has occurred and then utilize the calculators 40 and 42 to determine the total charge, total energy and duration of the arc event. In other words, once an arc even has been detected based on the comparison of the waveforms, the controller 20 thereafter generates a comparison signal and performs total charge and energy calculations for the period of time corresponding to the deviation (e.g., the arc event).


The generator 20 also includes a circuit 50, having a series inductance, a series resistance and a shunt capacitance which are shown schematically as a series inductor 46, a series resistor 48 and a shunt capacitor 49. The inductor 46 and resistor 48 are disposed on the active terminal 30, with the capacitor 49 being disposed between the active and return terminals 30 and 32. Inductance and capacitance of these components is determined by characteristics of the load elements (e.g., the active electrode 2, and the tissue). The resistance is selected for a so-called quality factor, “Q,” corresponding to the excitation of the circuit 50. The resistance, inductance and capacitance are also selected to accommodate system and parasitic electrical properties associated with the generator 20 (e.g., inductance and capacitance of the cable 4).


The total charge calculator module 40 determines the total charge, “q,” by temporal integration of the voltage across the resistor 48. The charge arises from the stored energy in reactive components described above and available for the arc duration when this energy is suddenly discharged. The sensor circuit 22 measures the voltage at the resistor 48 for the desired sampling period and compares the voltage to the current waveform. The sensor circuit 22 then transmits the voltage, current and time values of the sampling period to the total charge calculator module 40, which thereafter integrates the values to obtain “q.” The total energy calculator module 42 determines the total energy, “E,” by temporal integration of the product of “q” and the voltage across the capacitor 49 during an arc event. In particular, the controller 24 is configured to utilize the results of the determinations by the total charge calculator module 40 and the total energy calculator module 42 to adjust the operation of the generator 20 during the arc-free and arc events. For every detected arc event, the controller 24 is configured to set a maximum energy to be delivered by the RF output stage 28 per instantaneous arc based on formula (1):

E=CV2/2+LI2/2  (1)


In formula (1), E is the desired energy, C is the capacitance of the capacitor 49, L is the inductance of the inductor 46, and V is voltage measured across thereof.


In another embodiment, arcing maybe controlled by placing limits on operational parameters in conjunction or in lieu of active feedback control. The limits are based on media properties (e.g., liquid medium in which the tissue is submerged) and mobile charge (e.g., electrolyte) concentrations. Mobile charges in the media can be either positive or negative. Further, the charges move through the media at a different rate defined in units of velocity per electric field. During ideal operation the balance between the positive and negative charges can be expressed by the formula (2):

(mobility of negative charges)*(positive voltage magnitude)*(duration of positive voltage)=(mobility of positive species)*(negative voltage magnitude)*(duration of negative voltage)  (2)


The equilibrium between the charges occurs when positive and negative charges travel the same distance, such that there is no accumulation of the faster-moving charges at the surface of the active electrode. Accumulation of faster species at the instance when the voltage switches polarity results in deleteriously high charge density at the tip of the active electrode. The spatial gradient of the charge density gives rise to a potential that is high enough to cause a breakdown which results in arcing. Thus, arcing can be minimized by putting limits on operational parameters of the generator 20 to produce desired waveforms which match or equalize charge transport of each polarity of species. Namely, the voltage, current, and other output parameters of the generator 20 are adjusted as a function of the formula (2) based on prior empirical measurements or experience to decrease the amount of faster charges at the tip of the active electrode when the voltage switches polarity.



FIG. 3 illustrates a method for adjusting energy per arc in response to total charge and total energy values for arc events and arc-free intervals. In step 100, the controller 24 selects duration for the sampling period, during which the sense circuit 20 is going to measure voltage, current, and other tissue and/or waveform properties. The length of the sampling period can be for the duration of a sub-cycle (e.g., half-cycle) or a plurality of cycles of the waveform, depending on the desired breadth of the value.


In step 102, the sensor circuit 22 measures the voltage across the resistor 48 for the duration of the sampling period. In step 104, the total charge calculator module 40 determines the total charge deposited into the tissue by temporally integrating the current arc waveform at the resistor 48 with respect to the length of the sampling period and deviating from the voltage waveform's sinusoidal character. In addition to the total charge determination, the controller 24 also determines the total energy deposited during the sampling period of the short duration arc. This is accomplished in step 106 by measuring the voltage across the capacitor 49 during the sampling period and comparing the voltage waveform with the current waveform deviations to determine the duration of any arc event and the energy delivered by the arc. In particular, the controller 24 compares the shape of the voltage waveform and the current waveform to determine a deviation between the shape of the voltage waveform and the current waveform indicative of an arc event. In step 108, the total energy calculator module 42 multiplies the shunt capacitance voltage and the total charge calculated in step 104 to determine total energy.


In another embodiment, as illustrated in step 107, the total energy calculator module 42 determines the total energy amount in both the arc free duration and during the arc event by determining the power supplied to the tissue and thereafter temporally integrating the power value deposited to the tissue during the sampling period. In step 110, the controller 24 determines a desired amount of energy to be deposited into tissue per arc event by using the formula (1). In step 112, the controller 24 signals the RF output stage 28 to output the desired energy level on a per arc basis. This allows the generator 20 to tailor the output to avoid arcing beyond a predetermined set point depending on the selected electrosurgical mode. Thus, as an arcing event is detected, the output is adjusted accordingly to avoid tissue damage.


In embodiments, steps 102 and 104 can run concurrently with steps 106 and 108, such that total charge and total energy calculations are performed simultaneously and the output of these calculations are provided in parallel to the controller 24 in step 110.


While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical generator comprising: a radio frequency output stage configured to generate at least one radio frequency waveform having a voltage waveform and a current waveform;a sensor circuit configured to determine at least one property of each of the voltage waveform and the current waveform during a predetermined sampling period; anda controller configured to compare the at least one property of each of the voltage waveform and the current waveform on a time scale substantially equal to one-half radio frequency cycle of the at least one radio frequency waveform on a time scale substantially equal to one-half radio frequency cycle of the at least one radio frequency waveform to determine at least one deviation between the at least one property of each of the voltage waveform and the current waveform indicative of an arc event, the controller further configured to determine at least one of total charge, total energy and duration of the arc event based on the at least one deviation,wherein the controller includes a total charge calculator module configured to temporally integrate the voltage waveform to determine the total charge deposited by the at least one radio frequency waveform during the predetermined sampling period.
  • 2. The electrosurgical generator according to claim 1, wherein the controller is further configured to adjust the output of the electrosurgical generator based on the at least one deviation.
  • 3. The electrosurgical generator according to claim 2, wherein the controller includes a total energy calculator module configured to temporally integrate total power deposited by the at least one radio frequency waveform to determine the total energy deposited by the at least one radio frequency waveform during the predetermined sampling period.
  • 4. The electrosurgical generator according to claim 1, further comprising: a shunt capacitor disposed between active and return terminals of the electrosurgical generator.
  • 5. The electrosurgical generator according to claim 4, wherein the controller includes a total energy calculator module configured to temporally integrate product of total charge deposited by the at least one radio frequency waveform and voltage across the shunt capacitor to determine the total energy deposited by the at least one radio frequency waveform during the predetermined sampling period.
  • 6. The electrosurgical generator according to claim 4, wherein the controller is configured to determine a desired amount of energy to be deposited into tissue per arc event based on a formula E=CV2/2+LI2/2, wherein E is the desired energy, C is capacitance of the shunt capacitor, L is inductance of a series inductor, I is current and V is voltage measured across the shunt capacitor.
  • 7. The electrosurgical generator according to claim 4, further comprising: a resistor and an inductor coupled in series with the active terminal.
  • 8. A method for operating an electrosurgical generator, comprising: generating at least one radio frequency waveform having a voltage waveform and a current waveform;determining at least one property of each of the voltage waveform and the current waveform during a predetermined sampling period;measuring amplitude of the voltage waveform across a series resistor of the electrosurgical generator during the sampling period;comparing the at least one property of each of the voltage waveform and the current waveform on a time scale substantially equal to one-half radio frequency cycle of the at least one radio frequency waveform to determine at least one deviation between the at least one property of each of the voltage waveform and the current waveform indicative of an arc eventdetermining at least one of total charge, total energy and duration of the arc event based on the at least one deviation; andtemporally integrating voltage across the series resistor to determine total charge deposited into tissue by the at least one radio frequency waveform during the sampling period.
  • 9. The method according to claim 8, further comprising: temporally integrating power of the at least one radio frequency waveform during the sampling period to determine total energy deposited into tissue by the at least one radio frequency waveform during the sampling period.
  • 10. The method according to claim 8, further comprising: measuring voltage across a shunt capacitor disposed between active and return terminals of the electrosurgical generator during the sampling period; andtemporally integrating a product of the total charge and the voltage across the shunt capacitor to determine total energy deposited into tissue by the at least one radio frequency waveform during the sampling period.
  • 11. The method according to claim 10, further comprising: calculating a desired amount of energy to be deposited into tissue per arc event to limit the arc event; andadjusting output of the electrosurgical generator based on the desired maximum amount of energy to be deposited into tissue per arc event.
  • 12. The method according to claim 11, wherein calculating the desired amount of energy is based on a formula E=CV2/2+LI2/2, wherein E is the desired energy, C is capacitance of the shunt capacitor, L is inductance of a series inductor, I is current and V is voltage measured across the shunt capacitor.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 11/859,039 filed on Sep. 21, 2007, which issued as U.S. Pat. No. 8,512,332 on Aug. 20, 2013, the entire contents of which are incorporated by reference herein.

US Referenced Citations (833)
Number Name Date Kind
1787709 Wappler Jan 1931 A
1813902 Bovie Jul 1931 A
1841968 Lowry Jan 1932 A
1863118 Liebel Jun 1932 A
1945867 Rawls Feb 1934 A
2827056 Degelman Mar 1958 A
2849611 Adams Aug 1958 A
3058470 Seeliger et al. Oct 1962 A
3089496 Degelman May 1963 A
3154365 Crimmins Oct 1964 A
3163165 Islikawa Dec 1964 A
3252052 Nash May 1966 A
3391351 Trent Jul 1968 A
3413480 Biard et al. Nov 1968 A
3436563 Regitz Apr 1969 A
3439253 Piteo Apr 1969 A
3439680 Thomas, Jr. Apr 1969 A
3461874 Martinez Aug 1969 A
3471770 Haire Oct 1969 A
3478744 Leiter Nov 1969 A
3486115 Anderson Dec 1969 A
3495584 Schwalm Feb 1970 A
3513353 Lansch May 1970 A
3514689 Giannamore May 1970 A
3515943 Warrington Jun 1970 A
3551786 Van Gulik Dec 1970 A
3562623 Farnsworth Feb 1971 A
3571644 Jakoubovitch Mar 1971 A
3589363 Banko et al. Jun 1971 A
3595221 Blackett Jul 1971 A
3601126 Estes Aug 1971 A
3611053 Rowell Oct 1971 A
3641422 Farnsworth et al. Feb 1972 A
3642008 Bolduc Feb 1972 A
3662151 Haffey May 1972 A
3675655 Sittner Jul 1972 A
3683923 Anderson Aug 1972 A
3693613 Kelman Sep 1972 A
3697808 Lee Oct 1972 A
3699967 Anderson Oct 1972 A
3720896 Beierlein Mar 1973 A
3743918 Maitre Jul 1973 A
3766434 Sherman Oct 1973 A
3768482 Shaw Oct 1973 A
3801766 Morrison, Jr. Apr 1974 A
3801800 Newton Apr 1974 A
3812858 Oringer May 1974 A
3815015 Swin et al. Jun 1974 A
3826263 Cage et al. Jul 1974 A
3848600 Patrick, Jr. et al. Nov 1974 A
3870047 Gonser Mar 1975 A
3875945 Friedman Apr 1975 A
3885569 Judson May 1975 A
3897787 Ikuno et al. Aug 1975 A
3897788 Newton Aug 1975 A
3898554 Knudsen Aug 1975 A
3905373 Gonser Sep 1975 A
3913583 Bross Oct 1975 A
3923063 Andrews et al. Dec 1975 A
3933157 Bjurwill et al. Jan 1976 A
3946738 Newton et al. Mar 1976 A
3952748 Kaliher et al. Apr 1976 A
3963030 Newton Jun 1976 A
3964487 Judson Jun 1976 A
3971365 Smith Jul 1976 A
3978393 Wisner et al. Aug 1976 A
3980085 Ikuno Sep 1976 A
4005714 Hiltebrandt Feb 1977 A
4024467 Andrews et al. May 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4051855 Schneiderman Oct 1977 A
4074719 Semm Feb 1978 A
4092986 Schneiderman Jun 1978 A
4094320 Newton et al. Jun 1978 A
4097773 Lindmark Jun 1978 A
4102341 Ikuno et al. Jul 1978 A
4114623 Meinke et al. Sep 1978 A
4121590 Gonser Oct 1978 A
4123673 Gonser Oct 1978 A
4126137 Archibald Nov 1978 A
4171700 Farin Oct 1979 A
4188927 Harris Feb 1980 A
4191188 Belt et al. Mar 1980 A
4196734 Harris Apr 1980 A
4200104 Harris Apr 1980 A
4200105 Gonser Apr 1980 A
4209018 Meinke et al. Jun 1980 A
4231372 Newton Nov 1980 A
4232676 Herczog Nov 1980 A
4237887 Gonser Dec 1980 A
4281373 Mabille Jul 1981 A
4287557 Brehse Sep 1981 A
4296413 Milkovic Oct 1981 A
4303073 Archibald Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4314559 Allen Feb 1982 A
4321926 Roge Mar 1982 A
4334539 Childs et al. Jun 1982 A
4343308 Gross Aug 1982 A
4372315 Shapiro et al. Feb 1983 A
4376263 Pittroff et al. Mar 1983 A
4378801 Oosten Apr 1983 A
4384582 Watt May 1983 A
4397314 Vaguine Aug 1983 A
4411266 Cosman Oct 1983 A
4416276 Newton et al. Nov 1983 A
4416277 Newton et al. Nov 1983 A
4429694 McGreevy Feb 1984 A
4436091 Banko Mar 1984 A
4437464 Crow Mar 1984 A
4438766 Bowers Mar 1984 A
4463759 Garito et al. Aug 1984 A
4472661 Culver Sep 1984 A
4474179 Koch Oct 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494541 Archibald Jan 1985 A
4514619 Kugelman Apr 1985 A
4520818 Mickiewicz Jun 1985 A
4559496 Harnden, Jr. et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4565200 Cosman Jan 1986 A
4566454 Mehl et al. Jan 1986 A
4569345 Manes Feb 1986 A
4582057 Auth et al. Apr 1986 A
4586120 Malik et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4595248 Brown Jun 1986 A
4608977 Brown Sep 1986 A
4615330 Nagasaki et al. Oct 1986 A
4630218 Hurley Dec 1986 A
4632109 Paterson Dec 1986 A
4644955 Mioduski Feb 1987 A
4651264 Shiao-Chung Hu Mar 1987 A
4651280 Chang et al. Mar 1987 A
4657015 Irnich Apr 1987 A
4658815 Farin et al. Apr 1987 A
4658819 Harris et al. Apr 1987 A
4658820 Klicek Apr 1987 A
4662383 Sogawa et al. May 1987 A
4691703 Auth et al. Sep 1987 A
4727874 Bowers et al. Mar 1988 A
4735204 Sussman et al. Apr 1988 A
4739759 Rexroth et al. Apr 1988 A
4741334 Irnich May 1988 A
4754757 Feucht Jul 1988 A
4767999 VerPlanck Aug 1988 A
4768969 Bauer et al. Sep 1988 A
4788634 Schlecht et al. Nov 1988 A
4805621 Heinze et al. Feb 1989 A
4818954 Flachenecker et al. Apr 1989 A
4827927 Newton May 1989 A
4848335 Manes Jul 1989 A
4860745 Farin et al. Aug 1989 A
4862889 Feucht Sep 1989 A
4887199 Whittle Dec 1989 A
4890610 Kirwan, Sr. et al. Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4907589 Cosman Mar 1990 A
4922210 Flachenecker et al. May 1990 A
4931047 Broadwin et al. Jun 1990 A
4931717 Gray et al. Jun 1990 A
4938761 Ensslin Jul 1990 A
4942313 Kinzel Jul 1990 A
4959606 Forge Sep 1990 A
4961047 Carder Oct 1990 A
4961435 Kitagawa et al. Oct 1990 A
4966597 Cosman Oct 1990 A
4969885 Farin Nov 1990 A
4992719 Harvey Feb 1991 A
4993430 Shimoyama et al. Feb 1991 A
4995877 Ams et al. Feb 1991 A
5015227 Broadwin et al. May 1991 A
5024668 Peters et al. Jun 1991 A
5044977 Vindigni Sep 1991 A
5067953 Feucht Nov 1991 A
5075839 Fisher et al. Dec 1991 A
5087257 Farin et al. Feb 1992 A
5099840 Goble et al. Mar 1992 A
5103804 Abele et al. Apr 1992 A
5108389 Cosmescu Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
5119284 Fisher et al. Jun 1992 A
5122137 Lennox Jun 1992 A
5133711 Hagen Jul 1992 A
5151102 Kamiyama et al. Sep 1992 A
5152762 McElhenney Oct 1992 A
5157603 Scheller et al. Oct 1992 A
5160334 Billings et al. Nov 1992 A
5161893 Shigezawa et al. Nov 1992 A
5167658 Ensslin Dec 1992 A
5167659 Ohtomo et al. Dec 1992 A
5190517 Zieve et al. Mar 1993 A
5196008 Kuenecke et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5201900 Nardella Apr 1993 A
5207691 Nardella May 1993 A
5230623 Guthrie et al. Jul 1993 A
5233515 Cosman Aug 1993 A
5234427 Ohtomo et al. Aug 1993 A
5249121 Baum et al. Sep 1993 A
5249585 Turner et al. Oct 1993 A
5254117 Rigby et al. Oct 1993 A
RE34432 Bertrand Nov 1993 E
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5281213 Milder et al. Jan 1994 A
5282840 Hudrlik Feb 1994 A
5290283 Suda Mar 1994 A
5295857 Toly Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5300070 Gentelia et al. Apr 1994 A
5304917 Somerville Apr 1994 A
5318563 Malis et al. Jun 1994 A
5323778 Kandarpa et al. Jun 1994 A
5324283 Heckele Jun 1994 A
5330518 Neilson et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342357 Nardella Aug 1994 A
5342409 Mullett Aug 1994 A
5346406 Hoffman et al. Sep 1994 A
5346491 Oertli Sep 1994 A
5348554 Imran et al. Sep 1994 A
5370645 Klicek et al. Dec 1994 A
5370672 Fowler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5409000 Imran Apr 1995 A
5409485 Suda Apr 1995 A
5413573 Koivukangas May 1995 A
5414238 Steigerwald et al. May 1995 A
5417719 Hull et al. May 1995 A
5422567 Matsunaga Jun 1995 A
5422926 Smith et al. Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423810 Goble et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5429596 Arias et al. Jul 1995 A
5430434 Lederer et al. Jul 1995 A
5432459 Thompson et al. Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5436566 Thompson et al. Jul 1995 A
5438302 Goble Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445635 Denen et al. Aug 1995 A
5451224 Goble et al. Sep 1995 A
5452725 Martenson Sep 1995 A
5454809 Janssen Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5474464 Drewnicki Dec 1995 A
5480399 Hebborn Jan 1996 A
5483952 Aranyi Jan 1996 A
5496312 Klicek Mar 1996 A
5496313 Gentelia et al. Mar 1996 A
5496314 Eggers Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5500616 Ochi Mar 1996 A
5511993 Yamada et al. Apr 1996 A
5514129 Smith May 1996 A
5520684 Imran May 1996 A
5531774 Schulman et al. Jul 1996 A
5534018 Wahlstrand et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540677 Sinofsky Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540682 Gardner et al. Jul 1996 A
5540683 Ichikawa et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5545161 Imran Aug 1996 A
5556396 Cohen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562720 Stern et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5596466 Ochi Jan 1997 A
5599344 Paterson Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5599348 Gentelia et al. Feb 1997 A
5605150 Radons et al. Feb 1997 A
5609560 Ichikawa et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5620481 Desai et al. Apr 1997 A
5626575 Crenner May 1997 A
5628745 Bek May 1997 A
5628771 Mizukawa et al. May 1997 A
5643330 Holsheimer et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5658322 Fleming Aug 1997 A
5660567 Nierlich et al. Aug 1997 A
5664953 Reylek Sep 1997 A
5674217 Wahlstrom et al. Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5681307 McMahan Oct 1997 A
5685840 Schechter et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5693078 Desai et al. Dec 1997 A
5694304 Telefus et al. Dec 1997 A
5695494 Becker Dec 1997 A
5696441 Mak et al. Dec 1997 A
5697925 Taylor Dec 1997 A
5697927 Imran et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702429 King Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5712772 Telefus et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718246 Vona Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722975 Edwards et al. Mar 1998 A
5729448 Haynie et al. Mar 1998 A
5733281 Nardella Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5738683 Osypka Apr 1998 A
5743900 Hara Apr 1998 A
5743903 Stern et al. Apr 1998 A
5749869 Lindenmeier et al. May 1998 A
5749871 Hood et al. May 1998 A
5755715 Stern et al. May 1998 A
5766153 Eggers et al. Jun 1998 A
5766165 Gentelia et al. Jun 1998 A
5769847 Panescu et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5788688 Bauer et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5797902 Netherly Aug 1998 A
5807253 Dumoulin et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5814092 King Sep 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5820568 Willis Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5830212 Cartmell et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843075 Taylor Dec 1998 A
5846236 Lindenmeier et al. Dec 1998 A
5849010 Wurzer et al. Dec 1998 A
5853409 Swanson et al. Dec 1998 A
5860832 Wayt et al. Jan 1999 A
5865788 Edwards et al. Feb 1999 A
5868737 Taylor et al. Feb 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871481 Kannenberg et al. Feb 1999 A
5891142 Eggers et al. Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5906614 Stern et al. May 1999 A
5908444 Azure Jun 1999 A
5913882 King Jun 1999 A
5921982 Lesh et al. Jul 1999 A
5925070 King et al. Jul 1999 A
5931836 Hatta et al. Aug 1999 A
5938690 Law et al. Aug 1999 A
5944553 Yasui et al. Aug 1999 A
5948007 Starkebaum et al. Sep 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954686 Garito et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954719 Chen et al. Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5959253 Shinchi Sep 1999 A
5961344 Rosales et al. Oct 1999 A
5964746 McCary Oct 1999 A
5971980 Sherman Oct 1999 A
5971981 Hill et al. Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
6007532 Netherly Dec 1999 A
6010499 Cobb Jan 2000 A
6013074 Taylor Jan 2000 A
6014581 Whayne et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6022346 Panescu et al. Feb 2000 A
6022347 Lindenmeier et al. Feb 2000 A
6033399 Gines Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6039732 Ichikawa et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6053910 Fleenor Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6055458 Cochran et al. Apr 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063075 Mihori May 2000 A
6063078 Wittkampf May 2000 A
6066137 Greep May 2000 A
6068627 Orszulak et al. May 2000 A
6074089 Hollander et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074388 Tockweiler et al. Jun 2000 A
6080149 Huang et al. Jun 2000 A
6088614 Swanson Jul 2000 A
6093186 Goble Jul 2000 A
6102497 Ehr et al. Aug 2000 A
6102907 Smethers et al. Aug 2000 A
6113591 Whayne et al. Sep 2000 A
6113592 Taylor Sep 2000 A
6113593 Tu et al. Sep 2000 A
6113596 Hooven et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6132429 Baker Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6155975 Urich et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6162217 Kannenberg et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6171304 Netherly et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6186147 Cobb Feb 2001 B1
6188211 Rincon-Mora et al. Feb 2001 B1
6193713 Geistert et al. Feb 2001 B1
6197023 Muntermann Mar 2001 B1
6203541 Keppel Mar 2001 B1
6210403 Klicek Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6222356 Taghizadeh-Kaschani Apr 2001 B1
6228078 Eggers et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6231569 Bek et al. May 2001 B1
6232556 Daugherty et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6235022 Hallock et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238388 Ellman et al. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6241725 Cosman Jun 2001 B1
6243654 Johnson et al. Jun 2001 B1
6245061 Panescu et al. Jun 2001 B1
6245063 Uphoff Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251106 Becker et al. Jun 2001 B1
6254422 Feye-Hohmann Jul 2001 B1
6258085 Eggleston Jul 2001 B1
6261285 Novak et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6267760 Swanson Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6275786 Daners Aug 2001 B1
6293941 Strul et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309386 Bek Oct 2001 B1
6322558 Taylor et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6337998 Behl et al. Jan 2002 B1
6338657 Harper et al. Jan 2002 B1
6350262 Ashley Feb 2002 B1
6358245 Edwards et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6383183 Sekino et al. May 2002 B1
6391024 Sun et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6402741 Keppel et al. Jun 2002 B1
6402742 Blewett et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6413256 Truckai et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6422896 Aoki et al. Jul 2002 B2
6423057 He et al. Jul 2002 B1
6426886 Goder Jul 2002 B1
6428537 Swanson et al. Aug 2002 B1
6436096 Hareyama Aug 2002 B1
6440157 Shigezawa et al. Aug 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6454594 Sawayanagi Sep 2002 B2
6458121 Rosenstock et al. Oct 2002 B1
6458122 Pozzato Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464696 Oyama et al. Oct 2002 B1
6468270 Hovda et al. Oct 2002 B1
6468273 Leveen et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6494880 Swanson et al. Dec 2002 B1
6497659 Rafert Dec 2002 B1
6498466 Edwards Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511476 Hareyama Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6517538 Jacob et al. Feb 2003 B1
6522931 Manker et al. Feb 2003 B2
6524308 Muller et al. Feb 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6544260 Markel et al. Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6557559 Eggers et al. May 2003 B1
6558376 Bishop May 2003 B2
6558377 Lee et al. May 2003 B2
6560470 Pologe May 2003 B1
6562037 Paton et al. May 2003 B2
6565559 Eggleston May 2003 B2
6565562 Shah et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6578579 Burnside et al. Jun 2003 B2
6579288 Swanson et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6602243 Noda Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6620157 Dabney et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623423 Sakurai et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629973 Wårdell et al. Oct 2003 B1
6632193 Davison et al. Oct 2003 B1
6635056 Kadhiresan et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6645198 Bommannan et al. Nov 2003 B1
6648883 Francischelli et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652514 Ellman et al. Nov 2003 B2
6653569 Sung Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663624 Edwards et al. Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6672151 Schultz et al. Jan 2004 B1
6679875 Honda et al. Jan 2004 B2
6682527 Strul Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim et al. Feb 2004 B1
6693782 Lash Feb 2004 B1
6695837 Howell Feb 2004 B2
6696844 Wong et al. Feb 2004 B2
6712813 Ellman et al. Mar 2004 B2
6730078 Simpson et al. May 2004 B2
6730079 Lovewell May 2004 B2
6730080 Harano et al. May 2004 B2
6733495 Bek et al. May 2004 B1
6733498 Paton et al. May 2004 B2
6740079 Eggers et al. May 2004 B1
6740085 Hareyama et al. May 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6749624 Knowlton Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761716 Kadhiresan et al. Jul 2004 B2
6783523 Qin et al. Aug 2004 B2
6784405 Flugstad et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6792390 Burnside et al. Sep 2004 B1
6796980 Hall Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6809508 Donofrio Oct 2004 B2
6818000 Muller et al. Nov 2004 B2
6824539 Novak Nov 2004 B2
6830569 Thompson et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6843682 Matsuda et al. Jan 2005 B2
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6855141 Lovewell Feb 2005 B2
6855142 Harano et al. Feb 2005 B2
6860881 Sturm et al. Mar 2005 B2
6864686 Novak et al. Mar 2005 B2
6875210 Refior et al. Apr 2005 B2
6890331 Kristensen May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6923804 Eggers et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939344 Kreindel Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942660 Pantera et al. Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6958064 Rioux et al. Oct 2005 B2
6962587 Johnson et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6974463 Magers et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6994704 Qin et al. Feb 2006 B2
6994707 Ellman et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7008369 Cuppen Mar 2006 B2
7008417 Eick Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7025764 Paton et al. Apr 2006 B2
7033351 Howell Apr 2006 B2
7041096 Malis et al. May 2006 B2
7044948 Keppel May 2006 B2
7044949 Orszulak et al. May 2006 B2
7060063 Marion et al. Jun 2006 B2
7062331 Zarinetchi et al. Jun 2006 B2
7063692 Sakurai et al. Jun 2006 B2
7066933 Hagg Jun 2006 B2
7074217 Strul et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
RE39358 Goble Oct 2006 E
7115121 Novak Oct 2006 B2
7115124 Xiao Oct 2006 B1
7118564 Ritchie et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7131860 Sartor et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7146210 Palti Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7151964 Desai et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156844 Reschke et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160293 Sturm et al. Jan 2007 B2
7163536 Godara Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7175618 Dabney et al. Feb 2007 B2
7175621 Heim et al. Feb 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7203556 Daners Apr 2007 B2
7211081 Goble May 2007 B2
7214224 Goble May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7226447 Uchida et al. Jun 2007 B2
7229469 Witzel et al. Jun 2007 B1
7232437 Berman et al. Jun 2007 B2
7238181 Daners et al. Jul 2007 B2
7238183 Kreindel Jul 2007 B2
7244255 Daners et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7250048 Francischelli et al. Jul 2007 B2
7250746 Oswald et al. Jul 2007 B2
7255694 Keppel Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7282048 Goble et al. Oct 2007 B2
7282049 Orszulak et al. Oct 2007 B2
7285117 Krueger et al. Oct 2007 B2
7294127 Leung et al. Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300437 Pozzato Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7305311 van Zyl Dec 2007 B2
7317954 McGreevy Jan 2008 B2
7317955 McGreevy Jan 2008 B2
7324357 Miura et al. Jan 2008 B2
7333859 Rinaldi et al. Feb 2008 B2
7341586 Daniel et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354436 Rioux et al. Apr 2008 B2
7357800 Swanson Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7364578 Francischelli et al. Apr 2008 B2
7364972 Ono et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
RE40388 Gines Jun 2008 E
7396336 Orszulak et al. Jul 2008 B2
7402754 Kirwan, Jr. et al. Jul 2008 B2
D574323 Waaler Aug 2008 S
7407502 Strul et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
7416549 Young et al. Aug 2008 B2
7422582 Malackowski et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7425835 Eisele Sep 2008 B2
7465302 Odell et al. Dec 2008 B2
7470272 Mulier et al. Dec 2008 B2
7479140 Ellman et al. Jan 2009 B2
7491199 Goble Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7513896 Orszulak Apr 2009 B2
7525398 Nishimura et al. Apr 2009 B2
8512332 Collins et al. Aug 2013 B2
20010014804 Goble et al. Aug 2001 A1
20010029315 Sakurai et al. Oct 2001 A1
20010031962 Eggleston Oct 2001 A1
20020035363 Edwards et al. Mar 2002 A1
20020035364 Schoenman et al. Mar 2002 A1
20020052599 Goble May 2002 A1
20020068932 Edwards et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020151889 Swanson et al. Oct 2002 A1
20020193787 Qin et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030060818 Kannenberg et al. Mar 2003 A1
20030078572 Pearson et al. Apr 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030163123 Goble et al. Aug 2003 A1
20030163124 Goble Aug 2003 A1
20030171745 Francischelli et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030225401 Eggers et al. Dec 2003 A1
20040002745 Fleming et al. Jan 2004 A1
20040015159 Slater et al. Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040019347 Sakurai et al. Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040044339 Beller et al. Mar 2004 A1
20040049179 Francischelli et al. Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040059323 Sturm et al. Mar 2004 A1
20040068304 Paton et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040095100 Thompson May 2004 A1
20040097912 Gonnering May 2004 A1
20040097914 Pantera et al. May 2004 A1
20040097915 Refior et al. May 2004 A1
20040116919 Heim et al. Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040138653 Dabney et al. Jul 2004 A1
20040138654 Goble Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147918 Keppel Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040230189 Keppel Nov 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20040260279 Goble et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004634 Ricart et al. Jan 2005 A1
20050021020 Blaha Jan 2005 A1
20050021022 Sturm et al. Jan 2005 A1
20050101949 Harano et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050109111 Manlove et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050182398 Paterson Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060025760 Podhajsky Feb 2006 A1
20060079871 Plaven et al. Apr 2006 A1
20060111711 Goble May 2006 A1
20060161148 Behnke Jul 2006 A1
20060178664 Keppel Aug 2006 A1
20060224152 Behnke et al. Oct 2006 A1
20060281360 Sartor et al. Dec 2006 A1
20060291178 Shih Dec 2006 A1
20070038209 Buysse et al. Feb 2007 A1
20070093800 Wham et al. Apr 2007 A1
20070093801 Behnke Apr 2007 A1
20070135812 Sartor Jun 2007 A1
20070173802 Keppel Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173810 Orszulak Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070208339 Arts et al. Sep 2007 A1
20070225698 Orszulak et al. Sep 2007 A1
20070250052 Wham Oct 2007 A1
20070265612 Behnke et al. Nov 2007 A1
20070282320 Buysse et al. Dec 2007 A1
20080015563 Hoey et al. Jan 2008 A1
20080015564 Wham et al. Jan 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080082094 McPherson et al. Apr 2008 A1
20080125767 Blaha May 2008 A1
20080177199 Podhajsky Jul 2008 A1
20080248685 Sartor et al. Oct 2008 A1
20080281315 Gines Nov 2008 A1
20080281316 Carlton et al. Nov 2008 A1
20080287791 Orszulak et al. Nov 2008 A1
20080287838 Orszulak et al. Nov 2008 A1
20090018536 Behnke Jan 2009 A1
20090024120 Sartor Jan 2009 A1
20090036883 Behnke Feb 2009 A1
20090069801 Jensen et al. Mar 2009 A1
20090082765 Collins et al. Mar 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090157072 Wham et al. Jun 2009 A1
20090157073 Orszulak Jun 2009 A1
20090157075 Wham et al. Jun 2009 A1
Foreign Referenced Citations (106)
Number Date Country
179607 Mar 1905 DE
390937 Mar 1924 DE
1099658 Feb 1961 DE
1139927 Nov 1962 DE
1149832 Jun 1963 DE
1439302 Jan 1969 DE
2439587 Feb 1975 DE
2455174 May 1975 DE
2407559 Aug 1975 DE
2602517 Jul 1976 DE
2504280 Aug 1976 DE
2540968 Mar 1977 DE
2820908 Nov 1978 DE
2803275 Aug 1979 DE
2823291 Nov 1979 DE
2946728 May 1981 DE
3143421 May 1982 DE
3045996 Jul 1982 DE
3120102 Dec 1982 DE
3510586 Oct 1986 DE
3604823 Aug 1987 DE
3904558 Aug 1990 DE
3942998 Jul 1991 DE
4339049 May 1995 DE
19717411 Nov 1998 DE
19848540 May 2000 DE
0 246 350 Nov 1987 EP
310431 Apr 1989 EP
325456 Jul 1989 EP
336742 Oct 1989 EP
390937 Oct 1990 EP
0 556 705 Aug 1993 EP
569130 Nov 1993 EP
608609 Aug 1994 EP
694291 Jan 1996 EP
0 836 868 Apr 1998 EP
0878169 Nov 1998 EP
880220 Nov 1998 EP
1051948 Nov 2000 EP
1053720 Nov 2000 EP
1151725 Nov 2001 EP
1293171 Mar 2003 EP
1472984 Nov 2004 EP
1495712 Jan 2005 EP
1500378 Jan 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1645235 Apr 2006 EP
1707143 Oct 2006 EP
1707144 Oct 2006 EP
2 573 301 May 1986 FR
607850 Sep 1948 GB
702510 Jan 1954 GB
855459 Nov 1960 GB
902775 Aug 1962 GB
2164473 Mar 1986 GB
2214430 Sep 1989 GB
2358934 Aug 2001 GB
166452 Nov 1964 SU
727201 Apr 1980 SU
9206642 Apr 1992 WO
9324066 Dec 1993 WO
9424949 Nov 1994 WO
9428809 Dec 1994 WO
9509577 Apr 1995 WO
9519148 Jul 1995 WO
9525471 Sep 1995 WO
9602180 Feb 1996 WO
9604860 Feb 1996 WO
9608794 Mar 1996 WO
9618349 Jun 1996 WO
9629946 Oct 1996 WO
9639086 Dec 1996 WO
9639914 Dec 1996 WO
9706739 Feb 1997 WO
9706740 Feb 1997 WO
9706855 Feb 1997 WO
9711648 Apr 1997 WO
9717029 May 1997 WO
9807378 Feb 1998 WO
9818395 May 1998 WO
9827880 Jul 1998 WO
9912607 Mar 1999 WO
0200129 Jan 2002 WO
0211634 Feb 2002 WO
0245589 Jun 2002 WO
0247565 Jun 2002 WO
02053048 Jul 2002 WO
02088128 Nov 2002 WO
03090635 Nov 2003 WO
03092520 Nov 2003 WO
03090630 Apr 2004 WO
2004028385 Apr 2004 WO
2004043240 May 2004 WO
2004043240 May 2004 WO
2004052182 Jun 2004 WO
2004098385 Nov 2004 WO
2004103156 Dec 2004 WO
2005046496 May 2005 WO
2005048809 Jun 2005 WO
2005050151 Jun 2005 WO
2005060365 Jul 2005 WO
2005060849 Jul 2005 WO
2006050888 May 2006 WO
2006050888 May 2006 WO
2006105121 Oct 2006 WO
Non-Patent Literature Citations (61)
Entry
International Search Report EP08166208.2 dated Dec. 1, 2008.
International Search Report PCT/US03/33711 dated Jul. 16, 2004.
International Search Report PCT/US03/33832 dated Jun. 17, 2004.
International Search Report PCT/USO4/02961 dated Aug. 2, 2005.
International Search Report EP 06010499.9 dated Jan. 29, 2008.
International Search Report EP 07001489.9 dated Dec. 20, 2007.
International Search Report EP 07001491 dated Jun. 6, 2007.
International Search Report EP 07009322.4 dated Jan. 14, 2008.
International Search Report EP 07015601.3 dated Jan. 4, 2008.
International Search Report EP 07015602.1 dated Dec. 20, 2007.
International Search Report EP 07019174.7 dated Jan. 29, 2008.
European Search Report for European Application No. 11186103.5 dated Sep. 7, 2012.
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83; (1995) pp. 271-276.
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994) pp. 297-307.
Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics, 9 (3), May/Jun. 1982.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1, (Jul. 1991) pp. 148-151.
Chicharo et al. “A Sliding Goertzel Algorith” Aug. 1996, pp. 283-297 Signal Processing, Elsevier Science Publishers B. V. Amsterdam, NL vol. 52 No. 3.
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499.
Cosman et al., “Radiofrequency Lesion Generation and Its Effect on Tissue Impedance” Applied Neurophysiology 51: (1988) pp. 230-242.
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15: (1984) pp. 945-950.
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27.
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404.
Medtrex Brochure “The O.R. Pro 300” 1 p. Sep. 1998.
Ogden Goertzel Alternative to the Fourier Transform: Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG vol. 99, No. 9. 1687.
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779.
Valleylab Brochure “Valleylab Electroshield Monitoring System” 2 pp. Nov. 1995.
Vallfors et al., “Automatically Controlled Bipolar Electrosoagulation—‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190.
Wald et al., “Accidental Burns”,JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921.
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pp. Jan. 1989.
Ni W. et al. “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences—Yingyong Kexue Xuebao, Shangha CN, vol. 23 No. 2;(Mar. 2005); pp. 160-164.
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Sep. 1999.
International Search Report PCT/US03/37110 dated Jul. 25, 2005.
International Search Report PCT/US03/37310 dated Aug. 13, 2004.
International Search Report EP 04009964 dated Jul. 13, 2004.
International Search Report EP 98300964.8 dated Dec. 4, 2000.
International Search Report EP 04015981.6 dated Sep. 29, 2004.
International Search Report EP 05014156.3.dated Dec. 28, 2005.
International Search Report EP 05021944.3 dated Jan. 18, 2006.
International Search Report EP 05022350.2 dated Jan. 18, 2006.
International Search Report EP 05002769.7 dated Jun. 9, 2006.
International Search Report EP 06000708.5 dated Apr. 21, 2006.
International Search Report—extended EP 06000708.5 dated Aug. 22, 2006.
International Search Report EP 06006717.0 dated Aug. 7, 2006.
International Search Report EP 06022028.2 dated Feb. 5, 2007.
International Search Report EP 06025700.3 dated Apr. 12, 2007.
International Search Report EP 07001481.6 dated Apr. 23, 2007.
International Search Report EP 07001485.7 dated May 15, 2007.
International Search Report EP 07001527.6 dated May 9, 2007.
International Search Report EP 07004355.9 dated May 21, 2007.
International Search Report EP 07008207.8 dated Sep. 5, 2007.
International Search Report EP 07010673.7 dated Sep. 24, 2007.
US 6,878,148, 4/2005, Goble et al. (withdrawn).
Hadley I C D et al., “Inexpensive Digital Thermometer for Measurements on Semiconductors” International Journal of Electronics; Taylor and Francis. Ltd.; London, GB; vol. 70, No. 6 Jun. 1, 1991; pp. 1155-1162.
International Search Report EP04707738 dated Jul. 4, 2007.
International Search Report EP08004667.5 dated Jun. 3, 2008.
International Search Report EP08006733.3 dated Jul. 28, 2008.
International Search Report EP08012503 dated Sep. 19, 2008.
International Search Report EP08013605 dated Nov. 17, 2008.
International Search Report EP08015601.1 dated Dec. 5, 2008.
International Search Report EP08016540.0 dated Feb. 25, 2009.
International Search Report EP08155780 dated Jan. 19, 2009.
Related Publications (1)
Number Date Country
20140025064 A1 Jan 2014 US
Continuations (1)
Number Date Country
Parent 11859039 Sep 2007 US
Child 13971596 US