The invention relates to manufacturing methods and, more particularly, to a manufacturing methodology based on a real-time, closed-loop and forward-looking process control to prevent defects from occurring in production lines or manufacturing cells.
In the electronic manufacturing domain today, quality levels cannot be significantly improved without a major change in the way production lines and processes are controlled. The current practice focuses only on the containment of defects, which are measured in DPMO (defects per million opportunities). Defect containment is a passive manufacturing control mode.
Thus, there is a need to provide a manufacturing methodology based on a real-time, closed-loop and a forward-looking process control system to prevent defects from occurring in production lines or manufacturing cells.
An object of the invention is to fulfill the need referred to above. In accordance with the principles of the present invention, this objective is achieved by providing a method for executing a monitoring process during a manufacturing process to produce products. The method measures, in real time, performance variables of an upstream portion of a present manufacturing process; analyzes, with a processor, trends in the performance variables of the present manufacturing process together with data that models a portion of a subsequent manufacturing process, that occurs after the present manufacture process, to predict performance of the subsequent manufacturing process; sends trend analysis information to the present manufacturing process; and sends information to the subsequent manufacturing process.
In accordance with another aspect of the invention, a computer readable medium has stored thereon, sequences of instruction for executing a monitoring process to prevent defects in products produced during a manufacturing process. The sequence of instructions include instructions for performing the steps of measuring, in real time, performance variables of an upstream portion of a present manufacturing process; analyzing, with a processor, trends in the performance variables of the present manufacturing process together with data that models a portion of a subsequent manufacturing process, that occurs after the present manufacture process, to predict performance of the subsequent manufacturing process; sending trend analysis information to the present manufacturing process; and sending information to the subsequent manufacturing process.
Other objects, features and characteristics of the present invention, as well as the methods of operation and the functions of the related elements of the structure, the combination of parts and economics of manufacture will become more apparent upon consideration of the following detailed description and appended claims with reference to the accompanying drawings, all of which form a part of this specification.
The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
A new manufacturing methodology based on a real-time, closed-loop and forward-looking process control system is provided to prevent defects from occurring in production lines or manufacturing cells. This process control system measures, in real time, key performance variables of a process using process sensory system (e.g. intelligent inspection system).
The process control methodology of the embodiment is a part of an entire solution covering all key manufacturing steps such as 1) Manufacturing Process Design and Process Development, 2) Process execution/implementation with real time process performance data collection, 3) Real time review and analysis of the process performance data to determine significant process trends and potential shifts, Corrective action on both sides of the process (downstream and upstream).
With reference to
A process sensory system 12 measures, in real time, the key performance variables of an upstream portion of a manufacturing process. The sensory system 12 delivers information relating to the key control variables to the upstream process equipment 14 and downstream process equipment 16. The sensory system 12 can be, for example, conventional Automatic Optical Inspection (AOI) equipment. An example of information delivered is:
The logic for the process control methodology of the system is preferably implemented as executable code. The code can be executed by a processor 13 associated with the sensory system 12. The logic compares the present variable measurement data to a running average of the last 5 measurements and determine if the difference is within upper and lower limits.
Action and/or warning will be triggered when a key control variable exceeds an upper or lower set point limit. A warning is generated even if the condition has not surpassed any initial pre-configured rules based conditions.
Warnings are issued also by the intelligent sensory system 12, which has embedded and advanced statistical analysis capability such as:
If a warning is triggered, the sensory system 12 can access a remote process diagnostic center 20 to retrieve a suggested remedy or corrective action stored in a customizable knowledge database 22. It can be appreciated that instead of providing the remote database 22, the database 22 can be provided locally at sensory system 12. The corrective action is then outputted via communication link 23 to the appropriate equipment interface 18 and the upstream process parameters of equipment 14 are automatically adjusted, or an operator is notified to make the adjustments manually. The knowledge database 22 is then updated with the last event. The sensing system 12 also forwards operational information via communication link 25 to the downstream process equipment 16 to alert potential problems so that adequate changes can be made. For example, instructions can be provided to the downstream process equipment 16 not to place an item on a component that was misplaced by the upstream process equipment 14. In an assembly line, other sensory systems 12′ can be provided at various locations between upstream and downstream equipment.
In accordance with the embodiment, a method of executing a monitoring process to prevent defects in products produced during a manufacturing process is shown in
In step 30, performance variables of an upstream portion of a manufacturing process are measured in real time via the sensory system 12. In step 40, trends in the performance variables of the upstream portion of the manufacturing process are analyzed together with data that models a portion of a subsequent manufacturing process, that occurs after the present manufacture process, to predict performance of the subsequent manufacturing process. The trends and information are analyzed using a processor associated with the sensory system 12. The information is sent via communication link 23 (
The system has preferably has two operational modes: 1) Semi-automatic mode wherein operators make corrective actions in the downstream and upstream processes, and 2) Automatic (self-adaptive) Mode wherein intelligent process equipment 14 and 16 (for both upstream and downstream processes) change setup and working parameters automatically. The equipment 14 and 16 can be, for example, placement machines for placing components on a circuit board.
When the system 10 is implemented in electronics circuit board manufacturing a warning can be triggered downstream when there is 1) a component missing, 2) wrong component polarity, 3) solder joint defect, 4) solder bridge defect, 4) a component position out of range.
Thus, the sensory system 12 analyzes trends in process performance of upstream process equipment 14, and then closes the control loop by sending the trend analysis information back to the upstream process equipment 14, so that corrective action can be taken even before erroneous product is actually produced. Furthermore, the sensory system 12 forwards this information package to the downstream process equipment to alert potential problems so that adequate changes can be made.
With this real-time pre-warning and real-time related information, process equipment can be modified or adjusted quickly to eliminate all potential error sources in the process. Real time remote process diagnostic and support can be built around this concept to create a totally new service business design.
Thus, process control methodology of the embodiment also enables a new service-centric business model, which is also considered as an invention in business methods. Real time closed-loop manufacturing will allow a company to support its customers during their new process design, new product introduction, process development and manufacturing ramp-up. This closed-loop process control concept is not limited only to the process execution phase.
The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.
This application is based on U.S. Provisional Application No. 60/493,062, filed on Aug. 6, 2003 and claims the benefit thereof for priority purposes.
Number | Date | Country | |
---|---|---|---|
60493062 | Aug 2003 | US |