This application shares some subject matter with commonly-assigned, concurrently filed U.S. patent application Ser. No. ______ (docket number: H0050250-0112) for “Inline Ultrasonic Meter (USM) Condition Based Monitoring (CBM) Based Adaptation To Maintain High Accuracy Under Various Flow Conditions,” which is hereby incorporated by reference.
This disclosure is generally directed to condition based monitoring. More specifically, this disclosure is directed to accuracy performance detection for the real-time condition based monitoring for an ultrasonic meter.
Condition based monitoring (CBM) has been widely used as a technique in ultrasonic flow meters, but has not yet been able to quantitatively detect correlation between accuracy performance with changes of flow profiles, such as turbulences, swirl and asymmetrical. Currently, CBM is implemented as equipment and process condition monitoring to provide diagnostic information and data for offline analysis and necessary maintenance planning.
This disclosure provides an apparatus and method for accuracy performance detection for the real-time condition based monitoring for an ultrasonic meter.
In a first embodiment, a system is provided. The system includes a control system and a field device. The control system is configured to communicate data with one or more field devices. The field device determines a baseline calibration and a first characteristic curve for a process fluid flowing through the field device. The field device monitors an inline condition of the process fluid. The field device determines whether a deviation in a measurement accuracy for a fluid profile is detected according to inline evaluation criteria. The field device calculates a flow rate of the process fluid using a last valid characteristic curve.
In a second embodiment, a field device is provided. The field device determines a baseline calibration and a first characteristic curve for a process fluid flowing through the field device. The field device monitors an inline condition of the process fluid. The field device determines whether a deviation in a measurement accuracy for a fluid profile is detected according to inline evaluation criteria. The field device calculates a flow rate of the process fluid using a last valid characteristic curve.
In a third embodiment, a method is provided. The method includes determining a baseline calibration and a first characteristic curve for a process fluid flowing through the field device. The method also includes monitoring an inline condition of the process fluid. The method further includes determining whether a deviation in a measurement accuracy for a fluid profile is detected according to inline evaluation criteria. The method further includes calculating a flow rate of the process fluid using a last valid characteristic curve.
Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims.
For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
In some current calculation schemes for flow rate calculation, the error of the characteristic curve correction is calculated only once and used in the field until the next ultrasonic meter (USM) offline maintenance or calibration takes place. Since the characteristic curve depends on the meter data measured during the maintenance calibration, it is prone to erroneous discrepancy when the measurement conditions such as flow profile deviate in the field from what is present during the calibration. As a consequence, the curve correction could lead to a shift or larger deviation of the error curve that can exceed an upper or lower limit boundary, leading to difficulty in complying with various flow conditions. For example, under disturbance conditions (e.g., with double bends out of plane (DBOP)), the flow profile can be deviated with different upstream pipe length, whereby the USM measurement accuracy can be changed accordingly from insertion of different lengths, such as 5D, 10D, or 20D. In practice, users often have no clear idea of the accuracy performance of the USM, although status indication of some diagnostic parameters might be provided.
In order to overcome the issues related to USM accuracy performance due to flow condition change, embodiments of this disclosure provide a new method of flow condition detection and accuracy performance notification. The inline detection can first act independently and provide differentiated features to increase USM control of the metering.
In
At least one network 104 is coupled to the sensors 102a and actuators 102b. The network 104 facilitates interaction with the sensors 102a and actuators 102b. For example, the network 104 could transport measurement data from the sensors 102a and provide control signals to the actuators 102b. The network 104 could represent any suitable network or combination of networks. As particular examples, the network 104 could represent an Ethernet network, an ultrasonic pulse network (such as a HART, FOUNDATION FIELDBUS, MODBUS, etc.), a pneumatic control signal network, a wireless network, or any other or additional type(s) of network(s).
In the Purdue model, “Level 1” may include one or more controllers 106, which are coupled to the network 104. Among other things, each controller 106 may use the measurements from one or more sensors 102a to control the operation of one or more actuators 102b. For example, a controller 106 could receive measurement data from one or more sensors 102a and use the measurement data to generate control signals for one or more actuators 102b. Multiple controllers 106 could also operate in redundant configurations, such as when one controller 106 operates as a primary controller while another controller 106 operates as a backup controller (which synchronizes with the primary controller and can take over for the primary controller in the event of a fault with the primary controller). Each controller 106 includes any suitable structure for interacting with one or more sensors 102a and controlling one or more actuators 102b. Each controller 106 could, for example, represent a multivariable controller, such as a Robust Multivariable Predictive Control Technology (RMPCT) controller or other type of controller implementing model predictive control (MPC) or other advanced predictive control (APC). As a particular example, each controller 106 could represent a computing device running a real-time operating system.
Two networks 108 are coupled to the controllers 106. The networks 108 facilitate interaction with the controllers 106, such as by transporting data to and from the controllers 106. The networks 108 could represent any suitable networks or combination of networks. As particular examples, the networks 108 could represent a pair of Ethernet networks or a redundant pair of Ethernet networks, such as a FAULT TOLERANT ETHERNET (FTE) network from HONEYWELL INTERNATIONAL INC.
At least one switch/firewall 110 couples the networks 108 to two networks 112. The switch/firewall 110 may transport traffic from one network to another. The switch/firewall 110 may also block traffic on one network from reaching another network. The switch/firewall 110 includes any suitable structure for providing communication between networks, such as a HONEYWELL CONTROL FIREWALL (CF9) device. The networks 112 could represent any suitable networks, such as a pair of Ethernet networks or an FTE network.
In the Purdue model, “Level 2” may include one or more machine-level controllers 114 coupled to the networks 112. The machine-level controllers 114 perform various functions to support the operation and control of the controllers 106, sensors 102a, and actuators 102b, which could be associated with a particular piece of industrial equipment (such as a boiler or other machine). For example, the machine-level controllers 114 could log information collected or generated by the controllers 106, such as measurement data from the sensors 102a or control signals for the actuators 102b. The machine-level controllers 114 could also execute applications that control the operation of the controllers 106, thereby controlling the operation of the actuators 102b. In addition, the machine-level controllers 114 could provide secure access to the controllers 106. Each of the machine-level controllers 114 includes any suitable structure for providing access to, control of, or operations related to a machine or other individual piece of equipment. Each of the machine-level controllers 114 could, for example, represent a server computing device running a MICROSOFT WINDOWS operating system. Although not shown, different machine-level controllers 114 could be used to control different pieces of equipment in a process system (where each piece of equipment is associated with one or more controllers 106, sensors 102a, and actuators 102b).
One or more operator stations 116 are coupled to the networks 112. The operator stations 116 represent computing or communication devices providing user access to the machine-level controllers 114, which could then provide user access to the controllers 106 (and possibly the sensors 102a and actuators 102b). As particular examples, the operator stations 116 could allow users to review the operational history of the sensors 102a and actuators 102b using information collected by the controllers 106 and/or the machine-level controllers 114. The operator stations 116 could also allow the users to adjust the operation of the sensors 102a, actuators 102b, controllers 106, or machine-level controllers 114. In addition, the operator stations 116 could receive and display warnings, alerts, or other messages or displays generated by the controllers 106 or the machine-level controllers 114. Each of the operator stations 116 includes any suitable structure for supporting user access and control of one or more components in the system 100. Each of the operator stations 116 could, for example, represent a computing device running a MICROSOFT WINDOWS operating system.
At least one router/firewall 118 couples the networks 112 to two networks 120. The router/firewall 118 includes any suitable structure for providing communication between networks, such as a secure router or combination router/firewall. The networks 120 could represent any suitable networks, such as a pair of Ethernet networks or an FTE network.
In the Purdue model, “Level 3” may include one or more unit-level controllers 122 coupled to the networks 120. Each unit-level controller 122 is typically associated with a unit in a process system, which represents a collection of different machines operating together to implement at least part of a process. The unit-level controllers 122 perform various functions to support the operation and control of components in the lower levels. For example, the unit-level controllers 122 could log information collected or generated by the components in the lower levels, execute applications that control the components in the lower levels, and provide secure access to the components in the lower levels. Each of the unit-level controllers 122 includes any suitable structure for providing access to, control of, or operations related to one or more machines or other pieces of equipment in a process unit. Each of the unit-level controllers 122 could, for example, represent a server computing device running a MICROSOFT WINDOWS operating system. Although not shown, different unit-level controllers 122 could be used to control different units in a process system (where each unit is associated with one or more machine-level controllers 114, controllers 106, sensors 102a, and actuators 102b).
Access to the unit-level controllers 122 may be provided by one or more operator stations 124. Each of the operator stations 124 includes any suitable structure for supporting user access and control of one or more components in the system 100. Each of the operator stations 124 could, for example, represent a computing device running a MICROSOFT WINDOWS operating system.
At least one router/firewall 126 couples the networks 120 to two networks 128. The router/firewall 126 includes any suitable structure for providing communication between networks, such as a secure router or combination router/firewall. The networks 128 could represent any suitable networks, such as a pair of Ethernet networks or an FTE network.
In the Purdue model, “Level 4” may include one or more plant-level controllers 130 coupled to the networks 128. Each plant-level controller 130 is typically associated with one of the plants 101a-101n, which may include one or more process units that implement the same, similar, or different processes. The plant-level controllers 130 perform various functions to support the operation and control of components in the lower levels. As particular examples, the plant-level controller 130 could execute one or more manufacturing execution system (MES) applications, scheduling applications, or other or additional plant or process control applications. Each of the plant-level controllers 130 includes any suitable structure for providing access to, control of, or operations related to one or more process units in a process plant. Each of the plant-level controllers 130 could, for example, represent a server computing device running a MICROSOFT WINDOWS operating system.
Access to the plant-level controllers 130 may be provided by one or more operator stations 132. Each of the operator stations 132 includes any suitable structure for supporting user access and control of one or more components in the system 100. Each of the operator stations 132 could, for example, represent a computing device running a MICROSOFT WINDOWS operating system.
At least one router/firewall 134 couples the networks 128 to one or more networks 136. The router/firewall 134 includes any suitable structure for providing communication between networks, such as a secure router or combination router/firewall. The network 136 could represent any suitable network, such as an enterprise-wide Ethernet or other network or all or a portion of a larger network (such as the Internet).
In the Purdue model, “Level 5” may include one or more enterprise-level controllers 138 coupled to the network 136. Each enterprise-level controller 138 is typically able to perform planning operations for multiple plants 101a-101n and to control various aspects of the plants 101a-101n. The enterprise-level controllers 138 can also perform various functions to support the operation and control of components in the plants 101a-101n. As particular examples, the enterprise-level controller 138 could execute one or more order processing applications, enterprise resource planning (ERP) applications, advanced planning and scheduling (APS) applications, or any other or additional enterprise control applications. Each of the enterprise-level controllers 138 includes any suitable structure for providing access to, control of, or operations related to the control of one or more plants. Each of the enterprise-level controllers 138 could, for example, represent a server computing device running a MICROSOFT WINDOWS operating system. In this document, the term “enterprise” refers to an organization having one or more plants or other processing facilities to be managed. Note that if a single plant 101a is to be managed, the functionality of the enterprise-level controller 138 could be incorporated into the plant-level controller 130.
Access to the enterprise-level controllers 138 may be provided by one or more operator stations 140. Each of the operator stations 140 includes any suitable structure for supporting user access and control of one or more components in the system 100. Each of the operator stations 140 could, for example, represent a computing device running a MICROSOFT WINDOWS operating system.
Various levels of the Purdue model can include other components, such as one or more databases. The database(s) associated with each level could store any suitable information associated with that level or one or more other levels of the system 100. For example, a historian 141 can be coupled to the network 136. The historian 141 could represent a component that stores various information about the system 100. The historian 141 could, for instance, store information used during production scheduling and optimization. The historian 141 represents any suitable structure for storing and facilitating retrieval of information. Although shown as a single centralized component coupled to the network 136, the historian 141 could be located elsewhere in the system 100, or multiple historians could be distributed in different locations in the system 100.
In particular embodiments, the various controllers and operator stations in
Although
The field device 200 represents a device or system that is installed in a pipeline for measuring the fluid flow through the pipeline. Relative directions and locations within the field device 200 are described with respect to the direction of the fluid flow, where “upstream” indicates where the fluid flow enters the field device 200 and “downstream” indicates where the fluid flow exits the field device 200. While the illustrated embodiments illustrate fluid flow in a single direction, the field device 200 can measure fluid flow in both directions. The field device 200 includes a control interface 205 with a display 210. The field device 200 is connected to a flow computer 220 or a computer 225 both with displays 210. The flow computer 220 and computer 225 can be connected to the field device 200 or to each other through a wired (e.g., MODBUS) or wireless connection 230.
The control interface 205 includes one or more controls to change the display 210 to display different functions or processes monitored by the field device 200. The display 210 can include a message 215 that informs a user of the level of accuracy measurement of the field device 200.
In certain embodiments, the message 215 states, for example, “measurement accuracy well under control” for accurate measurement conditions of the field device 200, “measurement accuracy might be affected or altered.” This message suggests action of further investigation and verification, implying that the accuracy could be reduced significantly either within acceptable tolerances for less accurate measurement conditions close to the limit of an acceptable range or outside an acceptable range. The display 210 can also indicate the accuracy level of the measurement conditions using different colors, for example, green for excellent accuracy conditions, yellow for acceptable accuracy conditions, and red for unacceptable accuracy conditions. The display 210 can also use flashing states to indicate the accuracy conditions, for example, no flashing for excellent accuracy conditions, slow flashing for acceptable accuracy conditions, and quick flashing for unacceptable accuracy conditions.
In certain embodiments, the field device 200 can incorporate a direct path or reflective path transit time between transmitting and receiving (Tx/Rx) pairs as the measuring principle for the CBM based accuracy monitoring. The field device 200 can use a number of USM transducers to calculate different velocities across a fluid profile. In certain embodiments, the field device 200 determines the velocity across a number of paths, such as four, five, six, or eight paths, in order to determine the fluid flow rate. The measuring accuracy for such devices can be less than a percentage of error, such as 0.5%, for dry calibration with nitrogen accuracy or less than a percentage of error, such as 0.1%, for HP-flow calibration across the full measuring range of Qt to Qmax. The field device 200 includes a maximum measuring range, such as 0.25-40 m/s, for a maximum velocity depend on the meter size of the field device 200, such as six inches.
The field device 200 is capable of performing different diagnosis operations including path gain data (PGD), transducer path performance level (TPPL), waveform, flow pass velocity (FPV), flow velocity profile factor (FVPF), path speed of sound (PSoS), sound velocity profile factor (SVPF), signal to noise ratio (SNR), cross-flow, swirl angle, etc. The field device 200 also monitors different continuous diagnostics parameters such as asymmetry, turbulence, average gas velocity, average measure speed of sound, flow rate history, calculated speed of sound, an angle of flow, etc. Parameters or properties associated with the field device 200 can include a USM voltage, metrology configuration checksum, hardware identification (HW ID), firmware/software identification (FW/SW ID), and user configuration checksum on a startup monitor.
The field device 200 can incorporate predictive alerts such as detection of deviation of a number of diagnostic parameters from a baseline. The field device 200 can also incorporate actionable alerts such as an abnormal profile alert, a liquid detection alert, and a speed of sound deviation alert. The field device 200 can include alarms such as a display of new latched alarms, severity alarm display, and an indication of possible cause of alarm.
The field device 200 can include custody transfer (CT) application coverage. The field device 200 can include a low susceptibility to noise and contamination, and can conform to various standards including, but not limited to, American Gas Association (AGA) 9, ISO 17089, Oganisation Internationale Metrologie Legale (OIML) 137-2012, AGA 10, pattern approval measuring instruments directive (MID), Physikalisch-Technische Bundesanstalt (PTB), and Measurement Canada. The field device 200 also includes real-time validation capability, inline diagnostics, prediction on maintenance and schedule, output of diagnostic data in feedback loop compensation to extend a maintenance period by self-correction and minimizing uncertainties.
Although
The different pipes 305 illustrated in
Although
In block 505, the field device 200 performs a baseline calibration and characteristic curve determination for the fluid flow through the field device 200. The baseline calibration is determined by inputting a known measurement into the field device 200 and comparing the known measurement to the measurement level read by a respective sensor. For example, a fluid set to a specific flow rate enters the field device 200 that outputs a measured flow to the display. Depending on the reading of the sensor, the field device 200 is calibrated in order for the device under calibration to output the best realistic volumetric flow rate. The characteristic curve determination includes a plurality of curves from testing the setup of the field device 200 and includes dependencies, such as Reynolds number dependencies. The baseline calibration is close to the plurality of characteristic curves. The baseline calibration takes into account the individual properties of the field device 200 and the characteristic curve incorporates general properties related to the field device 200.
The evaluation criteria include the steps in block 510 and block 515. In block 510, the field device 200 evaluates an influence of the measured parameter values on a flow profile. In block 515, the field device 200 evaluates an influence of the measured parameter values on the accuracy error curve of flow rate correction. In certain embodiments, the evaluation criteria include boundary detection criteria that describe the maximum tolerances for each monitored parameter value. The tolerance of deviation of each parameter value is set eventually to relate its influence on the accuracy error curve of the flow rate correction.
In block 520, the field device 200 sets up one or more flow condition parameters and evaluation criteria. The flow condition parameters include, but are not limited to, temperature, pressure, flow conditions, flow installation such as bends in the pipeline, etc. Different bends, such as an S shaped bend or a double bends out of plane (DBOP), together with different lengths of spool (a piece of straight pipe) can change the flow profile in the pipe. The bends can create different disturbed flow patterns, such as asymmetrical flow or swirl flow. The asymmetrical flow creates a flow profile in which the velocity of the fluid is not the same across the cross-section. The swirl flow creates transversal velocities and the ultrasonic meters measure velocities other than parallel to the pipe, which create disturbances in the readings. In certain embodiments, the field device 200 receives a last valid characteristic curve.
In block 525, the field device 200 performs inline condition based monitoring. The inline condition based monitoring creates the possibility to detect some of the disturbed profiles and determine a value of the asymmetry, up to a certain degree. The ultrasonic meters provide several measured velocity paths in the fluid flow. The velocities are measured in the middle of the flow and also on the side. Different measures of velocities on the side indicate an asymmetrical flow condition occurring. In the inline condition based monitoring, once the pattern of the asymmetrical flow and/or swirl flow is detected, the influence on the flow profile and accuracy error is then evaluated according to the evaluation criteria. The inline based monitoring occurs in real-time as the field device 200 measures the process fluid.
In block 530, the field device 200 determines whether a deviation in the measurement accuracy is detected. In certain embodiments, the deviation is caused by an asymmetrical flow or a swirl flow. In block 535, the field device 200 determines whether the deviation is greater than an application tolerance.
When a deviation in the measurement accuracy is greater than the application tolerance, the field device 200 displays an alarm message 540 stating the measurement accuracy might alter the results of the measurements and calculations of the field device 200 and that investigation and verification is required. When the deviation in the measurement accuracy is less than the tolerance, the field device 200 displays an alert message 545 stating that the measurement accuracy is altering within an acceptable range. When a deviation in the measurement accuracy is not detected, the field device 200 displays a message 550 stating that the measurement accuracy of the sensors of the field device is well under control.
In block 555, the field device 200 uses the last valid characteristic curve correction on the measurements of the sensors. When the deviation is much less than the tolerance, the last valid characteristic curve can be the original characteristic curve obtained during the factory calibration. When the deviation is greater than the tolerance, the last valid characteristic curve is not guaranteed to have the highest accuracy. Investigation and verification are required to determine if a new characteristic curve is needed to reflect the present flow conditions.
In block 560, the field device 200 calculates a new flow rate for the fluid passing through the field device 200. In certain embodiments, the field device 200 receives a set of parameters that contributes to the calculation of the flow rate.
Although
In some embodiments, various functions described in this patent document are implemented or supported by a computer program that is formed from computer readable program code and that is embodied in a computer readable medium. The phrase “computer readable program code” includes any type of computer code, including source code, object code, and executable code. The phrase “computer readable medium” includes any type of medium capable of being accessed by a computer, such as read only memory (ROM), random access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any other type of memory. A “non-transitory” computer readable medium excludes wired, wireless, optical, or other communication links that transport transitory electrical or other signals. A non-transitory computer readable medium includes media where data can be permanently stored and media where data can be stored and later overwritten, such as a rewritable optical disc or an erasable memory device.
It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The terms “application” and “program” refer to one or more computer programs, software components, sets of instructions, procedures, functions, objects, classes, instances, related data, or a portion thereof adapted for implementation in a suitable computer code (including source code, object code, or executable code). The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.
The description in the present application should not be read as implying that any particular element, step, or function is an essential or critical element that must be included in the claim scope. The scope of patented subject matter is defined only by the allowed claims. Moreover, none of the claims is intended to invoke 35 U.S.C. §112(f) with respect to any of the appended claims or claim elements unless the exact words “means for” or “step for” are explicitly used in the particular claim, followed by a participle phrase identifying a function. Use of terms such as (but not limited to) “mechanism,” “module,” “device,” “unit,” “component,” “element,” “member,” “apparatus,” “machine,” “system,” “processor,” or “controller” within a claim is understood and intended to refer to structures known to those skilled in the relevant art, as further modified or enhanced by the features of the claims themselves, and is not intended to invoke 35 U.S.C. §112(f).
While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.