This invention relates generally to additive manufacturing and, in particular, to a system and method of stabilizing a direct metal deposition (DMD) process of the type wherein a powder is fed into a laser-generated melt pool.
Direct Metal Deposition (DMD) is an additive manufacturing technology utilizing a precisely controlled laser beam to melt powders onto a substrate to form products. DMD with a closed-loop control system has been successfully applied in complicated part prototyping, repairs and surface modifications [1]. DMD is a multi-parameter process where, laser power, traverse speed and powder feed rate are considered the most dominant parameters that determine the dimensional accuracy and mechanical properties of products. Other secondary important parameters include laser beam size, delivery and shielding gases, nozzle design, bead overlap, z increment, tool path design, and powder qualities. Any disturbance from the controlling parameters, environment, and pool itself (surface tension, flow-ability), may shift the process away from its stable point and result in defects in the produced parts.
Mazumder et al. proposed a closed-loop controlled DMD system, in which three photo-detectors were used to monitor the molten pool height [1, 2]. A control unit, where an OR logic function was operated on the three signals from photo-detectors, was used to trigger off the laser when the detected pool height was above the pre-set limits. This closed-loop control system proved to be successful in controlling the dimensional accuracy of the produced parts. POM Group Inc. in Auburn Hills has commercialized the system and installed the system on three different continents.
A dynamic model of the DMD process is essential for advanced model based closed-loop controller designs. Several theoretical and numerical models have been studied to give insight into the process [3-7]. However, because of limitations, complexities and extensive numerical operations of the simulations, these models are not practical for in-process control. Experimental-based modeling using system identification has been reported to identify the nonlinear input-output dynamic relationship between traverse velocity and deposition bead height [8]. However, significant deviations existed between the actual data and the model outputs. To overcome the difficulties of the system modeling, a fuzzy logic controller was implemented where only the fuzzy knowledge of the process was needed [9].
Current sensing and modeling efforts have been focused on cladding tracks and molten pools. Monitoring cladding tracks can directly provide dimensional information of depositions [8]. However, monitoring cladding tracks introduces inherent process delays which must be compensated for in the controller. On the other hand, sensing molten pools can provide online process information, which could enable real time process control without process delays [1]. Optical intensity [1] and infrared images [10] of molten pools have been successfully employed to control the cladding process. Pool temperature measurement and transient mathematical modeling of the process have been reported by Han et al [6, 7]. Pool temperature during the process can indicate microstructures and mechanical properties of the products. A constant temperature during processing reflects a near uniform deposition.
This invention resides in a system and method of stabilizing a direct metal deposition (DMD) process of the type wherein a powder is fed into a laser-generated melt pool. The method includes the steps of monitoring the temperature and the shape of the melt pool during deposition, applying a recursive least square (RLS) model estimation algorithm to adaptively identify process characteristics in accordance with the temperature and the shape of the melt pool, and delivering the process characteristics to a generalized predictive controller with input constraints to control the process. The process may be controlled by adjusting laser power or by adjusting the speed of the movement of the laser. In the preferred embodiment the temperature is monitored using a two-color pyrometer, and the shape of the melt pool is monitored by detecting the edge of the melt pool with a camera and/or photodetector.
A system for stabilizing a direct metal deposition (DM) process according to the invention comprises:
a device such as a pyrometer for monitoring the temperature of the melt pool during deposition;
a device such as a video camera or photodetector for monitoring the shape of the melt pool during deposition;
a processor using a recursive least square (RLS) model estimation algorithm to adaptively identify process characteristics in accordance with the temperature and the shape of the melt pool; and
a generalized predictive controller with input constraints to control the process based upon the characteristics.
This invention resides in an advanced, real-time implementation of generalized predictive control algorithm to control the direct metal deposition (DMD) process. In the preferred embodiment, the molten pool area temperature during deposition is monitored using a two-color pyrometer. The process dynamics are identified online, and the corresponding generalized predictive controller is used to control the laser power to stabilize the process.
The nozzle is cooled using circulating water. High-speed CCD cameras or photo diodes are connected via optical fiber to collecting lenses to monitor the molten pool. Edge-detection is used to analyze the images to obtain the molten pool shape. A two-color pyrometer, also connected by fiber with a collecting lens, is used to monitor the molten pool temperature. Two-color detection was chosen for its accurate temperature measurement.
The controller contains two parts: a) a recursive least square (RLS) model estimation algorithm to adaptively identify the process, and b) a generalized predictive control with input constraints to control the process.
The invention provides a comprehensive sensing system to monitor the molten pool parameters, including pool geometry and pool temperature so as to identify the molten pool dynamics during the DMD process. The preferred embodiment uses a simplified generalized predictive control algorithm with constraints to control the molten pool temperature using laser power. Since appropriate parameters may be used to control the pool geometry, cladding size and dimensional accuracy may be precisely controlled. In addition to laser power, the system and method can control the DMD process using other parameters such as the traverse speed of the CNC machine.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/941,089, filed May 31, 2007, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5118917 | Van Krieken et al. | Jun 1992 | A |
5329442 | Moshfegh | Jul 1994 | A |
5428562 | Gay | Jun 1995 | A |
5517420 | Kinsman et al. | May 1996 | A |
5530221 | Benda et al. | Jun 1996 | A |
5796761 | Injeyan et al. | Aug 1998 | A |
6122564 | Koch et al. | Sep 2000 | A |
6362456 | Ludewig et al. | Mar 2002 | B1 |
6751516 | Richardson | Jun 2004 | B1 |
6809820 | Snelling et al. | Oct 2004 | B2 |
6813533 | Semak | Nov 2004 | B1 |
6868358 | Brown, Jr. | Mar 2005 | B2 |
6972390 | Hu et al. | Dec 2005 | B2 |
7043330 | Toyserkani et al. | May 2006 | B2 |
7072377 | Douglas-Hamilton | Jul 2006 | B2 |
7227960 | Kataoka | Jun 2007 | B2 |
7595894 | Hu et al. | Sep 2009 | B2 |
7766213 | Henrikson | Aug 2010 | B2 |
20020156542 | Nandi | Oct 2002 | A1 |
20060165137 | Kachanov et al. | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080296270 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60941089 | May 2007 | US |