NA
The present disclosure relates generally to systems and methods for use in radiotherapy treatment delivery. More particularly, the disclosure relates to systems and methods for real-time treatment margin adaptation during radiotherapy for moving tumors.
External beam radiation therapy is designed to selectively destroy tumor tissue by administering large, spatially-controlled doses of radiation to a subject. The “Rule of Thumb” for such procedures is that the dose delivered should be within ±5 percent of the planned dose and within ±5 mm of the planned position. The treatment process proceeds through a number of steps, beginning with a contoured dose prescription indicated by a radiation oncologist using a set of diagnostic images. A dosimetrist, with the aid of a treatment planning system (TPS), then determines the dose to be delivered from each of a set of beam geometries and incident angles. The TPS utilizes stored dosimetric information, which is typically obtained from measurements on phantoms, to deterministically calculate dose delivery. Once the treatment plan has been approved by the oncologist, the treatment regiment begins. Prior to radiation delivery, the subject is positioned as exactly as possible to match the position used for treatment planning. This includes the alignment of skin markers with room lasers and the acquisition of CT or x-ray images for registration with planning images using either intrinsic or extrinsic fiducial markers. Typically, kilovoltage (kV) imaging is performed using an on-board imaging device (OBI) or megavoltage (MV) imaging is performed using an electronic portal imaging device (EPID). Immobilization devices can also be used to further increase positioning accuracy and minimize movement during treatment. After proper measures are taken to ensure a subject accurately receives the planned treatment, the radiation dose is delivered, typically at a rate of approximately 400 to 600 cGy per minute.
During external beam radiotherapy, patient setup uncertainties, as well as intrafractional tumor motion, cause a blurring of the delivered dose distribution relative to the dose distribution simulated during treatment planning. A commonly implemented strategy to account for this effect in the treatment plan is to enlarge the treated volume by utilizing geometric safety margins. The margin size is estimated by evaluation of pre-treatment data (e.g., 4DCT) and/or population based data. However, this concept relies on assumptions regarding both setup uncertainties and tumor motion during treatment delivery. The tumor position may change during radiation delivery due to several factors, such as respiration, peristalysis, relaxation, and the like. Inaccurate estimations of either setup or tumor margin may lead to undesirable dose distributions, such as under-dosing the tumor or overdosing surrounding healthy tissue.
Various techniques have been developed over recent years to facilitate motion management for moving tumors, mainly with respect to respiration which can be responsible for large tumor motion amplitudes. Couch tracking and dynamic multi-leaf collimator tracking both have been shown to be viable options for “freezing” tumor motion with respect to the treatment beam.
However, previous feasibility studies have maintained static treatment margins, even when real-time information is available. It would therefore be desirable to have a system and method for accurately locating the target, and to adapt the treatment aperture based on real-time confidence in the localization. It would also be desirable to have a system and method that utilizes a technique that is applicable regardless of the chosen in-treatment imaging type (e.g., MRI, kV, MV, etc.) and motion mitigation technique, such as multi-leaf collimator (MLC) tracking, couch tracking, and the like.
The present invention overcomes the aforementioned drawbacks by providing a system and method for facilitating real-time treatment margin modification in external beam radio therapy based on in-treatment imaging. In some embodiments, the application of real-time margin adaptation using MV imaging and dynamic MLC aperture tracking is provided. In addition, a localization failure mode response mechanism whereby, the geometric safety margins can be adapted based on tumor location information, is provided.
In accordance with one aspect of the disclosure, a method for real-time treatment margin modification for use in radiotherapy treatment of a tumor of a subject is provided. The method includes acquiring image data from the tumor of the subject using an imaging system. Using a processor in communication with the imaging system, the image data is processed. A first treatment plan having a first set of treatment margins based on an internal target volume (ITV) of the processed image data is generated. A second treatment plan having a second set of treatment margins based on a gross tumor volume (GTV) of the processed image data is generated. Next, a tracking confidence parameter dependent on at least one of target localization or motion mitigation is calculated. The first treatment plan is utilized when the tracking confidence parameter is below a first predetermined threshold. The second treatment plan is utilized when the tracking confidence parameter is above a second predetermined threshold. A treatment plan having a third set of treatment margins between the first set of treatment margins and the second set of treatment margins is utilized when the tracking confidence parameter is between the first predetermined threshold and the second predetermined threshold.
In accordance with another aspect of the disclosure, a system for real-time treatment margin modification for use in radiotherapy treatment of a tumor of a subject is provided. The system includes an imaging system configured to acquiring image data from the tumor of the subject. A processor is in communication with the imaging system and configured to generate a first treatment plan having a first set of treatment margins based on an internal target volume (ITV) of the processed image data. The processer is further configured to generate a second treatment plan having a second set of treatment margins based on a gross tumor volume (GTV) of the processed image data. A tracking confidence parameter dependent on at least one of target localization or motion mitigation is calculated. The first treatment plan is utilized when the tracking confidence parameter is below a first predetermined threshold. The second treatment plan is utilized when the tracking confidence parameter is above a second predetermined threshold. A treatment plan having a third set of treatment margins between the first set of treatment margins and the second set of treatment margins is utilized when the tracking confidence parameter is between the first predetermined threshold and the second predetermined threshold.
The foregoing and other aspects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown by way of illustration a preferred embodiment of the invention. Such embodiment does not necessarily represent the full scope of the invention, however, and reference is made therefore to the claims and herein for interpreting the scope of the invention.
The present disclosure provides a system and method for radiation dose verification that utilizes real-time treatment margin adaptation based on in-treatment imaging to reduce healthy tissue dose, while maintaining tumor coverage during therapeutic radiation delivery. The system and method may utilize the potential of motion mitigation techniques such as couch tracking, DMLC, beam tracking, and the like to freeze tumor motion within the treatment aperture. A standard internal target volume (ITV) based margin plan and a minimum margin plan is created for the patient. The minimum margin plan assumes frozen intrafractional tumor motion. Depending on tumor location confidence in the motion mitigation technique, MLC leaf positions can be interpolated between the two plans to adjust margins during treatment delivery. If motion mitigation fails, the plan can be disabled resulting in the delivery of the current clinical standard of care. Dynamic aperture tracking may be employed with an electronic portal imaging device as the in-treatment imaging modality. A 3D printed tumor model may be used as the target and moved along a patient breathing trajectory. To assess the radiation delivery, film measurements in the tumor reference frame, as well as electronic portal images, may be utilized.
Referring to
Referring now to
In general, CT images are the standard imaging modality utilized for treatment planning. In a simulation stage, a patient is immobilized and imaged with reference marks that establish specific coordinates, which may subsequently be reproduced in a treatment system during radiation delivery. The acquired images are then utilized in a planning stage to generate a treatment plan. In addition to CT images, other imaging modalities offer improved contrast and other useful information related to anatomical features and biological processes of normal and diseased tissues or structures. In particular, MRI is non-ionizing, and offers superior soft tissue contrast compared to CT, while providing a wide array of functional contrast forming mechanisms to characterize tumor physiology. However, in contrast to CT images, MR images lack electron density (ED) information, which is necessary for radiation dose calculations. Hence, such non-CT images need to be processed or synthesized to be “CT-like” in order to find use in RT planning and delivery.
Next, at process block 204, the image data may be processed or analyzed, for exampled, by the processor 28 of
In some cases, generated plans may also involve taking into account intra-fractional motion, such as respiration motion, of target and critical structures. Thus, at process block 206, a first treatment plan (PITV) is generated for the patient that utilizes a 4D planning approach for intra-fractional motion based on 4DCT or 4D MR images, for example. The first treatment plan (PITV) may resemble the current standard of care regarding margin construction, as shown in
Next, at process block 208, a second treatment plan (PGTV) is generated. The second treatment plan (PGTV) may include minimal margins based on the assumption of negligible intrafractional target motion due to successful motion mitigation. For the second treatment plan/the minimal margin plan (PGTV), intrafractional target motion may be assumed to be non-existent and only a gross tumor volume (GTV) 304 is contoured (e.g., on the end-of-exhale phase of a pre-treatment 4DCT), as shown in
Returning to
The treatment plan may be adjusted between the ITV and the GTV leaf depending on the calculated tracking confidence parameter μC. In addition, the tracking confidence parameter μC may be used to enable or disable motion mitigation and define a safely applicable margin reduction for each point in time. More specifically, at decision block 212, if the tracking confidence parameter μC is less than or equal to zero, the first treatment plan (PITV) will be utilized at process block 214, which as previously described, is the current standard of care. In one non-limiting example, a tracking confidence parameter μC less than zero may disable the motion mitigation in case of insufficient target localization accuracy, for example, due to failure of the image acquisition device or insufficient target visibility. If, however, the tracking confidence parameter μC is greater than or equal to zero, motion mitigation is enabled and margins are dynamically adapted between the first treatment plan (PITV) and the second treatment plan (PGTV), as will be described in further detail below. Having the option to disable the motion mitigation without the need to load another plan manually may allow for more efficient radiation deliveries and reduce discomfort for the patient.
If, at decision block 212, the tracking confidence parameter μC is not less than or equal to zero, the processor determines whether the tracking confidence parameter μC has a value between zero and one at decision block 216. If the tracking confidence parameter μC has a value between zero and one at decision block 216, a treatment plan having margin between the first treatment plan (PITV) and the second treatment plan (PGTV) my be utilized at process block 218. The margins may dynamically adapt between the first treatment plan (PITV) and the second treatment plan (PGTV) by means of linear interpolation leaf positions weighted by μC. For example, let (t)=(1(t), . . . , n(t))T be the vector of n collimator leaf positions and itv and ptv the leaf positions for the first treatment plan (PITV) and the second treatment plan (PGTV), respectively. Then the current leaf positions are given by Eqn. (1) below:
(t)=itv−μC(t)(itv−gtv),μC≥0 Eqn. (1)
The proposed concept may work analogously for treatment plans utilizing modulated leaf sequences, such as IMRT and VMAT, if the leaf positions ptv and gtv are replaced by their time dependent counterparts ptv(t) and gtv(t). However, due to the reduced target visibility from leafs moving through the treatment aperture, other imaging inputs (e.g., using fiducial markers or kV imaging) may be used.
If, however, the tracking confidence parameter μC is not between zero and one at decision block 216, the processor determines whether the tracking confidence parameter μC has a value greater than or equal to one at decision block 220. If the tracking confidence parameter μC has a value greater than or equal to one at decision block 220, the second treatment plan (PGTV) my be utilized at process block 222. If the tracking confidence parameter μC does not have a value greater than or equal to one at decision block 220, the processor may return to decision block 212 to reassess the value of the tracking confidence parameter μC. Thus, the described method may be used to adjust treatment margins in real-time, as well as reduce treatment margins during radiotherapy while safeguarding against patient dependent tracking performance drops since it is possible to restore ITV coverage as necessary. The real-time personalized treatment margins can maximize sparing of normal tissue and enable dose escalation, thereby improving treatment outcomes.
In one non-limiting example, to demonstrate the above described method, a 3D-printed tumor model (about 2×2×2 cm3 in size) from a patient's CT is placed on a slab of solid water and represents the target for motion mitigation. A dynamic motion phantom may be used to move the slab on a breathing trajectory recorded from a patient treatment. The delivered tumor motion is shown in
A markerless beams-eye-view dynamic MLC tracking implementation developed for the Varian-C series platform of clinical linear accelerators may be utilized. The soft tissue localization algorithm (STiL) may be used to estimate soft tissue motion from continuously acquired EPID images in real-time. The STiL algorithm may also be utilized to freeze tumor motion within the treatment aperture using DMLC tracking. For example, as shown in
Returning to
300 MU at a dose rate of 600 MU/min may be delivered to the moving phantom representative for a typical lung SBRT treatment field. Gafchromic film (EBT3) may be fixed under the slab of solid water to visualize the delivered dose in the tumor model's frame of reference. The exit fluence of the treatment beam may be captured with the EPID 16 operated in cine mode at a frame rate of 10 Hz, for example. In some embodiments, the EPID imaging frequency may be set to 12.9 Hz to monitor the tumor in real-time. These images are utilized to derive the required real-time target position input for the aperture tracking and to monitor time resolved target and aperture location, as well as aperture size. The linear prediction filter is used to limit the impact of system latencies.
Turning now to
Turning to
While reducing treatment margins in real-time was demonstrated in this study with DMLC tracking based on MV markerless tracking, the proposed concept of dynamic safeguarding does not rely on these techniques. The target positions p(t) may be estimated by any suitable imaging modality including, but not limited to, kV imaging, MV imaging, MR imaging with or without markers, and the like. Likewise, any suitable motion mitigation technique that can freeze tumor motion in beams-eye-view may achieve a similar effect.
The present invention has been described in terms of one or more preferred embodiments, and it should be appreciated that many equivalents, alternatives, variations, and modifications, aside from those expressly stated, are possible and within the scope of the invention.
This application represents is a 371 application of PCT/US2015/027709 filed Apr. 27, 2015, which claims the benefit of, U.S. Provisional Patent Application Ser. No. 61/985,121, filed on Apr. 28, 2014, both of which are hereby incorporated herein by reference for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/027709 | 4/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/167980 | 11/5/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7835493 | Keall | Nov 2010 | B2 |
8340247 | Keall | Dec 2012 | B2 |
20050111621 | Riker | May 2005 | A1 |
20050151071 | Nilsson | Jul 2005 | A1 |
20050201516 | Ruchala et al. | Sep 2005 | A1 |
20070244386 | Steckner et al. | Oct 2007 | A1 |
20080081991 | West | Apr 2008 | A1 |
20110044429 | Takahashi et al. | Feb 2011 | A1 |
20110208055 | Dalal et al. | Aug 2011 | A1 |
20140005464 | Bharat et al. | Jan 2014 | A1 |
20140107390 | Brown et al. | Apr 2014 | A1 |
Entry |
---|
The International Search Report and Written Opinion as dated Jul. 28, 2015 for International Application No. PCT/US2015/027709. |
Court, Le et al, “Use of a realistic breathing lung phantom to evaluate dose delivery errors.”, Med Phys 37(11), 5850-5857, (2010). |
Keall, Paul J., et al. “The management of respiratory motion in radiation oncology report of AAPM Task Group 76 a.” Medical physics 33.10 (2006): 3874-3900. |
Keall, PJ, “Geometric accuracy of a real-time target tracking system with dynamic multi-leaf collimator tracking system.”, Int J Radiat Oncol Biol Phys 65(5), 1579-1584. (2006). |
Rottmann, J et al, “Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery”, Medical Physics 40(9), 091713, (2013). |
Rottmann, J., et al. “A multi-region algorithm for markerless beam's-eye view lung tumor tracking.” Physics in Medicine & Biology 55.18 (2010): 5585. |
Rottmann, J., et al. “Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors.” Physics in Medicine & Biology 58.12 (2013): 4195. |
Rottmann, J., et al. Real-Time Markerless Tumor Tracking with MV Imaging and a Dynamic Multi-Leaf Collimator (DMLC) (Fifty-fourth annual meeting of the American Association of Physicists in Medicin, 2012) pp. 3890-3890. |
Rottmann, J. et al. “Using an external surrogate for predictor model training in real-time motion management of lung tumors.” Medical physics 41.12 (2014): 121706. |
Shirato, Hiroki, et al. “Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy or moving tumor.” International Journal of Radiation Oncology* Biology* Physics 48.2 (2000): 435-442. |
Van Herk, M. (Jan. 2004). Errors and margins in radiotherapy. In Seminars in radiation oncology (vol. 14, No. 1, pp. 52-64). WB Saunders. |
Number | Date | Country | |
---|---|---|---|
20170050051 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61985121 | Apr 2014 | US |