There are several radioactive-labeled pharmaceuticals that preferentially accumulate in focal regions of normal and/or dysfunctional myocardium and associated neurovascular bundles within the atrial and ventricular chambers of the heart. These pharmaceuticals or other similarly labeled compounds can be used to mark the normal or abnormal tissue, depending on the characteristics of those labeled compounds, for subsequent delivery of treatment modalities directly to those marked tissue.
Examples of these radiopharmaceuticals are:
Fluorodeoxyglucose (18F) (FOG), or fludeoxyglucose F 18 (USAN and USP), also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 18F-FOG or FOG is a radiopharmaceutical used in the medical imaging modality positron emission tomography (PET). 18F FOG accumulates in inflammatory cells associated with myocardial reperfusion injury following myocardial injury or stress-induced ischemia, or other inflammatory myo-cellular processes within the heart (sarcoidosis, myocarditis), particularly under fasting conditions when myocardial glucose uptake is suppressed. (“The Use of 18F-FDG PET in the Diagnosis of Cardiac Sarcoidosis: A Systematic Review and Metaanalysis Including the Ontario Experience”; George Youssef et al. J Nucl Med (2012); 53:241-248).
Re-186 or Re-188 labeled ROG are also good candidates for infarct imaging.
Thomas Klein et al., using non-invasive external gamma camera imaging, studied three-dimensional 123I-Meta-lodobenzylguanidine (I-123 labeled mIBG) cardiac innervation maps to assess substrate and successful ablate sites for ventricular tachycardia (VT); (Circ Arrhythm Electrophysiol. (2015);8:583-591.). He demonstrated that 123I-mIBG innervation defects are larger than bipolar voltage—defined scar and cannot be detected with standard voltage criteria. Thirty-six percent of successful VT ablation sites demonstrated normal voltages (>1.5 mV), but all ablation sites were within the areas of abnormal innervation. 123I-mIBG innervation maps may provide critical information about triggers/substrate modifiers and could improve understanding of VT substrate and facilitate VT ablation.
However, the prior art does not describe or suggest using a detection catheter such as described below to locate the radiation labeled tissue. A beta emitting isotope of iodine, such as I-124 or I-131 can be used to label mIBG and the detector catheter as described below can be used to locate the areas of abnormal innervation tagged with the labeled mIBG and then deliver therapy (e.g.; ablation, treatment drugs, cells, etc. or a combination of these therapies) can be delivered directly to the radiation tagged tissue in real time.
Examples of such radiopharmaceuticals that preferentially accumulate in normal myocardium are:
Mapping the distribution of radioactivity in an organ can be done minimally invasively by scanning it with a radiation detection probe. These probes, which can have single or multiple detectors, can be directed within the patients to the site of the labeled tissue. These detector probes can be configured to be sensitive to gamma rays, beta rays, alpha rays or a combination of these radiations, as well as a selective energy window of these radiations. These probes can also be combined with position sensors (electromagnetic, optical or mechanical), as well as with detectors and cameras of other types of radiations such infra-red, visible light, ultraviolet, or ultrasound.
Method of Delivery of Therapy to Myocardium
The percutaneous delivery of therapies to the myocardium (endocardial surface of atria or ventricles) with directable catheters has become part of routine clinical practice. These catheter-based deliver systems can be guided in the heart based on 2-dimensional or 3-dimensional anatomic locations determined either by external imaging, magnetic field localization using electrode catheters, or electro anatomical mapping of the surface of the heart. These minimally invasive catheter-based systems can deliver a wide range of different types of therapy, including delivery of radiofrequency energy or thermal energy (hot or cold) for ablation of tissues or intramyocardial injection of therapeutic materials. However, the therapeutic delivery in combination with a diagnostic radio labeled tracer detector probe to locate and pinpoint the specific site for delivery of the therapeutic materials has not been shown or possible in the past. Some more specific examples are outlined below.
Ablation of arrhythmia-generating areas of the myocardium is usually achieved by placing electrodes inside the heart minimally invasively, and pacing the heart until the arrhythmia is induced which is sometimes dangerous. The network of electrodes inside the heart then localize the area that needs ablation which can be performed by local delivery of radiofrequency energy, thermal energy, or cell toxic materials like ethanol.
Ischemic heart disease (IHD) remains a major healthcare issue in the United States, and often results in myocardial infarction (MI) and adverse post-MI LV remodeling, which manifests as changes in LV structure, volume, geometry, and function. An estimated eight million people are afflicted with MI in the United States with around 610,000 new cases reported each year. (Lloyd-Jones O, Adams R J, Brown T M, Carnethon M, Dai S, De Simone G, Ferguson T B, Ford E, Furie K and Gillespie C. “Heart disease and stroke statistics-2010 update A report from the American Heart Association”. Circulation, 2010;121:e46-e215; Go AS, Mozaffarian D, Roger V L, Benjamin E J, Berry J O, Blaha M J, Dai 5, Ford E S, Fox C S, Franco 5, Fullerton H J, Gillespie C, Hailpern S M, Heit J A, Howard V J, Huffman M D, Judd S E, Kissela B M, Kittner S J, Lackland D T, Lichtman J H, Lisabeth L D, Mackey R H, Magid D J, Marcus G M, Marelli A, Matchar D B, McGuire D K, Mohler E R. 3rd, Moy C S, Mussolino M E, Neumar R W, Nichol G, Pandey D K, Paynter N P, Reeves M J, Sorlie P D, Stein J, Towfighi A. Turan T N, Virani S S, Wong N D, Woo O, Turner M B, “American Heart Association Statistics C and Stroke Statistics S. Heart disease and stroke statistics—2014 update: a report from the American Heart Association”, Circulation. 2014; 129:e28-e292) The rate and degree of post-MI LV remodeling has been clearly implicated as independent predictors of morbidity, complicating congestive heart failure (CHF), and mortality. The life threatening complications of MI are associated with significant health care costs. The annual medical cost of recurrent MI is approximately $2.4 billion (B), while the annual costs associated with heart failure (1.1 M hospitalizations) exceeds $30.1 B. It is estimated that by 2030 the total cost will increase to nearly $70 B. MI is the leading cause of CHF, which accounts for 35% of all cardiovascular deaths, Post-MI remodeling can be modulated by pharmacological therapy, cellular transplantation, as well as the administration of therapeutic biomaterials. Therefore, these therapeutic approaches that reduce post-MI remodeling will have a major impact on growing health care costs associated with MI and complication CHF.
Over the past decade, cell therapy has emerged as a promising treatment strategy, with a goal of implanting live cells in the infarcted region. Multiple cell types including bone marrow mononuclear cells, bone marrow mesenchymal cells, and adipose tissue—derived cells have been used in acute or convalescent MI, but efficacy has been inconsistent and limited. These cells can be injected into myocardium during surgical procedures, delivered percutaneously via catheters, or delivered antigrade by intracoronary infusion or retrograde through the coronary sinus in patients with ischemic or non-ischemic cardiomyopathy.
Recent clinical trials have demonstrated improved efficacy when cells for treatment are injected directly into the heart tissue either during surgical procedures or percutaneously. This direct delivery results in better retention of cells as reported by Anthony Mathur et. al. in a 2015 review in Circulation Research (Fisher S A, Doree C, Mathur A et al. (2015). “Meta-analysis of cell therapy trials for patients with heart failure”. Circulation Research, 116, (8) 1361-1377.
As an alternative, therapeutic delivery of genes to the heart via direct injection or via intracoronary injection has been demonstrated. (S. R. Eckhouse, B. P. Purcell, J. R. McGarvey, D. Lobb, C. B. Logdon, H. Doviak, J. W. O'Neil, J.A. Schuman, C. P. Novak, K. N. Zellars, S. Pettaway, R. A. Black, A. Khakoo, T. Lee, R. Mukherjee, J. H. Gorman, R. C. Gorman, R. A. Black, J. A. Burdick, F. G. Spinale, “Local Hydrogel Release of Recombinant TIMP-3 Attenuates Adverse Left Ventricular Remodeling after Experimental”, Science Translational Medicine, 6:223ra21, 2014; Brendan P. Purcell D L, Manoj B. Charati, Shauna M. Dorsey, Ryan J. Wade, Kia N. Zellars , Heather Doviak, Sara Pettaway, Christina B. Logdon, James A. Shuman, Parker D. Freels, Joseph H. Gormanlll, Robert C. Gorman, Francis G. Spinale and Jason A. Burdick. “Injectable And Bioresponsive Hydrogels For On-Demand Matrix Metalloproteinase Inhibition” Nature Materials (2014);13; Burdick J A and Prestwich G D. “Hyaluronic Acid Hydrogels For Biomedical Applications”, Adv Mater. (2011);23:H41-56; Ifkovits J L, Tous E, Minakawa M, Morita M, Robb J D, Koomalsingh K J, Gorman J H, 3rd, Gorman R C and Burdick J A. “Injectable Hydrogel Properties Influence Infarct Expansion And Extent Of Postinfarction Left Ventricular Remodeling In An Ovine Model”, Proc Natl Acad Sci USA (2010);107:11507-12; Tous E, Ifkovits J L, Koomalsingh K J, Shuto T, Soeda T, Kondo N, Gorman III J H, Gorman R C and Burdick J A. “Influence Of Injectable Hyaluronic Acid Hydrogel Degradation Behavior On Infarction-Induced Ventricular Remodeling. Biomacromolecules.(2011);12:4127-4135; Eckhouse S R, Purcell B P, McGarvey J R, Lobb D, Logdon C B, Doviak H, O'Neill J W, Shuman J A, Novack C P, Zellars K N, Pettaway S, Black R A, Khakoo A, Lee T, Mukherjee R, Gorman J H, Gorman R C, Burdick J A and Spinale F G. “Local Hydrogel Release Of Recombinant TIMP-3 Attenuates Adverse Left Ventricular Remodeling After Experimental Myocardial Infarction”. Sci Transl Med. (2014);6:223ra21; Thorn S, Stacy M R, Purcell B P, Doviak H, Shuman J, Juarez Perez E, Burdick J, F G Spinale and A J Sinusas. “In Vivo Non-Invasive Evaluation Of Therapeutic Hydrogels For Modulation Of Post Infarction Remodeling: Role Of MMP-Targeted SPECT Myocardial Imaging In A Chronic Porcine Model”, European Heart Journal—Cardiovascular Imaging. (2015);16; Purcell BP, Lobb D, Charati M B, Dorsey S M, Wade R J, Zellars K N, Doviak H, Pettaway S, Logdon C B, Shuman J A, Freels P D, Gorman J H, 3rd, Gorman R C, Spinale F G and Burdick J A. “Injectable And Bioresponsive Hydrogels For On-Demand Matrix Metalloproteinase Inhibition”, Nat Mater. 2014; 13:653-61.
Many radioisotopes, in addition to gamma rays, emit electrons or positrons (beta rays). Gamma rays travel several centimeters, but beta rays travel only a couple of millimeters in tissue. Therefore, a detector sensitive to gamma rays will be susceptible to spurious gamma rays emitted by distant organs and background tissue. This background radiation could result in mis-location of small lesions. However, because Beta rays travel just a few millimeters, a beta ray detector has the advantage of sensing only the local radioactive concentrations.
One limitation of gamma probes is their inability to distinguish between the signal from a source and the background radioactivity which obscures small lesions with low tumor/background uptake ratios. The beta probe was invented to circumvent this limitation of traditional gamma probe technology. Since beta rays have a short depth of penetration in tissue (˜mm), a beta sensitive probe is not affected by the background radiation.
The Beta detector Probe is ideal for the detection of minute tagged tissue which, due to the short penetration range of beta rays in tissue, is not obscured by the radioactivity accumulated in normal tissues. In an experiment utilizing prostate cancer cells and antibody labeled with I-131, the beta probe was capable of detecting 0.06 g of tumor in presence of 2 mCi of background.
The first intra-operative beta probe was described in U.S. Pat. No. 5,008,546, Mazziotta et. al. Intraoperative Beta Probe and Method of Using the Same, and its use is described in F. Daghighian, J. C. Mazziotta, E. J. Hoffman, P. Shenderov, B. Eshaghian, S. Siegel, and M. E. Phelps. “Intraoperative Beta Probe: A Device For Detecting Tissue Labeled With Positron Or Electron Emitting Isotopes During Surgery.”. Medical Physics, 21, No. 1, pp. 153-157, (January 1994) See also R. R. Raylman. “Performance Of A Dual, Solid-State Intraoperative Probe System With 18F, 99mtc, And (111)In.”. Journal of Nuclear Medicine; Society of Nuclear Medicine, 42, No. 2, pp. 352-360, (February 2001) and V. E. Strong, J. Humm, P. Russo, A. Jungbluth, W.D. Wong, F. Daghighian, L. Old, Y. Fong, S. Larson. “A Novel Method To Localize Antibody-Targeted Cancer Deposits Intraoperatively Using Handheld PET Beta And Gamma Probes”. Surgical Endoscopy, 22, p. 386-391, (November 2007), each of which is incorporated herein in their entirety by reference.
The above referenced beta-sensitive probe utilizes a plastic scintillator which is relatively insensitive to gamma radiation (although a small amount is always detected). These spurious gamma rays may become significant when background radioactivity is high. To remedy this, a reference gamma ray detector can be placed near the beta detector for use in subtracting the background gamma rays from the radiation detected by the beta detector.
Described herein is series of theragnostic devices that feature a flexible, narrow gauge catheter with a retractable needle and, in some embodiments, a solid state beta detector capable of high sensitivity measurement of the radioactivity of the endocardial surface of tagged heart tissue. “Theragnostic” is a term developed to describe treatment modalities which combine diagnostic and therapeutic capabilities into a single agent, such as a single device. Disclosed herein are hybrid catheter-based system that can be delivered percutaneously to detect molecularly-targeted radiotracer signals, for example on the endocardial surface, and in such an instance direct intramyocardial delivery of therapeutics using molecular or radiotracer guidance to maximize treatment benefits. One potential application of this technology is the intramyocardial delivery of therapeutics (e.g. stem cells, therapeutic polymers, etc.) to injured myocardium following myocardial infarction.
A radiation-detection catheter can be used to enter the chambers of the heart in a minimally-invasive taken up by the tissue of the myocardial surface, or structures immediately adjacent thereto or into viable or dysfunctional heart tissue. Additionally, the catheter can contain a retractable needle connected to a flowable treatment source by a thin tube for delivery and injection of such therapeutic materials into the myocardium. These therapeutic materials can consist of cells, genes, polymers, inhibitory microRNAs, DNA, plasmids, chemicals, enzymes, growth factors, or a variety of medicinal compounds or combinations thereof. The intent of the devices and procedures shown and described herein is to provide a better means to locate tagged tissue, for example tissue tagged with a radioactive compounds, and to deliver a therapeutic composition directly to the vicinity of the tagged location in real time (in a single procedure), and is not intended to be limited by the method of tagging or the tissue treatment modality. It should be noted that tissue tagging is not limited to radiation tagging and other modalities, such as tagging with fluorescent or phosphorescent compounds can be used in conjunction with optical visualization techniques. Further, while the examples set forth herein are directed to the delivery of therapeutic material to the heart, the catheter described herein is not limited to therapeutic delivery to heart tissue and is contemplated to be useful to deliver therapeutic compositions to any tissue or organ in the body which can be reached by a catheter or similar tubular device including, but not limited to, the intestinal tract, bladder, kidney, liver, brain, lungs, etc.
In a first embodiment, the catheter contains one or more electrodes that detect the electrical signals of the myocardium and help localization during electrophysiology.
In another embodiment the catheter also contains a detector that is preferentially sensitive to beta rays.
In a further embodiment, the catheter also contains a detector that is sensitive to gamma rays and/ or x-rays.
In a still further embodiment, the catheter also contains two detectors in tandem, one for detection of beta rays and the other for detection of gamma and/or x-rays.
In still further embodiment, the catheter can also include light detectors, electrodes and/or lasers, the electrodes suitable for detecting electrical activity or delivering an electrical pulse or stimulus.
In still further embodiment, the catheter can also include a biopsy needle or other means for removing a small piece of the myocardial tissue.
In still further embodiment, the catheter can also include means to deliver RF or cryo-ablation.
A computer 701 is used to co-register the nuclear image of the heart with the x-ray and ultrasound image 702 and display them on a display screen 703 along with the results of the electrophysiological study 704 and the results of beta ray count rates 705 This provides a simultaneous, comprehensive map of electrophysiologic and molecular activity of the heart for guided therapy.
Described below are various novel methods for therapy using the catheters described herein based on real-time characterization of myocardial tissue utilizing radiopharmaceuticals.
As an evaluation of the method and the instrument described and discussed in regard to
Myocardial infarctions (MI) were created in Yorkshire pigs (n=4) via 90 min balloon occlusions of the distal left circumflex arteries. Pigs were then injected with 0.5 mCi/kg 18FDG 1 week post-MI and sacrificed 90 min following injection. Hearts were imaged ex vivo via PET/CT. 18FDG signals of infarct/periinfarct zones were measured using the above described theragnostic catheter and a gamma well counter.
Catheter-based endocardial measurements of 18FDG injected intramyocardially in biologically-relevant activities at depths of 1 mm in a bovine heart, have been demonstrated. The catheter device demonstrates a concentration-dependent relation to signal strength, recording values of 2 and 21 counts per second (CPS) for the 1 and 10 micro Ci samples, respectively. The sensitivity of the detector was 3000 CPS/micro Ci when in direct contact with a 1 mm2 source of 18FDG. The difference in magnitude of signals detected in direct contact and in tissue (1 mm deep injections) reflects the limited range of 18F positrons in tissue (Rmax=2.4 mm). This contributes to high spatial resolution radiotracer detection to guide therapeutic delivery.
The beta-detection catheter registered consistently reproducible signals on the endocardial surface following post-MI injection of 18FDG. Myocardial sections containing infarct and peri-infarct tissue demonstrated heterogeneous 18FDG uptake at 1 week post-MI. Beta-detection catheter measurements show reasonable visual agreement with 18FDG PET/CT images and good visual and numerical correlation with gamma well counting data. The beta-detection catheter registered consistently reproducible signals on the endocardial surface following post-MI injection of 18FDG. Myocardial sections containing infarct and peri-infarct tissue demonstrated heterogeneous 18FDG uptake at 1 week post-MI.
In another procedure a post-MI patient was injected with F-18 labeled Annexin-V one or two hours prior to the procedure. Annexin-V accumulates in tissue that is undergoing apoptosis. The catheter includes at least one detector that is predominantly sensitive to positrons. After the area of myocardium that has highest uptake of Annexin-V is located using this detector, therapeutic compounds are injected into the myocardium. The injector can be an integral part of the detector catheter or a separate simultaneously positioned injector. Because the Annexin-V has accumulated in tissue that is undergoing apoptosis, the injected compound containing stem cells or angiogenic genes or factors can result in rehabilitation of the infarcted tissue, or the peri-infarcted tissue, and improve the heart's function.
Other radiolabeled compounds that are specific to infarcted or peri-infarcted tissue can also be used in this method. Alternatively, F-18 labeled FDG, which is attracted to health tissue, can be used and the probe will locate areas of the myocardium that has low or no FDG as areas of chronic infarction for injection with the therapeutic compound. Alternatively, F-18 FDG can be high in regions of acute reperfusion injury following myocardial infarction, or in other chronic inflammatory states like sarcoidosis or myocarditis. Once located, acute myocardial infarction can be treated with local therapies to promote repair and reduce adverse post-MI remodeling, including cell, gene and polymer therapies. In the cases of sarcoidosis or myocarditis the device can be used to direct a myocardial biopsy for diagnostic purposes.
Further, the therapeutic cells can be labeled with a radioactive isotope that emit gamma rays, such as Tc-99m. A few minutes after injection of these cells, a gamma probe catheter can be used to verify the accumulation of these therapeutic cells in the myocardium and not into the blood pool. Another way to verify the intra-myocardial injection is to mix a colloidal radioactive solution into the therapeutic injectant. Alternatively, a fluorescent colloidal solution can be added to the injectant, and an appropriate light detector placed into the myocardium can be used to verify the implantation of the therapeutic cells or other materials into the appropriate tissues. This light detector can be a part of the original radioactive detector catheter or paced as a separate device. In the above method a detector catheter can be used that contains an electrode to examine the electrical signals of the heart tissue and further verify that the tissue that is being injected is infarcted or peri-infarcted tissue.
In another such method, the patient can be injected with a positron emitting labeled matrix metalloproteinase inhibitor that accumulates in the regions of the heart that are causing arrhythmia. Examples of this isotope include Ga-68, I-124, I-131, Re-186, Re-188, Cu-62 and Zr-89. Other radiolabeled compounds that have specific uptake characteristic to the abnormal tissue can also be used in this method.
Catheters incorporating features of the invention preferably contains at least one detector that is predominantly sensitive to beta rays. After locating the area of myocardium that has highest beta emitting uptake using the detector, a variety of local therapies can be administered.
As shown in the
A further example of medicinal therapy is the local delivery of a recombinant tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), or a TIMP-3 releasing hydrogel, or activatable polymer that releases TIMP-3 in presence of MMP activity,; activation leads to enhanced degradation of the polymer and release of TIMP-3 or other modulator of MMP activation TIMP-3 is known to moderate the pro-inflammatory status of macrophages. (Gill S E, Gharib S A, Bench E M, Sussman S W, Wang R T, Rims C, Birkland T P, Wang Y, Manicone A M and McGuire J K. “Tissue Inhibitor of Metalloproteinases-3 Moderates the Proinflammatory Status of Macrophages, American Journal Of Respiratory Cell And Molecular Biology, (2013);49:768-777) and play a critical role in modulating post-MI remodeling. Eckhouse et al. have demonstrated that intramyocardial injection of TIMP-3 releasing hydrogel within the infarct region at the time of acute surgical-induced MI in pigs can reduce post-MI remodeling. (Eckhouse S R, Purcell B P, McGarvey J R, Lobb D, Logdon C B, Doviak H, O'Neill J W, Shuman J A, Novack C P, Zellars K N, Pettaway S, Black R A, Khakoo A, Lee T, Mukherjee R, Gorman J H, Gorman R C, Burdick J A and Spinale FG.”Local Hydrogel Release Of Recombinant TIMP-3 Attenuates Adverse Left Ventricular Remodeling After Experimental Myocardial Infarction”, Sci Transl Med. (2014) 6:223ra21). These studies demonstrated an increase in wall thickness within the infarct region, a decrease in wall stress, and a reduction in LVEDV. The local and sustained release of recombinant TIMP-3 over several weeks from their MMP-activatable hydrogel resulted in a reduction in regional MMP activity, and a number of other inflammatory markers including; IL-8, MCP-1, and MIP-1a. (Eckhouse S R, Purcell B P, McGarvey J R, Lobb D, Logdon C B, Doviak H, O'Neill J W, Shuman J A, Novack C P, Zellars K N, Pettaway S, Black R A, Khakoo A, Lee T, Mukherjee R, Gorman J H, Gorman R C, Burdick J A and Spinale F G. “Local Hydrogel Release Of Recombinant TIMP-3 Attenuates Adverse Left Ventricular Remodeling After Experimental Myocardial Infarction”. Sci Transl Med. (2014) 6:223ra21.).
The methods discussed herein can be performed while the patient is undergoing a PET scan or a gamma camera scan. These external imaging modalities can facilitate accurate localization and delivery of therapy. For example, in one embodiment, the catheters include radioactive or radiopaque markers at their tip or along their axis (
With reference to
In another embodiment, the catheter can also contain position sensors for tracking. In one method of use, the ablation catheters are guided to the abnormal tissue location using the detector-catheter. Alternatively, structure for delivering the radiofrequency or cryoablation can be incorporated into the detector-catheter. In another embodiment a separate ablation tool having a position-sensor is navigated to the location that is identified by the detector-catheter.
Theragnostic catheters developed for both radiation detection and molecularly-targeted therapeutic injection is shown in
A multi-detector catheter (see
The detector on the catheter tip consists of a plastic scintillator (BC-412, St. Gaubain, France) coupled to a 1 mm×1 mm Solid State photomultiplier SSPM (Hamamatsu Photonics, Japan). The theragnostic catheter developed for both beta detection and targeted therapeutic delivery is shown in the
The detector portion of the catheter described can include both beta and gamma detectors (
In summary, described herein are various novel methods for locating labeled tissue within the body and delivering therapy to the labeled tissue based on real-time characterization of myocardial tissue. Radiopharmaceuticals, fluorescing materials and other known techniques and materials can be used to tag the target tissue. The catheters described therein are then used to locate the tagged tissue and deliver and inject into the target tissue a treatment modality including, but no limited to. cells, genes, polymers, inhibitory microRNAs, DNA, plasmids, chemicals, enzymes, growth factors, or a variety of medicinal compounds or combinations thereof.
In the methods described herein a detector catheter can be used that contains an electrode to examine the electrical signals of the heart tissue and further verify that the tissue that is being injected into is infarcted or peri-infarcted tissue.
Another therapy is the use of radiofrequency ablation alone or in combination with directly delivered drug therapy. A detector catheter can be used that contains electrodes to examine the electrical signals of the heart tissue and to then deliver electrical energy for ablation.
The methods discussed above can be performed under a PET scanner of a gamma camera. These external imaging modalities can further facilitate accurate localization and delivery of therapy.
The catheters can also include radioactive or radiopaque markers at their tip or along their axis so they can be seen by external imaging devices, and enable correlation with the position of the radiolabeled/tagged tissues.
The present application is a Continuation-in-part of U.S. Pat. No. 10,524,864, issued Jan. 7, 2020 which claims the benefit of U.S. Provisional Application No. 62/206,172, filed on Aug. 17, 2015.
Number | Date | Country | |
---|---|---|---|
62206172 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15239757 | Aug 2016 | US |
Child | 16735166 | US |