Real-time Monitoring of Neurotransmitters in a Hypoxic Environment

Information

  • Research Project
  • 8283819
  • ApplicationId
    8283819
  • Core Project Number
    R21NS078738
  • Full Project Number
    1R21NS078738-01
  • Serial Number
    078738
  • FOA Number
    PA-10-069
  • Sub Project Id
  • Project Start Date
    3/1/2012 - 12 years ago
  • Project End Date
    2/28/2014 - 10 years ago
  • Program Officer Name
    LUDWIG, KIP A
  • Budget Start Date
    3/1/2012 - 12 years ago
  • Budget End Date
    2/28/2013 - 11 years ago
  • Fiscal Year
    2012
  • Support Year
    01
  • Suffix
  • Award Notice Date
    1/16/2012 - 12 years ago
Organizations

Real-time Monitoring of Neurotransmitters in a Hypoxic Environment

DESCRIPTION (provided by applicant): The etiology of ischemic brain injury remains elusive. Studies of the mechanism(s) of injury during hypoxia and ischemia have faced three major limitations in the past. First, it has been difficult to measure some of the putative etiological factors with adequate sensitivity and temporal resolution. Either the sensors do not exist or they do not function well in the hypoxic environment in live tissue. Second, the experimental conditions have not mimicked brain ischemia effectively. Finally, studies of the effects of hypoxia in intact animals have often been limited to analyses of behavior and the anatomical extent of tissue damage after the injury rather than focusing on the activity of mediators of injur and repair as they evolve during the actual ischemic insult. As a result, the mediators of injury in reduced preparations (e.g., glutamate, lactate) have not been studied extensively in intact animals. To address these limitations, we have the following aims: 1: Develop and characterize novel electrochemical biosensors for glutamate and lactate based on metal oxide technology so that they work in a low oxygen environment. 2: Test the biosensors in the middle cerebral artery occlusion model of ischemic brain injury in intact animals to determine the temporal profile of changes in lactate and glutamate. The new enzyme sensor design will expand the arsenal of accessible electrochemical probes for in vivo measurement of glutamate and lactate, and provide new methods for studying the neurobiology of these neurotransmitters in hypoxic conditions. This research will facilitate study and further fundamental understanding of glutamate and lactate neurotransmission in a variety of neurological disorders in which oxygen is a restrictive factor. PUBLIC HEALTH RELEVANCE: This project will develop, optimize and translate into clinical practice a novel sensing technology for in vivo monitoring of key analytes associated with neural signaling and function during hypoxia (glutamate and lactate). This technology will provide real-time assessment of the changes in these neurological factors in intact awake animals and provide mechanistic answers to fundamental questions related to the biochemical and cellular events involved in vivo in conditions of oxygen deprivation. These studies are important and have relevance for human health because tissue oxygen levels vary in many diseases, and the role of the mediators of injury like lactate and glutamate in hypoxic conditions is not well understood.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R21
  • Administering IC
    NS
  • Application Type
    1
  • Direct Cost Amount
    188350
  • Indirect Cost Amount
    56617
  • Total Cost
    244967
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
    SCHOOLS OF ARTS AND SCIENCES
  • Funding ICs
    NINDS:244967\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    NT
  • Study Section Name
    Neurotechnology Study Section
  • Organization Name
    CLARKSON UNIVERSITY
  • Organization Department
    CHEMISTRY
  • Organization DUNS
    041590993
  • Organization City
    POTSDAM
  • Organization State
    NY
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    136995630
  • Organization District
    UNITED STATES