The present disclosure generally relates to large track-type tractors and more specifically to measuring and displaying performance of track-type tractors during operation.
Owning and operating a large piece of earthmoving equipment can be expensive. Operating cost is a function of efficient use and the impact of carrying too small or too large a load, operating in the wrong gear, etc., can dramatically increase that cost. However, the factors that impact efficient use are often hard to measure because soil conditions, operator selections such as gear and engine speed, and ground slope at the worksite all effect efficiency. Further, operators are often provided with an overload of information intended to improve efficiency but which may often simply overwhelm the operator and cause them to ignore potentially useful information.
In a first aspect of the disclosure, a track-type tractor adapted to characterize soil conditions during operation includes a slope sensor that provides a slope of the track-type tractor, a track speed sensor that provides a track speed of the track-type tractor, a processor coupled to the slope sensor and the track speed sensor, and a memory coupled to the processor. The memory stores a plurality of modules that are executed by the processor and cause the processor to access a nominal pull-slip curve stored in the memory, store data received from the slope sensor and the track speed sensor, calculate a coefficient of traction (COT) from drawbar pull and slope at slip percentages in a first range, divide values of the nominal pull-slip curve by the COT to produce a normalized pull-slip curve. The processor also determines an optimum operating state using the COT and the slope and provides the optimum operating state and a current operating point to a device for use in adjusting one or more current operating conditions.
In another aspect, a method of characterizing soil conditions during operation of a track-type tractor includes providing a nominal pull-slip curve corresponding to a standard soil condition, receiving, at a processor, data from at least one sensor of the track-type tractor, the data corresponding to a slope of the track-type tractor and one or more of a track speed, a ground speed, and a drawbar pull, and producing, at the processor, a coefficient of traction (COT). Producing the COT includes calculating a plurality of instantaneous pull-weight ratio values using the drawbar pull and the slope, removing instantaneous pull-weight ratio values from the plurality of instantaneous pull-weight ratio values that fail to meet a first screening criteria, and averaging the instantaneous pull-weight ratio values that meet the first screening criteria to produce the COT. The method further includes normalizing, at the processor, the nominal pull-slip curve by the COT to produce a normalized pull-slip curve, and producing, at the processor, a shear modulus adjustment factor that characterizes soil conditions. Producing the shear modulus adjustment factor includes calculating a plurality of normalized pull-weight ratio values, removing normalized pull-weight ratio values that fail to meet a second screening criteria, calculating the shear modulus adjustment factor from the normalized pull-weight ratio values meeting the second screening criteria, applying the shear modulus adjustment factor to the normalized pull-slip curve to obtain an adjusted pull-slip curve, and using the adjusted pull-slip curve, the COT, and the slope to determine an optimum performance. The method also includes providing the optimum performance to a device for use in adjusting a current operating state of the track-type tractor to reach the optimum performance.
In yet another aspect, a method of characterizing soil conditions during operation of a track-type tractor implemented by execution of computer-executable instructions stored on a computer readable memory storing computer-executable instructions includes providing a nominal pull-slip curve corresponding to a standard soil condition, receiving, at a processor, data from at least one sensor of the track-type tractor, the data corresponding to a slope of the track-type tractor and one or more of a track velocity, a ground speed, and a drawbar pull, and producing, at the processor, a coefficient of traction (COT). Producing the COT includes calculating a plurality of instantaneous pull-weight ratios using the drawbar pull and the slope, removing from the plurality of instantaneous pull-weight ratios the instantaneous pull-weight ratios that fail to meet a first screening criteria, the first screening criteria including removing the instantaneous pull-weight ratios corresponding to a slip value less than 20%, and averaging the instantaneous pull-weight ratios that meet the first screening criteria to produce the COT. The method may also include normalizing, at the processor, the nominal pull-slip curve by the COT to produce a normalized pull-slip curve, and producing, at the processor, a shear modulus adjustment factor. Producing the shear modulus adjustment factor includes calculating a plurality of normalized pull-weight ratio values, removing normalized pull-weight ratio values that fail to meet a second screening criteria, the second screening criteria including removing the normalized pull-weight ratio values corresponding to a slip outside a range of about 0.5% to about 40%, calculating the shear modulus adjustment factor from the normalized pull-weight ratio values meeting the second screening criteria, applying the shear modulus adjustment factor to the normalized pull-slip curve to obtain an adjusted pull-slip curve, and using the adjusted pull-slip curve, the COT, and the slope to determine an optimum performance. The method further includes providing the optimum performance to a device for use in adjusting an operating state of the track-type tractor to achieve a performance closer to the optimum performance.
Most major construction projects and many smaller projects require reshaping the earth on or around the worksite. Earth moving equipment comes in many shapes and sizes including, but not limited to, graders, backhoes, earthmovers, and bulldozers. Each of these different types of equipment is targeted to specific tasks related to earth moving. This disclosure is generally directed to a category of equipment referred to as track-type tractor and more specifically large track-type tractors using a front blade, such as a bulldozer.
In analyzing the performance of such machines, two major elements are at play, the operating conditions and the operating state. The operating condition or environment is generally described as those things outside the operator's control and include, but are not limited to, the slope of the work area, the material being moved, and the distance the material is moved, known as the cycle distance. Operating conditions also include the characteristics of the machine itself, such as weight and rolling resistance. Operating state generally refers to those things under the operator's control and include gear selection, engine speed, drawbar pull, track speed, and ground speed. Drawbar pull as used here refers to the force delivered to the tracks. This force may be expended primarily by moving the tractor, e.g., pushing a load, and by moving material under the track 18 in the form of track slip. Other force may be expended via friction losses and may be accounted for in drawbar pull. Conversely, energy diverted for other purposes such as air conditioning may be outside drawbar pull calculations but may affect overall operation.
When using a track-type tractor to reshape a site, the work of moving a volume of earth from one location to another may be broken into four distinct operations: load, carry, spread, and return. The load operation includes lowering a blade during forward motion to scrape soil from a particular area. The carry operation moves the removed soil to a new location and the spread operation allows the removed soil to unload from the blade, for example, by gradually lifting the blade and allowing the soil to fall underneath a blade edge. The return operation involves reversing the track-type tractor and driving back to a location to begin a new load operation. Collectively, the four operations may be referred to as a work cycle.
While operation of such equipment is simple in concept, the cost of owning and operating such large equipment invites, if not demands, the equipment be operated as close to its optimum performance as is possible. For example, very light loading of the blade may allow high speed operation but may require a significant increase in number of work cycles to accomplish the desired task. Alternatively, very heavy loading of the blade may substantially increase the amount of track slip and slow forward progress to a point that an excessive amount of time is required for a particular work cycle.
Further, the slope of a worksite will affect work cycle efficiency depending on whether the carry operation is uphill or downhill. Other factors may also affect selection of operating state, for example, operating at the highest possible speed in reverse may be efficient from a cycle time perspective. However, running at high speed may cause undue wear on components and negatively affect long term cost of operation and so may not be the overall best choice. For example, in some large tractors, the highest gear is prevented from use in reverse.
Track-type tractor 10 may embody a mobile machine that performs some type of operation associated with an industry such as mining, construction, farming, or any other industry. For example, track-type tractor 10 may be an earth moving machine such as a dozer having a blade 14 or other work implement movable by way of one or more motors or hydraulic cylinders 16. Track-type tractor 10 may also include one or more traction devices 18, which may function to steer and/or propel track-type tractor 10.
As best illustrated in
Engine 30 may embody an internal combustion engine such as, for example, a diesel engine, a gasoline engine, a gaseous fuel powered engine, or any other type of engine apparent to one skilled in the art. Engine 30 may alternatively or additionally include a non-combustion source of power such as a fuel cell, a power storage device, an electric motor, or other similar mechanism. Engine 30 may be connected to transmission 32 via a direct mechanical coupling, an electric or hydraulic circuit, or in any other suitable manner.
Transmission 32, in some embodiments, may include a torque converter drivably connected to engine 30. Transmission 32 may produce a stream of pressurized fluid directed to a motor 34 associated with at least one traction device 18 to drive the motion thereof. Alternatively, particularly in non-track-type tractor embodiments, transmission 32 could include a generator configured to produce an electrical current used to drive an electric motor associated with any one or all of traction devices 18, a mechanical transmission device, or any other appropriate means known in the art.
Track-type tractor 10 may also include a control system 36 in communication with components of track-type tractor 10 and engine 30 to monitor and affect the operation of track-type tractor 10. In particular, the control system 36 may include a ground speed sensor 40, an inclinometer 42, a torque sensor 44, a pump pressure sensor 46, an engine speed sensor 48, a track speed sensor 50, a controller 52, an operator display device 54, and an operator interface device 56. Controller 52 may be in communication with the engine 30, ground speed sensor 40, inclinometer 42, a torque sensor 44, a pump pressure sensor 46, an engine speed sensor 48, a track speed sensor 50, an operator display device 54, and an operator interface device 56 via respective communication links. When the transmission 32 is a mechanical transmission, the transmission 32 may include a gear sensor (not depicted).
Ground speed sensor 40 may be used to determine a ground speed of track-type tractor 10. For example, ground speed sensor 40 may embody an electronic receiver that communicates with one or more satellites (not shown) or a local radio or laser transmitting system to determine a relative location and speed of itself. Ground speed sensor 40 may receive and analyze high-frequency, low power radio or laser signals from multiple locations to triangulate a relative 3-D position and speed. Ground speed sensor 40 may also, or alternatively, include a ground-sensing radar system to determine the travel speed of the track-type tractor 10. Alternatively, ground speed sensor 40 may embody an Inertial Reference Unit (IRU), a position sensor associated with traction device 18, or any other known locating and speed sensing device operable to receive or determine positional information associated with track-type tractor 10. A signal indicative of this position and speed may be communicated from speed sensor 48 to controller 52 via its communication link.
Inclinometer 42 may be a grade detector associated with track-type tractor 10 and may continuously detect an inclination of track-type tractor 10. In one exemplary embodiment, inclinometer 42 may be associated with or fixedly corrected to a frame of track-type tractor 10. However, inclinometer 42 may be located on any stable surface of track-type tractor 10. In one exemplary embodiment, inclinometer 42 may detect incline in any direction, including a forward-aft direction and side-to-side direction, and responsively generate and send an incline signal to controller 52. It should be noted that although this disclosure describes inclinometer 42 as the grade detector, other grade detectors may be used. In one exemplary embodiment, the grade detector may include two or three GPS receivers, stationed variously around the track-type tractor 10. By knowing the positional difference of the receivers, the inclination of track-type tractor 10 may be calculated. Other grade detectors also may be used.
Torque sensor 44 may be operably associated with transmission 32 to directly sense torque output and/or output speed of transmission 32. It is contemplated that alternative techniques for determining torque output may be implemented such as monitoring various parameters of track-type tractor 10 and responsively determining a value of output torque from transmission 32, or by monitoring a torque command sent to transmission 32. For example, engine speed, torque converter output speed, transmission output speed, and other parameters may be used, as is well known in the art, to compute output torque from transmission 32. Torque sensor 44 may send to controller 52 a signal indicative of the torque output and/or output speed of transmission 32. Torque may be used in calculating drawbar pull (DBP), a component of performance measurement as discussed in more detail below.
Pump pressure sensor 46 may be mounted to transmission 32 to sense the pump pressure. In particular, pump pressure sensor 46 may embody a strain gauge-type sensor, a piezoresistive type pressure sensor, or any other type of pressure sensing device known in the art. Pump pressure sensor 46 may generate a signal indicative of the pump pressure and send this signal to controller 52 via an associated communication link.
Engine speed sensor 48 may be operably associated with the engine 30 to detect the speed of engine 30. In one exemplary embodiment, engine speed sensor 48 may measure the rotations per minute (rpm) of an output shaft or cam shaft.
The track speed sensor 50 may be used to determine the speed of the track 18. A second track speed sensor (not depicted) may be used to determine the speed of the other track 18 so that a differential of track speed may be determined. In combination with the ground speed sensor 40, a value of track slip, also referred to simply as slip, may be calculated, which is a function of ground speed and track speed.
Operator display device 54 may include a graphical display stationed proximate the operator in an operator station (not depicted) to reflect the status and/or performance of track-type tractor 10 or systems or components thereof to the operator. Operator display device 54 may be one of a liquid crystal display, a CRT, a PDA, a plasma display, a touchscreen, a monitor, a portable hand-held device, or any other display known in the art.
Operator interface device 56 may enable an operator of track-type tractor 10 to interact with controller 52. Operator interface device 56 may comprise a keyboard, steering wheel, joystick, mouse, touch screen, voice recognition software, or any other input device known in the art to allow an operator to interact with controller 52. Interaction may include operator requests for specific categorized information from controller 52 to be displayed via operator display device 54.
Controller 52 may determine a current operating mode from a manual indication of an operator via operator interface device 56. For example, operator interface device 56 may contain buttons or any other method of indicating to controller 52 the intended operating mode. It is also contemplated that controller 52 may automatically determine current operating mode by receiving input from operator interface device 56 and analyzing the input. For example, operator interface device 56 may include one or more joysticks to control both track-type tractor 10 and work implement 14. As an operator of track-type tractor 10 manipulates operator interface device 56 to steer track-type tractor 10 around worksite 22 and to operate work implement 14 to alter the geography of worksite 22, operator interface device 56 may send the operating signals to controller 52. Controller 52 may then affect the operation of engine 30 and related drive train components accordingly to correspond with the requested manipulation. In addition to using the signals from operator interface device 56 to control track-type tractor 10 and work implement 14, controller 52 may further analyze the signals to automatically determine a machine operating mode. For example, when an operator uses operator interface device 56 to request a downward movement of work implement 14 into worksite 22, controller 52 may determine that track-type tractor 10 is in a load mode. Alternatively, if an operator requests work implement 14 to remain engaged with worksite 22 while requesting transmission 32 to propel traction devices 18, controller 52 may determine that track-type tractor 10 is in a carry mode. By analyzing the requested or measured location and orientation of work implement 14, the requested or measured pressures of hydraulic cylinders 16, the requested or measured speed of traction devices 18, and/or the requested or measured parameters of any component of track-type tractor 10, controller 52 may automatically determine a current operating mode. Controller 52 may include appropriate hardware or software for performing such an analysis.
A series of sensor inputs may be coupled to the bus 74. Each sensor input may have a common configuration but in some cases may be tailored to a particular sensor type and may provide specific conversion or conditioning based on the sensor to which it is coupled. For example, a sensor input coupled to an analog device may provide an analog-to-digital conversion. In an embodiment, sensor inputs may include a torque or drawbar pull sensor input 80, a groundspeed sensor input 82, a track speed sensor input 84, a slope sensor input 86, and a gear sensor input 88, when needed.
Several outputs may also be provided, including but not limited to, an output 90 that drives an operator display device 54, an output 92 that drives an automatic control system (not depicted), for example, that manages blade load.
The memory 72 may include storage for various aspects of operation of the controller 52 including various modules implementing an operating system 94, utilities 96, and operational programs 98, as well as short-term and long-term storage 100 for various settings and variables used during operation.
The operational programs 98 may include a number of modules that perform functions described below. Such modules may include, but are not limited to, an input module that receives data corresponding to both an operating condition of the track-type tractor 10 and an operating state of the track-type tractor 10, a performance module that calculates a cycle power value for the track-type tractor 10, an optimizer module that calculates performance levels for a range of input states and identifies an optimum performance level and an optimum operating state of the track-type tractor 10. The modules may also include a scaling module that prepares a weighted target range of operation as a non-linear representation of performance values so that the weighted target range is a subset of performance values centered at the optimum performance level. This may allow a narrow range of values near the optimum performance level to be weighted more heavily than performance values outside the weighted target range. The modules may also include a normalization module that divides the cycle power value by the optimum performance level to create a normalized performance level and a display module that presents the normalized performance level relative to the weighted target range for use by an operator in adjusting the operating state of the track-type tractor 10, the target range. These functions are discussed in more detail below.
Track-Type Tractor Performance
Regarding nomenclature, the following definitions are understood to mean the following: Operating conditions or operating environment refer to things out of the operator's immediate control, including slope, material parameters, and cycle distance. Operating state refers to things under the operator's control, including gear, engine speed, drawbar pull, track speed, and ground speed. Further, several abbreviations are used below, particularly in equations, these terms are defined as:
DBP=drawbar force
RollRes=rolling resistance
m=machine mass
g=gravitational constant
θPitch=slope
vGndSpd=ground speed
vTrkSpd=track speed
vrev=track speed in reverse
TCarry=carry duration
TCycle=cycle duration
TLoad=load segment duration
dLoad=load segment distance
TSpread=spread segment duration
dSpread=spread segment distance
dcarry=carry distance
dcycle=cycle distance (that is, the forward travel of the track-type tractor 10)
Track type tractors (TTT) are limited in the amount of torque they can generate by three primary factors:
1) Engine/driveline capabilities
2) Machine weight
3) Track and soil interactions
Referring to
With respect to the second practical limit, intuitively, a dry clay work surface provides better traction than sand or snow. Therefore, the second, lower, limit line is known as the coefficient of traction (COT) limit 146. The COT limit is a function of the surface area of the track 18 in contact with the material which contributes to the maximum tractive capacity through cohesive strength of the soil. The DBP curve for a particular tractor may be used to estimate DBP in terms of track speed as found in the optimum performance solver calculations below.
The effect of soil conditions are further exemplified by the graph 150 in
Returning to
At block 114, the drawbar pull (DBP) and normal force may be determined. DBP is difficult to measure directly and is calculated from measured quantities such as drive shaft torque, torque converter measurements, or other techniques beyond the scope of the current discussion. Normal force is the weight of the track-type tractor 10 after accounting for the slope of the work surface, as discussed in more detail below.
The soil model subsystem 118 includes blocks for estimating COT 120, estimating shear modulus 122 (related to soil conditions) and a performance solver 124 that determines an optimum performance for the current operating environment. Each of these are discussed in more detail below.
A block 116 estimates cycle distance for use in developing the solution for optimum performance at block 124. Cycle distance, the forward portion of the work cycle, is assumed to be the same as the reverse distance, allowing cycle distance to be estimated during reverse segments,
where vgnd is the ground speed.
Similarly, the carry distance to cycle distance ratio can be calculated because, as noted above, the dLoad and dSpread portions of the cycle are relatively fixed in normal operation so that the carry portion of the work cycle is a fixed ratio of the cycle distance:
Eq. 3 uses the ratio of dcarry to dcycle as a constant, e.g., in an embodiment, 0.9, then dcarry can be calculated as the product of that dcycle with the constant. The value of dcarry is used for calculating performance below.
Reverse speed is determined by estimating the resistive force during reverse:
(FRes=RollRes+mg sin(−θPitch)) (4)
Using this resistive force as the drawbar force required to propel the machine in reverse, the 1R (first reverse gear) and 2R (second reverse gear) drawbar pull curves can then be used to estimate run-out track speeds. The estimated soil properties (discussed below) and the calculated resistive force in equation (4) can be used to estimate a reverse slip. The estimated reverse track speeds and slips allow an estimation of reverse ground speeds for the relative gears. In other embodiments, more than two reverse gears may be available. The maximum ground speed from the available reverse gears is used as the estimated reverse target speed.
The output of block 124 may be used to drive auto-loading functions such as an automated blade lift system that adjusts blade depth to increase or decrease load to achieve optimum loading. Alternatively, a target ground speed may be provided to a performance management system to achieve a target operating state.
A block 126 calculates cycle power, or current performance. Cycle power is only one formulation of performance and others may be used. For example, other measures of performance may include track power, ground power, blade power, and a volumetric production. Any combination of sensor inputs that provide the required data for performance in any of these formulations may be used in the following description of measuring and displaying tractor performance. For the purpose of this disclosure, performance will be focused on cycle power and defined as:
and may be stated equivalently as:
A block 128 develops a comparison between the current cycle power from block 126 and the optimum cycle power calculated at block 124.
A block 130 may also take the output of block 128 and condition it for use in display to an operator. For example, optimum and current performance may be normalized and expanded over a narrow range of interest so that the operator is given an easy-to-understand graphical representation suitable for adjusting operating state to maintain or increase performance.
Coefficient of Traction
The estimation of COT in block 120 of
where RollRes can be estimated as a function of normal force for a given machine and the normal force is the product of tractor mass (m) and gravitational acceleration (g, or −9.8 m/s2) as adjusted for slope. For level ground with angle 0, cos(0)=1 and the full weight of the tractor 10 is developed as normal force.
Optimum Performance Solver
When a value of PWratio is calculated, a series of screens are applied at blocks 164-172 to determine whether to keep the value. Failure to meet the criteria at any of these points causes the current value to be discarded and the process is continued at block 162. At block 164, the PWratio is checked to determine whether it is in an acceptable range. For example, in an embodiment, the PWratio must be between 0.5 and 1.2. (Under some conditions, PWratios above 1.0 can be generated for a short duration.)
At block 166, the tractor 10 must be operating in a forward gear. At block 168, if ground speed is known, the slip may be restricted to values above a knee of the nominal pull-slip curve 152. For example, in an embodiment, slip must be greater than 20%. If the ground speed is not known, block 168 may be skipped.
False COT estimates may be caused when a PWratio calculation is artificially high or low. This can be caused when measured driveline torque is diverted from producing tractive force. Therefore, to prevent false readings, at block 170 the PWratio value is discarded when steering, brakes, or implements are engaged. Similarly, at block 172, the PWratio value is discarded if the engine deceleration pedal is active as it will reduce generated pull.
At block 174, PWratio values that pass the screens are added to previous values and averaged, before performing validation tests for data population and data convergence. At block 176, a data population test is performed to check on the number of samples in the average. In an embodiment, a minimum of 200-400 samples are taken. If the number of samples meets the data population criteria, the routine continues at block 178.
At block 178, a convergence test is performed where the standard deviation of the samples is evaluated and if the standard deviation is less than a threshold, the COT value is accepted. In an embodiment, the standard deviation value may be 0.05. Optionally, at block 180, several COT estimates may be averaged to account for soft spots in a cycle or an artificially high or low value due to differences in ground conditions.
Particularly when ground speed is not available, an adjustment for population bias may be made at block 182. Referring briefly to
In an exemplary implementation for a given operating condition and operating state, COT values may be in a range of about 0.625 to about 0.635.
Shear Modulus Factor
In applications where the ground speed is available, a shear modulus adjustment factor may be developed and used to more completely determine the pull-slip curve 152.
Many empirical formulations exist to characterize the pull-slip curve 152 of
where len=track length.
A nominal track soil model is defined for a nominal set of conditions to create a nominal pull-slip curve 152.
PWrationominal=COT*f(slip) (11)
While the track soil model is directed to track-type machines, soil models for wheeled machines, such as agricultural tractors, wheel tractor scrapers, compactors, etc., have a similar shape and these applications lend themselves to similar modeling.
The exponential rate of the nominal pull-slip curve 152 can then be adjusted to allow the nominal pull-slip curve 152 to represent various conditions of track soil interaction by applying a shear modulus adjustment factor to the slip axis of the nominal pull-slip curve 152.
As in
f( )=nominal slip pull curve (from lookup table, see, e.g.,
As above in
At block 216, if no COT value is present, for example, if only an estimated initial condition of COT is in place, the value is discarded. At block 218, as above, no steering, braking, or significant implement movement commands may be active because potentially the power diverted to these functions could lead to an inaccurate drawbar pull value.
At block 220, ground speed must be available. If ground speed is not available, the estimator does not execute and the nominal initial value of the kadj estimate is used. If the ground speed signal is lost, the last known kadj is maintained until the signal returns. In an embodiment, an initial value for kadj may be used, such as 1.0.
At block 222, the track-type tractor 10 must be in a forward gear. At block 224, the track speed must be in a specified range. In an embodiment, the range is between 50 mm/s and 1500 mm/s. At block 226, track acceleration must be below a threshold level. In an embodiment, the track acceleration threshold may be around 50 mm/s2. At block 228, slip should generally be below the knee of the pull-slip curve 152 although some overlap between slip percentages used in calculating COT may occur. In an embodiment, slip may be in a range of 0.5%-40% or in some embodiments a range of about 12% to 20%. An effect of this is to limit values of to rpw below the general range of the knee of the pull-slip curve 152.
At block 230, the value of rpw should be less than 0.99. That is, pull-weight ratios above the COT may be anomalous or are at least a special operational case and are discarded.
At block 232, a least squares estimate on the retained values may be performed to arrive at an estimated value of kadj. In an embodiment, a minimum population size of 1500 samples is used. In another embodiment, at block 234, a minimum of three sets of kadj values are averaged to reduce sensitivity to anomalies in the cycle or to reduce the impact of varying ground conditions. An increase in the number of sets used for an average will cause slower adjustments to material variation, but provides more consistency in target speeds. A lower number of sets used in the average will allow the system to respond quicker to material variations.
Turning briefly to
In an exemplary implementation for a given operating environment and operating state, values of kadj may range from about 0.1 to about 1.5. (again, these numbers depend on the nominal pull-slip curve 152).
After applying the COT and kadj factors to the nominal pull-slip curve 152, slip can be estimated as:
slipEstimate=f−1(rPW)kadj (20)
That is, slip can be estimated for a given normalized pull weight ratio, rpw, by using the nominal pull-slip curve 152 adjusted by kadj. Additionally, ground speed can be estimated for the same normalized pull-weight ratio and a given track speed using the estimated slip value.
Optimum Performance Solver
In order to compare current performance to optimum performance, a theoretical optimum performance may be developed. Using the cycle power equation (5) above:
In order to simplify the equation, Eq. 5 is restated in terms of a single variable, in this example, track speed.
As discussed above, Tspread and TLoad are estimated as constants and cycle distance is estimated during the reverse segments, see, e.g., Eq. 1. After making the additional substitutions above, the cycle power performance equation is completely expressed in terms of track speed and known constants, using the previously developed value for COT. The full equation with substitutions noted is illustrated in
However, reducing the performance equation to a single variable also renders it unsolvable analytically. Therefore, an iterative process may be used to determine a peak value of the performance equation. One method of determining the peak value is discussed below with respect to
Cycle power is a useful metric for cyclic operations, such as the disclosed track-type tractor embodiments. However, these techniques for performance modeling are equally applicable to wheeled applications such as agricultural tractors. As these applications tend to be non-cyclic, that is, do not have defined forward and reverse portions, cycle power is not a particularly relevant metric for calculating performance. In non-cyclic applications, the cycle ratio Tcarry/Tcycle may be set to 1 so that the cycle power equation becomes a blade or implement power equation of the form:
ImplementPower=(DBP−RollRes−mg sin θpitch)vGndSpd (26)
These applications include a track type tractor with a ripper, a track-type tractor using in a towing application, such as a towed scraper, agricultural tractors with towed implements such as a plow, wheel tractor scrapers, compactors, motorgraders, etc. In the case of wheeled machines, wheel speed is substituted for track speed in the above equation.
At block 256, the performance equation (Eq. 21) as substituted with equations 19-22 above is solved for a cycle power value. At block 258, a determination is made if a peak output value has been found. Various criteria may be applied to determine whether a peak has been found, but may include covering enough of the range of input values to identify a true peak and not just identify a local maxima, that the change in value of subsequent outputs is near zero, the output value is above a threshold, and/or that the iteration step size is below a threshold iteration step size. Practically, the shape of a performance curve 300, 304 may have a relatively flat top so that further reductions in iteration may not result in a significantly high peak performance value but conversely, may take much longer to calculate. At block 260, if the peak output value has been found, the ‘yes’ branch from block 260 is taken and the routine ends at block 262 and the optimum value is passed to block 128 of
If the peak has not been found, the ‘no’ branch from block 260 may be taken to block 264. If, at block 264, the peak has not been found but the value is descending from the current high value, the ‘yes’ branch from block 264 may be taken to block 266 where the current value of optimum performance, in this example, the value of track speed, is set back two iterations and at block 268, the iteration step size is reduced. The process is then repeated beginning at block 256.
If at block 264, the current value is not descending from the peak, the ‘no’ branch from block 264 may be taken to block 270. At block 270, if a peak is not found, the ‘no’ branch from block 270 may be taken to block 272. At block 272, the current value of the input is incremented by the step size and the routine is continued at block 256. On the other hand, if at block 270 the peak finding routine has failed, the ‘yes’ branch may be followed to block 274.
At block 274, the routine may begin again with the initial value set as at block 254 and the iteration step size may be reduced at block 268 before the iteration process is restarted at block 256. When the process is complete, the optimum performance solver will have a solution that represents the optimum available performance of the track-type tractor 10 and the value of the input at which this value occurs. This value may be passed to block 128 of
As discussed above, the optimum performance may be used by auto-loading or carrying functions at block 128 of
Further, or instead, the normalized performance and the state at which it occurs may be passed to block 130 and conditioned for display to an operator.
The performance solver of eq. 21 and the process of
When ground speed is available, current actual performance can be explicitly calculated and used in displaying current vs. optimum performance, as described below with respect to
As discussed above, when ground speed is not known, the shear modulus adjustment factor cannot be calculated, however, both pull-weight ratio and track speed can be determined.
Such a measurement is illustrated in
Note that either of the curves 300 and 304 may be computed by the optimum performance solver (eq. 21) whether or not current performance is known, that is, with or without ground speed measurements. In the exemplary embodiment, the solution is given in terms of track speed.
The mapping function output (vertical axis) for a given input value represents the location of a current performance indicator for that input value, discussed more below. The mapped output zone 324 is displayed at an expanded scale compared to the full range of performance because the range of interest 322 is of the most relevance to the operator. The amount of “zoom” provided to the target range 322 is a function of the relative slopes of the segments of curve 320 and may be selected at design time, site set up, or during operation based on characteristics of the performance curve and individual preference.
In comparison, the mapping curve 280 of
Reverse Performance
During the reverse segment, it is desired to travel at the top speed capable under the given conditions without causing damage or unnecessary long term wear on the machine. The optimum ground speed can be indicated to the operator in a similar manner to the optimum performance during the carry segment. A peak run-out reverse speed was calculated during the cycle portion of the peak performance solver. This speed can be used as a reverse speed target, then calculating a reverse performance metric as:
Mapping similar to that shown in
Displaying Target Performance
In the normalized optimum range 354, the center of the display represents peak performance. Less than the peak performance is shown with the current performance indicator moving to the right or the left of center. In order to determine which direction to move the current performance indicator 356 or cursor, refer to exemplary performance curve 300 of
When operating near the peak performance, because of the magnification effect of the optimum or target performance range on the display, slight changes in current performance may cause the current performance indicator 356 to jump back and forth around the optimum performance point and cause a distraction. This effect may be reduced by a debouncing function that adds hysteresis and/or data smoothing for successive inputs. The debouncing function may be applied to all values or only to values near the optimum performance point.
When operating in reverse, the performance and associated ranges may be shown in terms of speed. During reverse, when the current performance indicator 356 is on the left, it may indicate a slower than ideal speed and to the right may indicate a faster than ideal speed. A faster than ideal speed may be caused by operating in a not recommended gear. The performance range 352 illustrated in
Rubber tire/rubber track, non-cyclic applications.
Industrial Applicability
In general, providing an operator with tools to increase the efficient operation of a piece of equipment provides benefits of both lowered cost and improved performance to schedule. The simple display of current performance and optimum performance can ease operator transitions between different machine types as well as to reduce distractions, potentially leading to safer operation. The presentation of actual performance vs. an optimum performance based on current conditions is an improvement over prior art systems that indicate only current performance without respect to environment or display only standard pre-set working ranges. This system and method uses current local operating characteristics to develop an estimate of soil conditions, that is, a model of the current work surface. When the soil conditions are characterized, a standard operating model can be adjusted to account for changes in the operating environment and can be updated virtually in real time from worksite to worksite and from hour to hour.
Components of the soil model are used to adjust up-down and right-left a nominal pull-slip curve allowing simple calculations to determine an optimum performance in terms of a single variable, such as track speed. Once the optimum performance is determined, it can be used to normalize the current performance and present an operator with a single bar graph of performance. The bar graph may represent the full range of performance, an optimum range of performance, and a current performance in a single bar-style format allowing the operator to easily view and compare current and optimum performance. The operator can then decide what to do to achieve better performance, such as changing track speed by adjusting the throttle or by changing blade height to adjust load.
In the case of the reverse cycle, the same bar graph display may be used to indicate current reverse speed vs. an optimum reverse speed to maintain a consistent look and feel for the operator, simplifying training and carrying the same easy-to-comprehend display to the full work cycle.
Because the performance values are normalized during processing, the display of optimum performance and current performance can be carried out consistently across machine types and operating environments. Further, the ability to display this information without using any numerical values can reduce the training required as operators move between machines as well as to reduce the level of distraction in the cab during operation.
These techniques are described primarily with respect to track-type tractors, but as discussed above, the soil modeling, performance evaluation, and normalized performance display are equally applicable to wheeled machines as well as non-cyclic applications.
Number | Name | Date | Kind |
---|---|---|---|
3826388 | Oldenburg et al. | Jul 1974 | A |
4630685 | Huck et al. | Dec 1986 | A |
5219411 | Yamamoto et al. | Jun 1993 | A |
5265705 | Takasugi et al. | Nov 1993 | A |
5279378 | Grawey et al. | Jan 1994 | A |
5287280 | Yamamoto et al. | Feb 1994 | A |
5467829 | Barton et al. | Nov 1995 | A |
5560431 | Stratton et al. | Oct 1996 | A |
5764014 | Jakeway et al. | Jun 1998 | A |
5924493 | Hartman et al. | Jul 1999 | A |
6076030 | Rowe | Jun 2000 | A |
6085583 | Cannon et al. | Jul 2000 | A |
6091997 | Flamme et al. | Jul 2000 | A |
6203127 | Chapman | Mar 2001 | B1 |
6317676 | Gengler et al. | Nov 2001 | B1 |
6845311 | Stratton et al. | Jan 2005 | B1 |
6882289 | Motsenbocker | Apr 2005 | B2 |
7024306 | Minami et al. | Apr 2006 | B2 |
7072762 | Minami et al. | Jul 2006 | B2 |
7206689 | Johnson | Apr 2007 | B1 |
7337054 | Pandey et al. | Feb 2008 | B2 |
7557726 | Nishimura et al. | Jul 2009 | B2 |
20030121674 | Scarlett et al. | Jul 2003 | A1 |
20060025917 | Pandey et al. | Feb 2006 | A1 |
20060042804 | Pecchio | Mar 2006 | A1 |
20060287792 | Jarrett | Dec 2006 | A1 |
20070219693 | Stratton et al. | Sep 2007 | A1 |
20080269981 | Pagnotta et al. | Oct 2008 | A1 |
20090043460 | Morey et al. | Feb 2009 | A1 |
20090216410 | Allen et al. | Aug 2009 | A1 |
20120084030 | Kitagawa et al. | Apr 2012 | A1 |
20120226422 | Jacobson et al. | Sep 2012 | A1 |
20120319708 | Orrico | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
4228102 | Nov 1993 | DE |
10014818 | Oct 2001 | DE |
102007012305 | Sep 2008 | DE |
102008028449 | Dec 2009 | DE |
0810121 | Dec 1997 | EP |
10333738 | Dec 1998 | JP |
11024612 | Jan 1999 | JP |
2012030675 | Feb 2012 | JP |
Entry |
---|
Final Office Action dated Jun. 6, 2014 U.S. Appl. No. 13/690,757, filed Nov. 30, 2012. |
Non-final Office Action dated on Mar. 17, 2014 U.S. Appl. No. 13/690,934. |
Non-final Office Action dated on Apr. 24, 2014 U.S. Appl. No. 13/690,894. |
Non-final Office Action dated on Mar. 28, 2014 U.S. Appl. No. 13/690,780. |
Number | Date | Country | |
---|---|---|---|
20140156153 A1 | Jun 2014 | US |