Claims
- 1. In a raster scan video display system having a display device, a panning control system comprising:
- image memory means for storing graphic data to be displayed, said image memory means being capable of storing more graphic data than can be simultaneously displayed on said display device, said image memory means being accessible in accordance with a specified coordinate system having defined coordinate boundaries;
- raster readout control means for reading out graphic image data from a portion of said image memory means in raster scanning order and in synchronism with the video timing of said display device beginning at an arbitrarily specifiable origin address, said control means recognizing during raster readout when a coordinate boundary is reached and continuing said readout from the corresponding opposite boundary, the read out image data being translatable into a video graphics signal to said display device; and
- rewrite means for entering data into an area of said image memory means outside of the portion from which said data is read out, so that said entered data will be available for inclusion in the read out image data upon subsequent raster readout from a different origin address.
- 2. A system according to claim 1 wherein said specified coordinate system is a rectangular coordinate system.
- 3. A system according to claim 2 wherein said raster readout control means, when reaching a coordinate boundary, continues said readout in a wraparound manner.
- 4. A system according to claim 1, comprising:
- panning means, cooperating with said raster readout control means and said rewrite means, for providing to said raster readout control means a sequence of sucessively different origin addresses, said raster readout control means thereby sucessively accessing image data from corresponding different portions of said image memory means, and for indicating to said rewrite means the areas in said image memory means which are not being read out by said raster readout control means during each current raster readout.
- 5. A system according to claim 4, comprising:
- timing means, cooperating with said rewrite means and said panning means, for causing said rewrite means to complete entry of data into certain areas of said image memory means in advance of inclusion of said certain areas in the portion of said image memory means that is read out as a result of a later provided origin address.
- 6. A system according to claim 4 or 5 wherein said image memory includes a border region contiguously surrounding the portion from which image data currently is being read out by said readout control means, said border region containing image data which comprises a graphic continuation of the currently read out image data, and wherein the area into which data is entered by said rewrite means is separated from said currently read out portion by said border region.
- 7. A system according to claim 4 wherein said panning means comprises operator input means for specifying a desired origin address or desired direction of origin address movement.
- 8. A system according to claim 4 wherein said video display system provides a raster scan frame signal for specifying the initiation of a CRT raster refresh and wherein said panning means provides for each such frame signal a display memory origin address.
- 9. A system according to claim 4 wherein said panning means cooperates with said rewrite means to maintain unchanged the image data stored in said memory means in a border region adjacently surrounding the portion from which graphic image data currently is being accessed by said raster readout control means.
- 10. A system according to claim 4 wherein said panning means limits the rate of change of origin addresses to be used by said raster readout means in cooperation with the rate at which said rewrite means may enter data in said image memory means.
- 11. A system according to claim 4 wherein said image memory includes a border region contiguously surrounding the portion from which image data currently is being read out by said readout control means, said border region containing image data which comprises a graphic continuation of the currently read out image data, wherein the area into which data is entered by said rewrite means is separated from said currently read out portion by said border region, and wherein said border region has substantially the same amount of memory space on opposite sides of the currently read out image data.
- 12. A system according to claim 4 wherein said image memory includes a border region contiguously and partially surrounding the portion from which image data currently is being read out by said readout control means, said border region containing image data which comprises a graphic continuation of the currently read out image data in at least one direction, wherein the area into which data is entered by said rewrite means is separate from said currently read out portion and said border region, and wherein said panning means provides origin addresses which cause image data to be accessed from said border region.
- 13. A system according to claim 1 having a host processor means for providing requested data for any portion of said image, wherein said rewrite means requests data from said host processor means concerning portions of said image and enters said data into said image memory means.
- 14. In a raster scan video display system having an image memory storing data representing a display portion of an image, said image memory being accessable in accordance with a specified access coordinate system with defined coordinate boundaries, raster readout control means for reading out display portion data from said image memory in a raster scanning order and for formatting a video signal representative of said display portion, and rewrite means for entering data concerning portions of said image into said image memory, the improvement wherein:
- said image memory stores data representing border portions of said image surrounding said display portion, said system further comprising:
- toroidal access means for converting coordinate addresses outside said defined coordinate boundaries to addresses within said boundaries in a toroidal wraparound manner;
- said display portion being locatable at an arbitrarily specifiable origin address in said image memory, data representing said border portions toroidally surrounding data representing said display portion;
- said raster readout control means cooperating with said toroidal access means to access said display portion data in a toroidal manner beginning from said arbitraily specifiable origin address;
- said rewrite means cooperating with said toroidal access means to toroidally enter data representing said border portions into regions of said image memory surrounding the region containing said display portion data.
- 15. The improvement of claim 14 further comprising:
- panning means, cooperating with said raster readout control means and said rewrite means, for providing to said raster readout control means a sequence of successively different origin addresses in said image memory, said raster readout control means thereby sucessively accessing display portion image data from corresponding different portions of said image memory, and for indicating to said rewrite means the areas in said image memory which are not being accessed by said raster control means during each current raster readout.
- 16. The improvement of claim 15 wherein said panning means comprises operator input means for specifying a desired origin address or desired direction of origin address movement.
- 17. The improvement of claim 15 wherein said rewrite means, in cooperation with said panning means, maintains in said image memory data representing a border portion of said image surrounding said display portion.
- 18. In a raster graphics display system having a display device and operable with an external source of graphic image data, a toroidal pan system comprising:
- a "toroidal" image memory and an associated memory access controller, said memory storing graphic image data in storage locations that are accessable in response to orthogonal coordinate addresses supplied to said controller, said controller operating in modulo fashion to continue memory access in wraparound fashion from one boundary when an opposite boundary of said memory is reached;
- raster access control means, cooperating with said memory access controller, for reading out in raster fashion graphics image data from a selectively locatable portion of said memory, said portion corresponding in storage size to an image that can be fully displayed on said display device, said portion being less than the full size of said memory, and for converting the read out image data to a raster graphics output signal for said display device;
- a pan controller, cooperating with said raster access control means, for successively providing a set of sequentially different image location signals in response to which said raster access control means will successively read out image data from a corresponding set of sequentially different portions of said image memory, thereby producing a pan effect on said display device; and
- rewrite means, cooperating with said pan controller and said memory access controller, for obtaining new graphic image data from said external source and for entering said new data into storage locations in said memory which are spaced from the portion of said memory that is concurrently being read out by said raster access control means.
- 19. A toroidal pan system according to claim 18 wherein the region of said image memory between said concurrently read out portion and said new data entry storage locations consists of a border region contiguously surrounding said concurrently read out portion, said border region containing graphic image data that forms a continuation of the image represented by the data stored in said concurrently read out portion, and wherein said pan controller is configured to provide as the next successive image location signal a signal which will cause said raster access control means to read out image data from a new memory position that includes only storage locations which were included in the previous portion and the border region surrounding that previous portion.
- 20. A toroidal pan system according to claim 19 further comprising:
- timing means, cooperating with said pan controller and said rewrite means and responsive to said successively provided image location signals, for causing said rewrite means to enter new data into corresponding new data entry storage locations at a rate that is sufficiently fast so as to conclude said data entry prior to readout by said raster access control means of a position established by said location signal that includes said corresponding new data entry storage locations, whereby the panning appears to continue smoothly across an effective image that is larger than the storage capacity of said image memory.
- 21. A toroidal panning system in which a graphics display is generated in raster fashion by readout of pixel image data from a window portion of an image memory, and operable with a host processor which supplies data representing a master image much larger than can be stored at one time in said image memory, characterized in that;
- said image memory stores additional pixel data representing regions of said master image forming a border contiguous to said window portion, said pixel data being stored in toroidal order so that said window portion and contiguous border pixel data continue in wraparound fashion from one image memory boundary to the opposite boundary, pixel data being read out from said image memory in corresponding toroidal wraparound order beginning from a specified window portion origin address,
- panning controller means for specifying successive origin addresses from which corresponding successive graphic displays are generated, said successive graphic displays including pixel data from said contiguous border regions, successive origin addresses being specified in toroidal wraparound fashion so that if an origin address is outside an image memory boundary the address is specified instead in modulo fashion with respect to the opposite boundary, and
- strip erase and rewrite controller means, cooperating with said panning controller means, for determining when the width of the effective contiguous border region in the panning direction identified by successive origin addresses is less than a certain value, and for thereupon erasing a contiguous strip of said image memory and entering into said strip additional contiguous pixel data obtained from said host processor, so that said strip continues and effectively enlarges said contiguous border region, said strip erasure and rewriting also being performed in toroidal wraparound fashion.
- 22. A toroidal panning display system according to claim 19 wherein there is a separate like panning controller means and a separate like strip erase and rewrite controller means for respective control of vertical and horizontal panning, together with:
- rewrite inhibit means, interconnecting the separate vertical and horizontal rewrite controller means, for ascertaining when one of said rewrite controller means initiates erasure and rewriting of a strip in one horizontal or vertical direction that partially overlaps a strip currently being rewritten in the other direction, and for deleting the rewriting of the overlap region by one of said rewrite controller means.
- 23. The toroidal panning system of claim 21 wherein the panning system is switchable between a normal mode in which the direction of panning is immediately reversible and a high speed mode in which the direction of panning is not immediately reversible, wherein the certain value width of the effective contiguous border region has a first predetermined value when the system is in the normal mode and a second, larger predetermined value when the system is in the high speed mode, wherein said contiguous strip of image memory has a first width when the system is in the normal mode and a second, wider width when the system is in the high speed mode.
- 24. The toroidal panning system of claim 23 wherein the second predetermined value and second width are one and one-half times the first predetermined value and first width, respectively.
- 25. The toroidal panning system of claim 21 wherein said border portion occupies space in the image memory on opposite sides of the window portion to thereby facilitate panning in either forward or reverse directions.
- 26. The toroidal panning system of claim 21 wherein the border portion occupies space in the image memory on one side of the window portion but not on the opposite side of the window portion, wherein panning is done primarily in the direction of the border portion, whereby the size of the border portion and the contiguous strip can be maximized to thereby facilitate maximum panning speed.
- 27. A toroidal pan graphics display system utilizing an image memory that is addressable in one-to-one correspondence to vertical and horizontal orthogonal coordinates, said image memory storing pixel data representing a portion of a larger master image supplyable from a host processor, a display device generating a graphics display from a window portion of said image memory, there being a border portion of said image memory surrounding said window portion and containing image data contiguous thereto, panning of said image being directed by supplied panning rate and panning direction signals, comprising:
- first means for comparing said rate and direction signals with the prior rate and direction signals for panning currently under way, and for selectively providing the new values in place of the former values,
- second means, operative at each successive graphics display generation, for modifying the origin address of said window portion in accordance with the newly provided rate and direction signals, said origin address being modified modulo the respective height or width dimension of said image memory, so that the window portion is accessed in toroidal wraparound fashion,
- third means, cooperating with said second means, for ascertaining whether the border area remaining after generation of a graphics display from the window portion specified by the modified origin address in the direction of panning is greater than a certain value, and
- fourth means, responsive to said determination, for erasing the pixel data in a contiguous strip of said image memory adjacent to the boundary between the opposite edges of the toroidally stored image data in said memory, and for accessing contiguous pixel data from the master image in said host processor for entry into said strip so as to effectively enlarge the contiguous border adjacent said window portion in the direction of panning.
- 28. A toroidal panning graphics display system comprising:
- an image memory, image data contained in said memory being organized in toroidal, wraparound fashion from one border around to the opposite border, there being a line of demarcation where image data at one edge of the image meets the wrapped around image data from the opposite edge of the stored image,
- display means for accessing data in toroidal wraparound fashion from a window area of said image memory to produce a corresponding display, there being an unaccessed border area in said image memory surrounding said window area,
- panning means, cooperating with said display means, for changing the location of successively accessed windows in toroidal wraparound fashion, so that the resultant displays exhibit a panning effect, and
- strip rewrite control means, cooperating with said panning means, for erasing and rewriting new image data into a strip of the image memory adjacent to said line of demarcation when, as a result of said panning, the width of available border area in the direction of panning is decreased below a certain value, the newly rewritten strip thereby effectively changing the line of demarcation, increasing the border area in said panning direction, and decreasing the border area in the opposite direction.
Parent Case Info
This is a continuation-in-part of U.S. Ser. No. 125,238, filed Feb. 27, 1980, now abandoned.
US Referenced Citations (6)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
125238 |
Feb 1980 |
|