1. Field of the Invention
This invention relates generally to a real-time vehicle dynamics estimation system and, more particularly, to a real-time vehicle dynamics estimation system that employs a vehicle parameter estimator, a vehicle condition detector and a rich steering input detector for providing an estimated vehicle understeer coefficient, front cornering compliance and rear cornering compliance in real time.
2. Discussion of the Related Art
Vehicles are designed so that the vehicle handling response complies with certain design specifications. Vehicle dynamic parameters define the vehicle handling response, and therefore, nominal parameters define a nominal vehicle handling response. The vehicle dynamic parameters of understeer coefficient, front cornering compliance and rear cornering compliance are the most dominant dynamic parameters for determining the stability and dynamic handling behavior of a vehicle. The understeer coefficient defines the vehicle yaw rate or turning radius for a particular steering angle. The front cornering compliance and the rear cornering compliance define the distribution of the side-slip to the front and rear axle when the vehicle is turning. The cornering compliances include the ratio defined by the steering angle and the lateral force of the wheels. These parameters vary according to different vehicle loading, tire pressure, tire wear, and vehicle-to-vehicle variations of suspension characteristics, etc.
Parameter deviations from the nominal values may cause performance degradation of the chassis/vehicle control systems. For example, as the vehicle ages, the various dynamic parameters change, resulting in a change in the turning radius of the vehicle in response to the same steering angle. It would be desirable to monitor the vehicle dynamic parameters to determine if a problem exists so that suitable steps could be taken. The theory of real-time estimation of a dynamic system is known, and there have been several attempts to estimate vehicle dynamic parameters. The known theories are not feasible enough to be applied to a real vehicle system because they do not properly account for the issues of non-linearity and input richness. These issues can be resolved and the estimation algorithm can be improved.
In accordance with the teachings of the present invention, a real-time vehicle dynamics estimation system is disclosed that employs a vehicle parameter estimator, a vehicle condition detector and a rich steering input detector for estimating vehicle understeer coefficient and front and rear cornering compliances in real time. The vehicle parameter estimator receives a front wheel steering angle signal, a rear wheel steering angle signal, a vehicle lateral acceleration signal, a vehicle yaw rate signal and a vehicle speed signal, and employs a linear parameter estimation algorithm for estimating the understeer coefficient, the front cornering compliance and the rear cornering compliance. The vehicle condition detector receives the front wheel steering angle signal, the rear wheel steering angle signal, the vehicle yaw rate signal and the vehicle speed signal, and disables the vehicle parameter estimator if the vehicle is not operating in a linear region. The rich steering input detector receives the front wheel angle signal, the rear wheel angle signal and the vehicle speed signal, and provides an output signal indicating whether the estimated parameters are reliable enough.
Additional advantages and features of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
The following discussion of the embodiments of the invention directed to a real-time vehicle dynamics estimation system is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses.
According to the invention, a real-time vehicle dynamics estimation system is provided that estimates a vehicle understeer coefficient and front and rear cornering stiffness by signals from standard dynamic sensor measurements, such as vehicle speed Vx, front wheel steering angle δF, rear wheel steering angle δR, vehicle yaw rate YR and vehicle lateral acceleration Ay. The real-time vehicle dynamics estimation system of the invention can be combined with a vehicle stability enhancement system using differential braking, active rear-wheel steering, active front-wheel steering or any combination of these systems. Based on the estimations results, the dynamics estimation system can modify the vehicle stability enhancement system to compensate for performance degradation due to vehicle parameter variations, or can send a warning signal to the vehicle operator for maintenance purposes.
The parameter estimator 14 operates on a linear vehicle model. Therefore, the inputs to the parameter estimator 14 from the various sensors should be from the linear operating region. If the vehicle 12 is out of the linear operating region, the linear correlation between steering and the sensor measurements are not valid, resulting in unrealistic results from the parameter estimator 14. When the vehicle 12 is not operating in the linear region, the estimator 10 should therefore be disabled. The vehicle condition detector 16 receives the sensor signals of the front wheel steering angle δF, the rear wheel steering angle δR, the vehicle yaw rate YR and the vehicle speed Vx. The detector 16 processes these input signals to determine if the vehicle 12 is operating in the linear region, and provides an output signal as to whether to enable or disable the parameter estimator 14 and the rich steering input detector 18.
The conversion of the parameter estimation depends on input excitation. When the input excitation is not rich enough, i.e., the vehicle 12 is not turning frequently enough, the estimated vehicle parameters do not converge to the right value. However, it is difficult for the real-time vehicle parameter estimator 14 to determine whether the estimated vehicle parameters are converged or not. The rich steering input detector 18 receives the front wheel steering angle signal δF, the rear wheel steering angle signal δR and the vehicle speed Vx, and determines the conversion of the estimated vehicle parameters.
The estimator 14 integrates YR_filtered and (Ay/Vx)_filtered to obtain YR_filtered_integrated and (Ay/Vx)_filtered_integrated at box 46. The estimator 14 then calculates the regression vectors Phi1_vector and Phi2_vector and the values Y1 and Y2 at box 48 as:
Y1=g*(δF
Phi1_vector={Ay_filtered(t)−Ay_filtered(t−Δt), YR_dot_filtered(t)−YR_dot_filtered(t−Δt)}
Temp=g*(δF
(Ay/Vx)_filtered_integrated−(a−b)*(YR/Vx)_filtered)
Y2=Temp(t)−Temp(t−Δt)
Phi2_vector=Phi1_vector(t)−Phi1_vector(t−Δt)
Delta—Y1=Y1(t)−Y1(t−Δt)
The values a, b and g are the distance from the front axle of the vehicle 12 to the lateral acceleration measurement point, the distance from the rear axle to the lateral acceleration measurement point and a gravitational constant, respectively. Also, (t) denotes current data and (t−Δt) denotes the data from the previous step. The outputs Y1 and Y2 and the regression vectors Phi1_vector and Phi2_vector are used at the box 32 as the converted data to calculate the linear regression forms of Y1 and Y2.
The estimator 14 then determines whether a steady state turning condition is met by comparing the absolute value of Delta_Y1 with the absolute value of a predefined threshold at decision diamond 50. It is necessary to detect the steady state condition to handle the bias from Y1 and Phi1_vector. If the stead state condition is met, then Delta_Y1 will be less than the threshold and should be about zero. The steady state condition must be met continuously for a predetermined period of time. If the steady state condition is met, then the counter is increased by 1 at box 52, and the estimator 14 determines if the count has reached a predetermined maximum count at decision diamond 54 for this purpose.
If the count is greater than the predetermined maximum count, then a steady state flag is set to true at box 56. If the steady state condition is met, Phi1_vector is replaced by Phi2_vector. When the steady state is set to true at the box 56, Y1 and Phi1_vector are recalculated at box 58. The estimator 14 returns Y1, Y2, Phi1_vector, Phi2_vector and the steady state flag at box 64.
If the count is less than the maximum count, the estimator 14 sets the steady state flag to false at box 60. Also, if Delta_Y1 is greater than the predetermined threshold at the decision diamond 50, meaning no steady state condition, then the count is set to zero at box 62, and the steady state flag is set to false at the box 60. For the non-steady state condition, the bias can be removed by using a difference for Y1 and Phi1_vector and, therefore, the original Y1, Y2, Phi1_vector, Phi2_vector and the steady state flag are returned at the box 64.
Returning to
If the enable_flag is not set to true at the decision diamond 70, then the previous values for theta_hat_11, theta_hat_12, theta_hat_21 and theta_hat_22 are used to calculate the estimated understeer coefficient Kus_hat, the estimated front cornering compliance Df_hat and the estimated rear cornering compliance Dr_hat at the box 74.
The detector 16 then determines whether the vehicle speed Vx is greater than the absolute value of a minimum speed Vxmin at decision diamond 86. The vehicle 12 must be traveling greater than a minimum vehicle speed, such as 10 mph, to be operating in the linear region because of kinematics effects. If the vehicle speed Vx is greater than the minimum value Vxmin, then the detector 16 sets a vehicle speed flag Vx_flag to on at box 88, otherwise it sets the Vx_flag to off at box 90.
The detector 16 then calculates the vehicle longitudinal acceleration Ax at box 92 using, for example, an FIR filter. The vehicle lateral acceleration Ax cannot be to high to be operating in the linear range. The detector 16 determines whether the vehicle longitudinal acceleration divided by the vehicle speed (AxNx) is less than a predetermined percentage limit at decision diamond 94. If AxNx is less than the percentage limit, then the detector 16 sets a vehicle longitudinal acceleration flag Ax_flag to on at box 96, otherwise it sets the vehicle acceleration flag Ax_flag to off at box 98.
The detector 16 uses a linear region detection filter at box 100 to determine if there is a difference between the vehicle yaw rate YR and the reference yaw rate YR_ref to determine a yaw rate error and indicate whether the vehicle is operating in the linear range. The error due to parameter deviation is usually much smaller than the error due to non-linearity. Therefore, if the error abruptly becomes larger than the specified error, the vehicle 12 is not operating in the linear region. The detector 16 examines the yaw rate error and starts a count if the error is greater than a predetermined yaw rate threshold. When the count value is greater than a predetermined maximum count, the algorithm sets the linear region flag to false.
The detector 16 then determines if the count is greater than a predetermined maximum count at decision diamond 118. If the count is greater than the maximum count, the detector 16 sets the count equal to the maximum count at box 120, and sets the linear region flag to true at box 122. If the count is not greater than the maximum count at the decision diamond 118, the linear region flag may be true or false, and the algorithm returns to the flow chart diagram 80 in
The detector 16 then determines if the linear region flag is set to true at decision diamond 124. If the linear region flag is set to true, then the linear flag is set on at box 126, and if the linear region flag is set to false, then the linear flag is set off at box 128. The detector 16 then sets the enable flag to true only when all of the vehicle speed flag Vx_flag, the vehicle acceleration flag Ax_flag and the linear_region flag are true at box 130. The detector 16 then outputs the enable_flag at box 132.
The rich steering input detector 18 includes a reference bicycle model process block 140, a parameter estimation process block 142 and a comparison process block 144. The reference bicycle model process block 140 outputs reference model vehicle parameters based on the front wheel steering angle δF and the rear wheel steering angle δF. The parameter estimation block 142 determines the same outputs as the parameter estimator 14, where the estimated model parameters and the reference model parameters are compared in the comparison process block 144. If the two values are close enough, then the rich steering input detector 18 sets a parameter ready flag to on. The parameter ready flag indicates that the output of the parameter estimator 14 is reliable and ready to be used.
The detector 18 then reads the sensor signals of the front wheel steering angle δF, the rear wheel steering angle δR, the vehicle speed Vx, and the enable_flag from the detector 16 at box 162. The rich steering input detector 18 then executes a reference model algorithm for the reference model 140 to calculate a lateral acceleration reference value Ay_ref and a vehicle yaw rate reference value YR_ref at box 164. The detector 18 then executes a real time vehicle parameter estimator to calculate estimated reference values for the understeer coefficient Kus-ref_hat, the front cornering compliance Df_ref_hat, and the rear cornering compliance Dr-ref_hat at box 166 as was done at the box 74 for the parameter estimator 14.
The detector 18 then determines if the absolute value of the difference between the reference understeer coefficient Kus_ref and the estimated reference understeer coefficient Kus_ref_hat is less than the understeer coefficient threshold Kus_threshold at decision diamond 168; whether the absolute value of the difference between the reference front cornering compliance Df_ref and the estimated reference front cornering compliance Df_ref_hat is less than the front cornering compliance threshold Df_threshold at decision diamond 170; and whether the absolute value of the difference between the reference rear cornering compliance Dr_ref and the estimated reference rear cornering compliance Dr_ref_hat is less than the rear cornering compliance threshold Dr_threshold at decision diamond 172. If all three of these comparisons are yes, than the counter is updated by one at box 174, and if any of these comparisons is no, than the count is set to zero at box 176.
The detector 18 then determines if the count is greater than a predetermined maximum count max_count at decision diamond 178. If the count is greater than the maximum count, then the count is set to the maximum count max_count at box 180 and the parameter ready flag is set to true at box 182. Otherwise the parameter ready flag remains set to false.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5765118 | Fukatani | Jun 1998 | A |
5895433 | Chen et al. | Apr 1999 | A |
5931887 | Hac | Aug 1999 | A |
6112147 | Ghoneim et al. | Aug 2000 | A |
6134509 | Furusho et al. | Oct 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6195606 | Barta et al. | Feb 2001 | B1 |
6508102 | Margolis et al. | Jan 2003 | B1 |
6547343 | Hac | Apr 2003 | B1 |
20020128770 | Ooishi | Sep 2002 | A1 |
20020143451 | Hac et al. | Oct 2002 | A1 |
20020195293 | Will | Dec 2002 | A1 |
20030130775 | Lu et al. | Jul 2003 | A1 |
20040148077 | Yasui et al. | Jul 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050278077 A1 | Dec 2005 | US |