This invention relates to active noise cancellation systems, and has application to both feedback and feedforward control architectures, or combinations of these.
All active noise cancellation products, whether they are based on a feedback or feedforward control architecture (or a combination of these two architectures) require a tailored transfer function between the noise sensing device (typically one or more sensing microphones) and the device that creates the acoustic response required to cancel the sensed noise (typically a speaker). In this document the transfer function between the sensing microphone (s) and the speaker is referred to as the control law transfer function. This transfer function facilitates the realisation of noise cancellation over a suitable bandwidth whilst minimising noise amplification and and/or instability outside this bandwidth.
Classically the control law transfer function has been realised through use of an analog filter which consists of a fixed combination of active and passive components. Such a realisation has the following disadvantages:
It is an object of the present invention to provide a method or apparatus for realising an active noise cancellation control law transfer function which will ameliorate at least one of the foregoing disadvantages, or which, alternatively, will at least provide a useful alternative to existing solutions.
In one aspect the disclosed subject matter provides apparatus for realising an active noise cancellation control law transfer function between a sensing microphone and a speaker, the apparatus including a plurality of filters, each filter being operable over a different frequency range, and at least one filter having at least one adjustable parameter whereby the filter can be adjusted such that the filters cumulatively realise a required control law transfer function.
Each filter may include at least one adjustable parameter. In some embodiments the adjustable parameter is amplitude. In other embodiments the adjustable parameter is bandwidth.
The adjustable filter may comprise a parametric filter.
In one embodiment the adjustable parameter is dynamically adjustable. An adjustment controller may be provided to adjust the adjustable parameter.
In another aspect the disclosed subject matter broadly provides a method of active noise cancellation for apparatus including a speaker and sensing microphone and a plurality of filters, each filter being operable over a different frequency range, and at least one filter having at least one adjustable parameter whereby the filter can be adjusted, the method including:
In another aspect the disclosed subject matter broadly provides a method of active noise cancellation for apparatus including a speaker and sensing microphone and a plurality of filters, each filter being operable over a different frequency range, and at least one filter having at least one adjustable parameter whereby the filter can be adjusted, the method including:
The method may further comprise dynamically adjusting the adjustable parameter.
Further aspects will become apparent from the following description.
One or more embodiments of the invention will be described below with reference to the drawings in which:
Referring to
In order to provide an appropriate signal to speaker 1, the controller 3 must realise a suitable control law transfer function between the sensing microphone (s) and speaker.
Turning now to
In order to realise the function shown, a solution is proposed which uses a plurality of filters having one or more adjustable parameters. The filters are each operable over a different selected frequency range in a similar manner to a multi-channel audio equaliser. Thus the filters may cumulatively realise a required control law transfer function. In one embodiment, the proposed solution uses parametric filters, although those skilled in the art will appreciate that other forms of filter may be used. Those skilled in the art will also realise that the resultant circuit construction may take a variety of physical forms, and may in some embodiments be provided in the form of an integrated circuit with few, if any, additional components.
A parametric filter allows adjustment of centre frequency, quality factor (Q) and amplitude. Therefore, a parametric filter provides significant flexibility for an application such as the realisation of a selected frequency band of a control law transfer function.
Control law transfer functions are invariably based on a minimum phase system, and therefore the amplitude and phase characteristics are uniquely related. Accordingly, one only needs to realise the desired amplitude response and the phase response will automatically follow, or vice versa. Hence in some embodiments the adjustable parameter for one or more of the filters may simply be amplitude.
In one embodiment a plurality of parametric filters may be used together, in a manner similar to use of a parametric equaliser, to realise a control law transfer function. In particular, if there is a sufficient number of filters (for example being analogous to a parametric equaliser with a number of channels) and range of adjustment, any amplitude shape i.e. any gain profile with respect to frequency can be realised over a selected bandwidth and so it is possible to realise any desired or required control law transfer function. In some embodiments, multiple filter parameters of multiple filters are adjustable. In other embodiments, only a single parameter of a single filter of the plurality of filters may be adjustable.
In practice, it is usually necessary to rationalise the number of channels, i.e. the number of filters and the range of adjustment in order to minimise circuit complexity. However, if appropriate informed design choices are made, then because of the inherent flexibility of each parametric filter, a wide range of control law transfer functions can still be approximated to a sufficient level of accuracy.
Therefore, turning to the control law transfer function characteristic illustrated in
The amplitude of a parametric equaliser is typically centred around 0 dB, so a separate adjustable gain stage is used to realise the final control or transfer function. In this example around 12 dB of gain is provided by this stage.
Turning now to
For integration into an integrated circuit it is typically necessary to have C2 and C3 as external components owing to the low corner frequencies that they realise. For the other capacitors it is possible to integrate them by rescaling (i.e. reducing the capacitor value and increasing the resistor values) whilst still meeting noise floor specifications. The integrated resistors can be realised by a number of means such as “switch cap” or “transconductance”.
The external component count is therefore only two capacitors (per left or right channel). The adjustable resistor settings can be programmed into the integrated circuit as a one time programmable (OTP) setting.
In another embodiment one or more parameters of one or more of the filters is dynamically adjustable. Therefore, the adjustable resistor settings for the embodiment shown in
As mentioned above, the invention may be used in association with an active noise cancellation device such as an active noise cancelling headset or earphone. In some embodiments the filters may be part of the device. In others, the filters may be remotely associated with the device, for example being provided in a remote control module. It will be seen that the invention allows continual or periodic monitoring of one or more acoustic or electro-acoustic characteristics of the active noise cancelling device so that the filter(s) can be adjusted to realise a control law transfer function dependent on the determined characteristic(s).
Similarly, the invention allows a generic filter circuit to be used which can be adjusted for different models or forms of active noise cancelling device. Furthermore, the invention may allow each specific device produced from a production line to be tested for one or more acoustic or electro-acoustic characteristics, so that the control law transfer function for each specific device may be adjusted to optimise performance of that device to account for manufacturing tolerances.
From the foregoing it will be seen that a solution is proposed which addresses the major limitations of the classical analog realisation of a control law transfer function. In particular, the invention provides an adjustable transfer function that is amenable to integration with a low external part count.
Those skilled in the art to which the invention relates will appreciate that the invention offers an elegant and viable alternative to a digital control law transfer function realisation. A digital realisation has the disadvantages of requiring high speed, low latency analog to digital and digital to analog conversion as well as the digital signal processing elements. This all comes at a cost in terms of power consumption, noise floor and price amongst others.
Those skilled in the art will also appreciate that the invention may equally be employed on a digital platform.
This application is a continuation of U.S. patent application Ser. No. 12/956,200, filed on Nov. 30, 2010, which claims the benefit of and priority from U.S. Provisional Patent Application No. 61/264,995, filed Nov. 30, 2009. Both of these prior applications are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61264995 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12956200 | Nov 2010 | US |
Child | 15812543 | US |