Realistic eye models to design and evaluate intraocular lenses for a large field of view

Information

  • Patent Grant
  • 11013594
  • Patent Number
    11,013,594
  • Date Filed
    Tuesday, October 24, 2017
    7 years ago
  • Date Issued
    Tuesday, May 25, 2021
    3 years ago
Abstract
A system, method, and apparatus are provided for designing and evaluating intraocular lenses for a large field of view that generate a first eye model from data that includes constant and customized values, including customized values of a first intraocular lens. A simulated outcome is provided by the first intraocular lens in at least one modeled eye. A second eye model is generated wherein a second intraocular lens is substituted for the first intraocular lens. An outcome provided by the second intraocular lens is simulated in at least one modeled eye. Outcomes of the first and second intraocular lenses are compared.
Description
FIELD OF THE INVENTION

The present invention relates generally to the field of lens design. More particularly, the present invention relates to a system, method, and apparatus for using a library of computer eye models to design and test intraocular lenses (IOLs) for improved peripheral and/or central visual field performance.


BACKGROUND OF THE INVENTION

Intraocular Lenses (IOLs) may be used for restoring visual performance after a cataract or other ophthalmic procedure in which the natural crystalline lens is replaced with or supplemented by implantation of an IOL. When the optics of the eye are changed by such a procedure, the goal is to improve vision in the central field. However, current IOL technology degrades peripheral optical quality, which is known to degrade peripheral visual performance. Degraded peripheral vision may be detrimental to many aspects of life, including increased risks for car crashes and falling.


One of the problems when looking for an optimal solution to correct peripheral aberrations is that peripheral aberrations are strongly dependent on the anterior corneal geometry and axial lengths (and therefore, on the foveal refractive state). Due to that, any design to correct peripheral aberration will perform differently depending on the foveal refractive state, corneal anterior geometry and axial lengths (anterior chamber depth and vitreous length).


Different eye models have been proposed to evaluate pre-clinically IOLs visual performance on axis and to design new IOLs based on the on-axis performance. However, these eye models usually have a fixed cornea and modify vitreous lengths to test IOLs with different optical powers. Also, these average eye models have not been used to test the periphery.


Thus, there is a need for new types of computer eye models to evaluate IOL performance. There is a further need for improved computer eye models to design new IOLs based on on-axis performance. There is an additional need for improved system, method, and apparatus for a library of computer eye models to design and test intraocular lenses (IOLs) that improve peripheral and central visual field performance, and to test the central and peripheral optical performance of new and existing IOL designs under more realistic conditions. There is a need for eye models that contain higher order cornea aberrations and different biometry and are validated for a large field of view (from +30 to −30 degrees of the visual field). The present invention satisfies these needs and provides other related advantages.





BRIEF DESCRIPTION OF THE DRAWINGS

The various present embodiments now will be discussed in detail with an emphasis on highlighting the advantageous features with reference to the drawings of various embodiments. The illustrated embodiments are intended to illustrate, but not to limit the invention. These drawings include the following figures, in which like numerals indicate like parts:



FIG. 1 illustrates a block diagram of a computerized implementation in accordance with an embodiment of the present invention.



FIG. 2 illustrates an eye in a natural state;



FIG. 3 illustrates an eye having an intraocular lens;



FIG. 4 illustrates an example of an eye modeling in ZEMAX;



FIG. 5 illustrates a process flow to create an eye model;



FIG. 6 illustrates a process flow to create a validated and customized eye model;



FIG. 7 illustrates a process flow to test a new IOL model;



FIGS. 8A-8K illustrate eleven plots comparing simulated defocus (M) aberrations (+) and measured defocus (M) aberrations (x) for eleven different eye models;



FIGS. 9A-9K illustrate eleven plots comparing simulated astigmatism (J0) aberrations (+) and measured astigmatism (J0) aberrations (x) for eleven different eye models;



FIGS. 10A-10K illustrate eleven plots comparing simulated astigmatism (J45) aberrations (+) and measured astigmatism (J45) aberrations (x) for eleven different eye models;



FIGS. 11A-11K illustrate eleven plots comparing simulated spherical (SA) aberrations (+) and measured spherical (SA) aberrations (x) for eleven different eye models;



FIGS. 12A-12K illustrate eleven plots comparing horizontal coma aberrations (+) and measured horizontal coma aberrations (x) for eleven different eye models;



FIGS. 13A-13K illustrate eleven plots comparing vertical coma aberrations (+) and measured vertical coma aberrations (x) for eleven different eye models;



FIGS. 14A-14C illustrate histograms comparing the average aberrations provided by a spherical and an aspheric IOL between −30 and 30 degrees for lower order aberrations including defocus (M) and astigmatism (J0 and J45);



FIGS. 15A-15C illustrate histograms comparing the average aberrations provided by a spherical and an aspheric IOL between −30 and 30 degrees for higher order aberrations including spherical aberration (SA), horizontal coma, and vertical coma;



FIGS. 16A-16C illustrate histograms comparing the average peripheral aberrations of an aspheric IOL and a new IOL design that theoretically reduces peripheral aberrations for lower order aberrations including defocus (M) and astigmatism (J0 and J45); and



FIGS. 17A-17C illustrate histograms comparing the average peripheral aberrations of an aspheric IOL and a new IOL design that theoretically reduces peripheral aberrations for higher order aberrations including spherical aberration (SA), horizontal coma, and vertical coma.





DETAILED DESCRIPTION OF THE INVENTION

The following detailed description describes the present embodiments, with reference to the accompanying drawings. In the drawings, reference numbers label elements of the present embodiments. These reference numbers are reproduced below in connection with the discussion of the corresponding drawing features.


It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for the purpose of clarity, many other elements found in typical lenses, lens systems and lens design methods. Those of ordinary skill in the pertinent arts may recognize that other elements and/or steps are desirable and/or required in implementing the present invention. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements and steps is not provided herein. The disclosure herein is directed to all such variations and modifications to such elements and methods known to those skilled in the pertinent arts.


For normal patients (e.g., uncomplicated cataract patients), it is desirable to balance peripheral vision with good central vision in order to maximize overall functional vision. For those patients having a pathological loss of central vision, peripheral vision may be maximized, taking into account the visual angle where the retina is healthy. It is also understood that embodiments may be applied directly, or indirectly, to various IOLs including, for example, phakic IOLs and piggyback IOLs, as well as other types of ophthalmic lenses including, but not limited to, corneal implants, corneal surgical procedures such as LASIK or PRK, contact lenses, and other such devices. In some embodiments, various types of ophthalmic devices are combined, for example, an intraocular lens and a LASIK procedure may be used together to provide a predetermined visual outcome. Embodiments of the invention may also find particular use with spherical, aspheric, multifocal or accommodating intraocular lenses.


The present invention is directed to a library of computer eye models to design intraocular lenses (IOIs) that improve peripheral and central visual field performance, and to test the central and peripheral optical performance of new and existing IOL designs under more realistic conditions. In addition, the eye model(s) may also be used to design IOIs and other ophthalmic lenses, such as a phakic IOL or a corneal implant, and other vision correction methodologies, such as laser treatments, and a system and method relating to same, for providing improved peripheral and central visual field performance, and to test the central and peripheral optical performance of new and existing IOL designs under more realistic conditions.


The apparatus, system and method of the present invention may be predictive as to the performance of IOLs in the eye under any of a variety of circumstances, and with respect to any of a variety of ocular conditions and eye types, and may provide for improved performance of IOIs. For example, the present invention may include mathematical modeling of certain characterizations of the eye, such as total axial length of the eye (AL), cornea thickness (CT), anterior chamber depth (ACD), elevation map of the anterior cornea (Zemike Fit) and/or IOL Power, and comparison of model output to actual clinical data. It will be appreciated by those of ordinary skill in the pertinent arts that the apparatus, system and method of the present invention may be embodied in one or more computing processors, associated with one or more computing memories, within which is resident computing code to execute the mathematical models discussed herein, to provide the eye models discussed herein in a relational database to design and test ophthalmic lenses as part of the system, apparatus and method of the present invention. Further, those skilled in the art will appreciate, in light of the disclosure herein, that the aspects of the present invention may be provided to the one or more computing processors for processing via one or more computing networks, including via one or more nodes of a computing network. Computing networks for use in the present invention may include the Internet, an intranet, an extranet, a cellular network, a satellite network, a fiber optic network, or the like. Those skilled in the art might appreciate that all relevant measurements on what the present invention is based may be performed by using instruments known in the art. However, an instrument comprising all needed measurements (ocular and corneal wavefront aberration measurements) as well as the needed calculations to test and design IOLs can be considered an apparatus of the present invention.


An instrument can comprise a set of apparatuses, including a set of apparatuses from different manufacturers, configured to perform the necessary measurements and calculations. FIG. 1 shows a block diagram illustrating an implementation of the present invention in a system 100 comprised of one or more apparatuses capable of performing the calculations, assessments and comparisons discussed herein. The system 100 may include a biometric reader/simulator and/or like input 102, a processor 104, and a computer readable memory or medium 106 coupled to the processor 104. The computer readable memory 106 includes therein an array of ordered values 108 and sequences of instructions 110 which, when executed by the processor 104, cause the processor 104 to select and/or design the aspects discussed herein for association with a lens to be implanted into the eye, or reshaping to be performed on the eye, subject to the biometric readings/simulation at input 102. The array of ordered values 108 may comprise data used or obtained from and for use in design methods consistent with embodiments of the invention. The sequence of instructions 110 may include one or more steps consistent with embodiments of the invention. In some embodiments, the sequence of instructions 110 includes applying calculations, customization, simulation, comparison, and the like.


The processor 104 may be embodied in a general purpose desktop, laptop, tablet or mobile computer, and/or may comprise hardware and/or software associated with inputs 102. In certain embodiments, the system 100 may be configured to be electronically coupled to another device, such as one or more instruments for obtaining measurements of an eye or a plurality of eyes. Alternatively, the system 100 may be adapted to be electronically and/or wirelessly coupled to one or more other devices.


The system 100 can be adapted for designing and evaluating intraocular lenses for a large field of view, comprising: a plurality of eye models based upon a first intraocular lens, associated with at least one processor 104, where each eye model of the plurality of eye models includes at least one aberration. A simulator provided by the at least one processor 104 that models a second intraocular lens in at least one of the plurality of eye models, where the simulator outputs at least one aberration of the second intraocular lens in the at least one of said plurality of eye models. A comparator instantiated by the at least one processor 104 compares differences between the aberrations of the first intraocular lens and the second intraocular lens.



FIG. 2 is an illustration of an eye 20 in a natural state. The eye 20 includes a retina 22 for receiving an image, produced by light passing through a cornea 24 and a natural lens 26, from light incident upon the eye 20. The natural lens 26 is disposed within a capsular bag 28, which separates anterior and posterior chambers 30, 32 of the eye 20. An iris 34 may operate to change the aperture, i.e. pupil, size of the eye 20. More specifically, the diameter of the incoming light beam is controlled by the iris 34, which forms the aperture stop of the eye 20. An optical axis OA is defined by a straight line perpendicular to the front of the cornea 24 of the eye 20 and extending through a center of the pupil.


The capsular bag 28 is a resilient material that changes the shape and/or location of natural lens 26 in response to ocular forces produced when ciliary muscles 36 contract and stretch the natural lens 26 via zonules 38 disposed about an equatorial region of the capsular bag 28. This shape change may flatten the natural lens 26, thereby producing a relatively low optical power for providing distant vision in an emmetropic eye. To produce intermediate and/or near vision, ciliary muscles 36 contract, thereby relieving tension on the zonules 38. The resiliency of the capsular bag 28 thus provides an ocular force to reshape the natural lens 26 to modify curvature to provide an optical power suitable for required vision. This change, or “accommodation,” is achieved by changing the shape of the crystalline lens. Accommodation, as used herein, includes the making of a change in the focus of the eye for different distances.


Light enters the eye 20 from the left of FIG. 2, and passes through the cornea 24, the anterior chamber 30, the iris 34 through the pupil, and enters the lens 26. After passing through the lens 26, light passes through the posterior chamber 32, and strikes the retina 22, which detects the light and converts it to a signal transmitted through the optic nerve to the brain (not shown). The cornea 24 has a corneal thickness (CT), which is the distance between the anterior and posterior surfaces of the center of the cornea 24. The anterior chamber 30 has an anterior chamber depth (ACD), which is the distance between the posterior surface of the cornea 24 and the anterior surface of the lens 26. The lens 26 has a lens thickness (LT) which is the distance between the anterior and posterior surfaces of the lens 26. The eye 20 has a total axial length (AL) which is the distance between the center of the anterior surface of the cornea 24 and the fovea of the retina 22, where the image should focus.


The anterior chamber 30 is filled with aqueous humor, and optically communicates through the lens 26 with the vitreous or posterior chamber 32, which occupies the posterior % or so of the eyeball and is filled with vitreous humor. The average adult eye has an ACD of about 3.15 mm, although the ACD typically shallows by about 0.01 mm per year. Further, the ACD is dependent on the accommodative state of the lens 26 (i.e., whether the lens 26 is focusing on an object that is near or far).



FIG. 3 illustrates the eye 20 where the natural lens 26 has been replaced with an IOL 50. The natural lens 26 may have required removal due to a refractive lens exchange, or due to a disease such as cataracts, for example. Once removed, the natural lens 26 may have been replaced by the IOL 50 to provide improved vision in the eye 20. The eye 20 may include the IOL 50, where the IOL 50 includes an optic 52, and haptics or support structure 54 for centering the optic 52. The haptics 54 may center the optic 52 about the OA, and may transfer ocular forces from the ciliary muscle 32, the zonules 34, and/or the capsular bag 28 to the optic 52 to change the shape, power, and/or axial location of the optic 52 relative to the retina 22.


The terms “power” or “optical power” are used herein to indicate the ability of a lens, an optic, an optical surface, or at least a portion of an optical surface, to redirect incident light for the purpose of forming a real or virtual focal point. Optical power may result from reflection, refraction, diffraction, or some combination thereof and is generally expressed in units of Diopters. One of skill in the art will appreciate that the optical power of a surface, lens, or optic is generally equal to the reciprocal of the focal length of the surface, lens, or optic, when the focal length is expressed in units of meters.


The term “near vision,” as used herein, refers to vision provided by at least a portion of a lens 26 or an IOL 50, wherein objects relatively close to the subject are substantially in focus on the retina of the subject eye. The term “near vision” generally corresponds to the vision provided when objects are at a distance from the subject eye of between about 25 cm to about 50 cm. The term “distance vision” or “far vision,” as used herein, refers to vision provided by at least a portion of the lens 26 or IOL 50, wherein objects relatively far from the subject are substantially in focus on the retina of the eye. The term “distance vision” generally corresponds to the vision provided when objects are at a distance of at least about 2 m or greater. The term “intermediate vision,” as used herein, refers to vision provided by at least a portion of a lens, wherein objects at an intermediate distance from the subject are substantially in focus on the retina of the eye. Intermediate vision generally corresponds to vision provided when objects are at a distance of about 2 m to about 50 cm from the subject eye. The term “peripheral vision,” as used herein, refers to vision outside the central visual field.


A library of computer eye models is created to design new IOLs that improve peripheral and central visual field performance. These computer eye models are also used to test the central and peripheral optical performance of new and existing IOL designs under more realistic conditions. Elements of an eye model include anterior surface of the cornea (based on biometry data with topography data fitted to Zernike polynomials for a 6 mm central zone), posterior surface of the cornea, anterior lens (defined by IOL power), posterior lens (defined by IOL power), and the retina. These computer eye models are based on the following distances: total axial length (AL) (based on biometry data); cornea thickness (CT) (based on biometry data); anterior chamber depth (ACD) (optimized using the post-operative refraction); and lens thickness (LT) (defined by the IOL power). These eye models also include constant values and customized values. The constant values (i.e., similar for all eyes) include the posterior cornea and the retina 22. The customized values (i.e., different for each eye model) include the anterior cornea, and the anterior and posterior surfaces of the lens or lenses for dual optic systems.



FIG. 5 illustrates a process flow to create an eye model constructed using biometric data of real patients implanted with a monofocal TECNIS model ZCB00, one-piece Acrylic IOL from Abbott Medical Optics. The wavefront aberrations were measured post-operatively using a scanning aberrometer for 4 mm pupil and an eccentricity range of ±30 degrees. For example, the present invention may include mathematical modeling of certain characterizations of the eye, such as total axial length of the eye (AL), cornea thickness (CT), anterior chamber depth (ACD), elevation map of the anterior cornea (Zernike Fit) and/or IOL Power that will enable eventual comparison of model output to actual measured data.


A process to create an eye model starts with standard eye model data (“standard” in the sense that the particular values are similar for all eye models) in combination with biometry data and IOL power of an implanted IOL. The standard eye model is calculated based on data relating to posterior cornea geometry, retina geometry, and iris position (i.e., constant values that are similar for all eye models). The biometry data (i.e., customized values that are different for each eye model) is calculated based upon data relating to anterior cornea geometry, axial length AL, and cornea thickness CT. The implanted IOL power (i.e., customized values that are different for each eye model) is calculated based upon anterior lens geometry, posterior lens geometry, and lens thickness LT. The implanted IOL power of the patient is known. If the power is not accurate after the procedure, it is assumed that the person is correctly refracted by wearing spectacles to correct for on-axis errors. Thus, the power on-axis is set to zero, and the peripheral refractive power has the value added or subtracted accordingly.



FIG. 6 illustrates a process flow to create a validated and customized eye model. A validated customized eye model is obtained using data from combination of data relating to the standard eye model, biometry data, and IOL Data relating to post-op on-axis refraction is obtained, and anterior chamber depth ACD optimized to arrive at a customized eye model. Validation of the peripheral outcomes from the customized eye model is achieved by comparison with peripheral aberrations data, which results in a validated, customized eye model.



FIG. 7 illustrates a process flow to test a new IOL model. An IOL in a validated customized eye model is replaced by a new IOL This new IOL can be a new IOL design that is being tested to address one or more issues relating to vision (e.g., peripheral aberrations). The peripheral aberrations from +30 to −30 degrees of the field of view are determined. These peripheral aberrations include sphere, cylinder (J0 and J45), spherical aberration SA, coma (vertical and horizontal), and root mean square higher order aberrations RMS HOA. The foregoing process can be applied to all the eye models resulting in an average performance of the IOL defined by the peripheral aberrations.


By way of non-limiting example, the embodiments herein are based on data from eleven (11) patients. Each patient has a particular eye model based on patient and existing biometries. For the eleven patients, eleven different eye models are created. For each of the eleven different eye models, a particular IOL design is “plugged in,” and that same specific IOL design is tested at various diopters (e.g., 17.5, 19.5, 22, 23, etc.). Each power generates an output (e.g., a refractive error). A database is created that includes each eye model with the simulated outcomes provided by the particular IOL design. A database can be built-up to include as many eye models as desired. In this manner, one can review the results obtained from one lens design over a range of powers to see how that particular lens design behaves in a population. Then, a new IOL design may be plugged in and can compared to the prior IOL design. In this manner, feedback is provided to obtain data showing which specific IOL design provides the best result for an eye having particular biometries.


As seen in the illustrative examples of FIGS. 8A-13K, eleven (11) eye models were constructed using biometric data of real patients implanted with a monofocal TECNIS model ZCB00, one-piece Acrylic IOL from Abbott Medical Optics. However, any number of eye models can be created using biometric data of real patients implanted with a particular type of IOL. The wavefront aberrations were measured post-operatively using a scanning aberrometer for 4 mm pupil and an eccentricity range of ±30 degrees.


The computer eye models provide a range of IOL powers tested between 19 and 24 Diopters (D) and each eye model is described by the following biometric parameters: total axial length of the eye (AL); cornea thickness (CT); anterior chamber depth (ACD); elevation map of the anterior cornea (Zernike Fit); and IOL Power. The foregoing information is used to create the eye models using ray tracing software (e.g., ZEMAX). All surfaces are centered with respect to the optical axis OA. As used herein, a ray tracing procedure is a procedure that simulates light propagation and refraction, by means of an exact solution of Snell's law, for all rays passing through an optical system. Those skilled in the art will appreciate that, for example, a ZEMAX optical design software simulation may be employed in order to provide ray tracing modeling for various aberrations of a realistic computer eye model. ZEMAX optical analysis software is manufactured by ZEMAX, LLC. This and other known optical modeling techniques, including Code V, OSLO, ASAP, and other software may also be used to create eye models. An example of an eye modeling in ZEMAX is shown in FIG. 4.


The above-mentioned eleven eye models can be associated with the processor 104, with a simulator (not shown) providing the input 102, as seen in FIG. 1. The simulator may be any type of modeling software capable of modeling an ophthalmic lens of a given design in at least one of the eye models provided. The simulator may be embodied as Code V, OSLO, ZEMAX, ASAP, and similar software modeling programs, for example. The processor 104 applies the input 102 from the simulator to at least one eye model to output a simulation of eye characteristics. As seen in Table 1, ZEMAX simulations showed that the realistic computer eye models are able to reproduce measured aberrations with an acceptable range of error. Table 1 shows the average error (plus or minus standard deviation) for eye models on-axis (0°), the off-axis absolute error between −30° and 30°, and the off-axis relative error between −30° and 30° (i.e., the off-axis relative error being the on-axis error subtracted from the off-axis absolute error) for the defocus (M) (measured in diopters), astigmatism (J0 and J45) (measured in diopters), and higher order aberrations (spherical aberrations (SA), horizontal coma (H-coma) and vertical coma (V-coma) (measured in microns)).
















TABLE 1







M
J0
J45
SA
H-coma
V-coma



(diop-
(diop-
(diop-
(mi-
(mi-
(mi-



ters)
ters)
ters)
crons)
crons)
crons)






















On-axis
0.03 ±
0.22 ±
0.11 ±
0.02 ±
0.09 ±
0.06 ±



0.01
0.21
0.07
0.01
0.05
0.07


Off-axis
0.57 ±
0.19 ±
0.25 ±
0.02 ±
0.03 ±
0.04 ±


relative
0.25
0.14
0.16
0.01
0.02
0.02


Off-axis
0.55 ±
0.30 ±
0.27 ±
0.03 ±
0.09 ±
0.07 ±


absolute
0.24
0.24
0.15
0.01
0.04
0.05










FIGS. 8A-8K illustrate eleven plots comparing simulated defocus (M) aberrations (+) and measured defocus (M) aberrations (x) for eleven different eye models.



FIGS. 9A-9K illustrate eleven plots comparing simulated astigmatism (J0) aberrations (+) and measured astigmatism (J0) aberrations (x) for eleven different eye models.



FIGS. 10A-10K illustrate eleven plots comparing simulated astigmatism (J45) aberrations (+) and measured astigmatism (J45) aberrations (x) for eleven different eye models.



FIGS. 11A-11K illustrate eleven plots comparing simulated spherical (SA) aberrations (+) and measured spherical (SA) aberrations (x) for eleven different eye models.



FIGS. 12A-12K illustrate eleven plots comparing horizontal coma aberrations (+) and measured horizontal coma aberrations (x) for eleven different eye models.



FIGS. 13A-13K illustrate eleven plots comparing vertical coma aberrations (+) and measured vertical coma aberrations (x) for eleven different eye models.


In a specific illustration, the realistic eye models herein presented can be used to estimate the optical performance of different IOLs at the periphery. For example, FIGS. 14A-14C and 15A-15C compare the average aberrations provided by a spherical and an aspheric IOL between −30 and 30 degrees. No significant differences were found for defocus and astigmatism between the two IOL designs. However, as previously reported, the aspherical IOL significantly reduces SA for the range of eccentricities as well as the horizontal coma.



FIGS. 14A-14C illustrate histograms comparing the average aberrations provided by a spherical and an aspheric IOL between −30 and 30 degrees for lower order aberrations including defocus (M) and astigmatism (J0 and J45);



FIGS. 15A-15C illustrate histograms comparing the average aberrations provided by a spherical and an aspheric IOL between −30 and 30 degrees for higher order aberrations including spherical aberration (SA), horizontal coma, and vertical coma;


This library of realistic eye models can be also used to evaluate new IOL designs at the periphery. FIGS. 16A-16C and 17A-17C shows the average peripheral aberrations of an aspheric IOL and a new IOL design that theoretically reduces peripheral aberrations.



FIGS. 16A-16C illustrate histograms comparing the average peripheral aberrations of an aspheric IOL and a new IOL design that theoretically reduces peripheral aberrations for lower order aberrations including defocus (M) and astigmatism (J0 and J45).



FIGS. 17A-17C illustrate histograms comparing the average peripheral aberrations of an aspheric IOL and a new IOL design that theoretically reduces peripheral aberrations for higher order aberrations including spherical aberration (SA), horizontal coma, and vertical coma.


Simulations showed that the new IOL can reduce M and J0 at the periphery without modifying J45 and vertical coma. Simulations also shows that there is a minimal increment in SA and an increment in horizontal coma that has opposite sign that the one induced by the spherical lens.


There may be additional alternative embodiments. For example, the designed eye models can also include the different axes of the eye, incorporating the shift of the fovea relative to the cornea, pupil and IOL. In another example, the eye models can be used to predict chromatic properties, including longitudinal chromatic aberrations, chromatic shift of aberrations and transverse chromatic aberrations. In a further example, the eye models can simulate a realistic range of pupillary conditions. The eye models can include changes that happen when the eyes converge (e.g. pupillary shift).


In the alternative, the schematic eye models herein proposed can be used to test any existing IOL design (e.g., monofocal, multifocal, extended range of vision, or the like) and to optimize new ones. In another alternative, the schematic eye models herein proposed can be used to test corneal refractive procedures, add on lenses or spectacles. As mentioned, the schematic eye models herein proposed can be used for ray tracing simulations. The geometry of the schematic eye models herein proposed can be used to build physical eye models. The schematic eye models could also be used to predict on-axis VA and peripheral CS. The method described herein can be used to customize lens design for any patient.


Needless to say the illustrations immediately hereinabove are provided by way of example only, and may be applicable to lens design, modification of physical lens design, modification to simulation, modification to selections of eye models, and the like. Similarly, the illustrations are applicable to not only groups of patients, or with regard to current lens designs, but is equally applicable to custom and quasi-custom lens design, for individual patients and limited or unique subsets of patients, respectively.


In addition, the claimed invention is not limited in size and may be constructed in various sizes in which the same or similar principles of operation as described above would apply. Furthermore, the figures (and various components shown therein) of the specification are not to be construed as drawn to scale.


Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.


The use of the expression “at least” or “at least one” suggests the use of one or more elements or ingredients or quantities, as the use may be in the embodiment of the disclosure to achieve one or more of the desired objects or results.


The numerical values mentioned for the various physical parameters, dimensions or quantities are only approximations and it is envisaged that the values higher/lower than the numerical values assigned to the parameters, dimensions or quantities fall within the scope of the disclosure, unless there is a statement in the specification specific to the contrary.


The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.


When an element or layer is referred to as being “on”, “engaged to”, “connected to” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to”, “directly connected to” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Spatially relative terms, such as “front,” “rear,” “left,” “right,” “inner,” “outer,” “beneath”, “below”, “lower”, “above”, “upper”, “horizontal”, “vertical”, “lateral”, “longitudinal” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


The above description presents the best mode contemplated for carrying out the present invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains to make and use this invention. This invention is, however, susceptible to modifications and alternate constructions from that discussed above that are fully equivalent. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above. Consequently, this invention is not limited to the particular embodiments disclosed. On the contrary, this invention covers all modifications and alternate constructions coming within the spirit and scope of the invention as generally expressed by the following claims, which particularly point out and distinctly claim the subject matter of the invention.

Claims
  • 1. A method of designing and evaluating intraocular lenses, comprising: generating a first plurality of eye models, wherein each eye model corresponds to a different patient using data that includes constant and customized values, including customized values of a first intraocular lens;simulating first peripheral outcomes provided by the first intraocular lens in the first plurality of eye models, wherein the first intraocular lens corresponds to a first patient;creating a database of the first outcomes;generating a first average for the first peripheral outcomes;generating a second plurality of eye models, wherein the first intraocular lens in the first plurality of eye models is substituted with a second intraocular lens which corresponds to a second patient and is different from the first intraocular lens;simulating second peripheral outcomes provided by the second intraocular lens in the second plurality of eye models;adding the second outcomes to the database;generating a second average for the second peripheral outcomes; andcomparing the first average for the first peripheral outcomes with the second average for the second peripheral outcomes.
  • 2. The method of claim 1, wherein the constant values include at least one of posterior cornea, and retina.
  • 3. The method of claim 1, wherein the customized values further include biometric data and refraction.
  • 4. The method of claim 3, wherein the biometric data includes at least one of anterior cornea, total axial length, and cornea thickness.
  • 5. The method of claim 3, the customized values of the first intraocular lens include at least one of anterior lens geometry, posterior lens geometry, and lens thickness.
  • 6. The method of claim 1, wherein generating the first plurality of eye models includes optimizing anterior chamber depth.
  • 7. The method of claim 1, wherein generating the first plurality of eye models includes validating peripheral outcomes.
  • 8. The method of claim 1, wherein the first plurality of eye models reproduces measured aberrations with an acceptable range of error.
  • 9. The method of claim 8, wherein measured aberrations include at least of defocus, and astigmatism.
  • 10. The method of claim 9, wherein measured aberrations include higher order aberrations.
  • 11. The method of claim 10, wherein the higher order aberrations include at least one of spherical aberrations, horizontal coma, and vertical coma.
  • 12. A system for designing and evaluating intraocular lenses for a large field of view, comprising: a plurality of eye models based upon a first intraocular lens, associated with at least one processor, wherein each eye model of said first plurality of eye models corresponds to a different patient and includes a first peripheral aberration average, and wherein the first intraocular lens corresponds to a first patient;a simulator provided by the at least one processor that models a second intraocular lens in the plurality of eye models, wherein the second intraocular lens corresponds to a second patient and is different from the first intraocular lens, and wherein the simulator outputs at least one a second peripheral aberration average of the second intraocular lens in the plurality of eye models; anda comparator instantiated by the at least one processor that compares differences between the peripheral aberration averages of the first intraocular lens and the second intraocular lens.
RELATED APPLICATIONS

This application claims priority to, and the benefit of, under U.S.C. § 119(e) of U.S. Provisional Appl. No. 62/412,738, filed on Oct. 25, 2016, which is incorporated herein by reference in its entirety.

US Referenced Citations (359)
Number Name Date Kind
2077092 Broder Apr 1937 A
3305294 Alvarez Feb 1967 A
3367734 Karl et al. Feb 1968 A
3735685 Plummer May 1973 A
4010496 Neefe Mar 1977 A
4056311 Winthrop et al. Nov 1977 A
4077071 Freeman Mar 1978 A
4093361 Erickson et al. Jun 1978 A
4134160 Bayers Jan 1979 A
4162122 Cohen Jul 1979 A
4174543 Kelman Nov 1979 A
4210391 Cohen et al. Jul 1980 A
4249272 Poler Feb 1981 A
4254509 Tennant Mar 1981 A
4254510 Tennant Mar 1981 A
4316293 Bayers Feb 1982 A
4319564 Karickhoff Mar 1982 A
4338005 Cohen Jul 1982 A
4340283 Cohen et al. Jul 1982 A
4370760 Kelman Feb 1983 A
4377873 Reichert Mar 1983 A
4402579 Poler Sep 1983 A
4403353 Tennant Sep 1983 A
4404694 Kelman Sep 1983 A
4409691 Levy Oct 1983 A
4424597 Schlegel Jan 1984 A
4437733 Takahashi et al. Mar 1984 A
4446581 Blake May 1984 A
4480340 Shepard Nov 1984 A
4500382 Foster Feb 1985 A
4504982 Burk Mar 1985 A
4551864 Akhavi Nov 1985 A
4556998 Siepser Dec 1985 A
4560383 Leiske Dec 1985 A
4605409 Kelman Aug 1986 A
4605411 Fedorov et al. Aug 1986 A
4629460 Dyer Dec 1986 A
4629462 Feaster Dec 1986 A
4637697 Freeman Jan 1987 A
4642112 Freeman Feb 1987 A
4655565 Freeman Apr 1987 A
4665913 L'Esperance, Jr. May 1987 A
4669466 L'Esperance Jun 1987 A
4673406 Schlegel Jun 1987 A
4676791 Lemaster et al. Jun 1987 A
4676792 Praeger Jun 1987 A
4681102 Bartell Jul 1987 A
4687484 Kaplan Aug 1987 A
4687485 Lim et al. Aug 1987 A
RE32525 Pannu Oct 1987 E
4725277 Bissonette Feb 1988 A
4732148 L'Esperance, Jr. Mar 1988 A
4734095 Siepser Mar 1988 A
4764930 Bille et al. Aug 1988 A
4770172 L'Esperance, Jr. Sep 1988 A
4773414 L'Esperance, Jr. Sep 1988 A
4778462 Grendahl Oct 1988 A
4781717 Grendahl Nov 1988 A
4787903 Grendahl Nov 1988 A
4787904 Severin et al. Nov 1988 A
4795462 Grendahl Jan 1989 A
4798608 Grendahl Jan 1989 A
4798609 Grendahl Jan 1989 A
4828558 Kelman May 1989 A
4834748 McDonald May 1989 A
4863261 Flammer Sep 1989 A
4863539 Lee et al. Sep 1989 A
4898461 Portney Feb 1990 A
4932970 Portney Jun 1990 A
4995714 Cohen Feb 1991 A
4995715 Cohen Feb 1991 A
4997442 Barrett Mar 1991 A
5016977 Baude et al. May 1991 A
5019097 Knight et al. May 1991 A
5042938 Shimozono Aug 1991 A
5047052 Dubroff Sep 1991 A
5054905 Cohen Oct 1991 A
5056908 Cohen Oct 1991 A
5066301 Wiley Nov 1991 A
5071432 Baikoff Dec 1991 A
5078742 Dahan Jan 1992 A
5089023 Swanson Feb 1992 A
5096285 Silberman Mar 1992 A
5108388 Trokel et al. Apr 1992 A
5114220 Baude et al. May 1992 A
5117306 Cohen May 1992 A
5120120 Cohen Jun 1992 A
5121979 Cohen Jun 1992 A
5121980 Cohen Jun 1992 A
5133749 Nordan Jul 1992 A
5144483 Cohen Sep 1992 A
5147395 Willis Sep 1992 A
5147397 Christ et al. Sep 1992 A
5163934 Munnerlyn Nov 1992 A
5173723 Volk et al. Dec 1992 A
5184405 Cress Feb 1993 A
5197981 Southard Mar 1993 A
5201763 Brady et al. Apr 1993 A
5203790 McDonald Apr 1993 A
5207668 L'Esperance, Jr. May 1993 A
5217491 Vanderbilt Jun 1993 A
5219343 L'Esperance, Jr. Jun 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5258025 Fedorov et al. Nov 1993 A
5278592 Marie et al. Jan 1994 A
5379110 Matsui et al. Jan 1995 A
5408281 Zhang Apr 1995 A
5433745 Graham et al. Jul 1995 A
5476513 Brady et al. Dec 1995 A
5479220 Komatsu et al. Dec 1995 A
5567365 Weinschenk, III et al. Oct 1996 A
5571177 Deacon et al. Nov 1996 A
5620720 Glick et al. Apr 1997 A
5628796 Suzuki May 1997 A
5646791 Glockler Jul 1997 A
5652638 Roffman et al. Jul 1997 A
5652640 Schneider et al. Jul 1997 A
5691800 Iki et al. Nov 1997 A
5699142 Lee et al. Dec 1997 A
5716403 Tran et al. Feb 1998 A
5748282 Freeman May 1998 A
5760871 Kosoburd et al. Jun 1998 A
5796462 Roffman et al. Aug 1998 A
5801807 Satake et al. Sep 1998 A
5928282 Nigam Jul 1999 A
5968094 Werblin et al. Oct 1999 A
5993438 Juhasz et al. Nov 1999 A
6015435 Valunin et al. Jan 2000 A
6051024 Cumming Apr 2000 A
6126283 Wen et al. Oct 2000 A
6126286 Portney Oct 2000 A
6129759 Chambers Oct 2000 A
6142625 Sawano et al. Nov 2000 A
6179870 Sourdille et al. Jan 2001 B1
6210005 Portney Apr 2001 B1
6235055 Chu May 2001 B1
6241356 Von Wallfeld et al. Jun 2001 B1
6261321 Kellan Jul 2001 B1
6319282 Nishi Nov 2001 B1
6338559 Williams et al. Jan 2002 B1
6419697 Kelman Jul 2002 B1
6457826 Lett Oct 2002 B1
6460997 Frey et al. Oct 2002 B1
6464355 Gil Oct 2002 B1
6474814 Griffin Nov 2002 B1
6488708 Sarfarazi Dec 2002 B2
6491721 Freeman et al. Dec 2002 B2
6497483 Frey et al. Dec 2002 B2
6527389 Portney Mar 2003 B2
6533416 Fermigier et al. Mar 2003 B1
6536899 Fiala Mar 2003 B1
6537317 Steinert et al. Mar 2003 B1
6547822 Lang Apr 2003 B1
6550917 Neal et al. Apr 2003 B1
6554859 Lang et al. Apr 2003 B1
6557992 Dwyer et al. May 2003 B1
6575572 Lai et al. Jun 2003 B2
6598606 Terwee et al. Jul 2003 B2
6609793 Norrby et al. Aug 2003 B2
6705729 Piers et al. Mar 2004 B2
6786603 Altmann Sep 2004 B2
6802605 Cox et al. Oct 2004 B2
6808262 Chapoy et al. Oct 2004 B2
6817714 Altmann Nov 2004 B2
6830332 Piers et al. Dec 2004 B2
6846326 Zadno-Azizi et al. Jan 2005 B2
6851803 Wooley et al. Feb 2005 B2
6899425 Roffman et al. May 2005 B2
6923539 Simpson et al. Aug 2005 B2
6923540 Ye et al. Aug 2005 B2
6986578 Jones Jan 2006 B2
7036931 Lindacher et al. May 2006 B2
7048760 Cumming May 2006 B2
7061693 Zalevsky Jun 2006 B2
7073906 Portney Jul 2006 B1
7137702 Piers et al. Nov 2006 B2
7156516 Morris et al. Jan 2007 B2
7188949 Bandhauer et al. Mar 2007 B2
7281797 Yamaguchi et al. Oct 2007 B2
7287852 Fiala Oct 2007 B2
7293873 Dai et al. Nov 2007 B2
7296893 Dai Nov 2007 B2
7339539 Joannopoulos et al. Mar 2008 B2
7350916 Hong et al. Apr 2008 B2
7365917 Zalevsky Apr 2008 B2
7377640 Piers et al. May 2008 B2
7425068 Koest Sep 2008 B2
7441894 Zhang et al. Oct 2008 B2
7455404 Bandhauer et al. Nov 2008 B2
7455407 Neal et al. Nov 2008 B2
7475986 Dai et al. Jan 2009 B2
7547102 Dai Jun 2009 B2
7615073 Deacon et al. Nov 2009 B2
7616330 Neal et al. Nov 2009 B2
7659971 Warden et al. Feb 2010 B2
7726813 Dai Jun 2010 B2
7784946 Leblanc Aug 2010 B2
7794497 Brady et al. Sep 2010 B2
7857451 Thibos et al. Dec 2010 B2
7871162 Weeber Jan 2011 B2
7911211 Crain et al. Mar 2011 B2
7931371 Dai Apr 2011 B2
7931374 Dai et al. Apr 2011 B2
7938538 Lu et al. May 2011 B2
7944553 Simpson et al. May 2011 B1
7969585 Neal et al. Jun 2011 B2
8123357 Dai et al. Feb 2012 B2
8382281 Weeber Feb 2013 B2
8480228 Weeber Jul 2013 B2
8596787 Dai Dec 2013 B2
8657445 Olsen Feb 2014 B2
8696119 Van Der Mooren et al. Apr 2014 B2
8740382 Liu et al. Jun 2014 B1
8746882 Vidal et al. Jun 2014 B2
8764822 Harris et al. Jul 2014 B2
8862447 Weeber Oct 2014 B2
9211061 Kasthurirangan et al. Dec 2015 B2
9241627 Steinmueller Jan 2016 B2
9393108 Canovas Vidal et al. Jul 2016 B2
9491431 Zhou Nov 2016 B2
9700201 Bex et al. Jul 2017 B2
20010051825 Peterson Dec 2001 A1
20020118337 Perrott et al. Aug 2002 A1
20020173846 Blake et al. Nov 2002 A1
20020196408 Bhalakia et al. Dec 2002 A1
20020196412 Abitbol Dec 2002 A1
20030033013 Callahan et al. Feb 2003 A1
20030053025 Turner et al. Mar 2003 A1
20030076478 Cox Apr 2003 A1
20030163122 Sumiya Aug 2003 A1
20030171808 Phillips Sep 2003 A1
20030189690 Mihashi et al. Oct 2003 A1
20040021824 Ye et al. Feb 2004 A1
20040021825 Richardson Feb 2004 A1
20040054358 Cox Mar 2004 A1
20040057010 Altmann Mar 2004 A1
20040068317 Knight Apr 2004 A1
20040085515 Roffman et al. May 2004 A1
20040106992 Lang et al. Jun 2004 A1
20040111153 Woods et al. Jun 2004 A1
20040150789 Jones Aug 2004 A1
20040156014 Piers et al. Aug 2004 A1
20040167622 Sunalp et al. Aug 2004 A1
20040183997 Suzuki Sep 2004 A1
20040230299 Simpson et al. Nov 2004 A1
20040260275 Liang et al. Dec 2004 A1
20050024647 Montgomery Feb 2005 A1
20050096226 Stock et al. May 2005 A1
20050122474 Koretz Jun 2005 A1
20050125056 Deacon et al. Jun 2005 A1
20050128432 Altmann Jun 2005 A1
20050195364 Dai Sep 2005 A1
20050203619 Altmann Sep 2005 A1
20050251254 Brady et al. Nov 2005 A1
20050267575 Nguyen et al. Dec 2005 A1
20060009816 Fang et al. Jan 2006 A1
20060030938 Altmann Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060055877 Yanari Mar 2006 A1
20060055883 Morris et al. Mar 2006 A1
20060066808 Blum et al. Mar 2006 A1
20060068453 Altieri Mar 2006 A1
20060098162 Bandhauer et al. May 2006 A1
20060098163 Bandhauer et al. May 2006 A1
20060109421 Ye et al. May 2006 A1
20060116763 Simpson Jun 2006 A1
20060116764 Simpson Jun 2006 A1
20060116765 Blake et al. Jun 2006 A1
20060176572 Fiala Aug 2006 A1
20060203198 Liang Sep 2006 A1
20060238702 Glick et al. Oct 2006 A1
20060244904 Hong et al. Nov 2006 A1
20060244906 Piers et al. Nov 2006 A1
20060244916 Guillon Nov 2006 A1
20060274268 Andino et al. Dec 2006 A1
20060279699 Liang Dec 2006 A1
20060279700 Liang Dec 2006 A1
20070052920 Stewart et al. Mar 2007 A1
20070052927 Noda et al. Mar 2007 A1
20070129803 Cumming et al. Jun 2007 A1
20070171362 Simpson et al. Jul 2007 A1
20070182924 Hong et al. Aug 2007 A1
20070195265 Dreher et al. Aug 2007 A1
20070211214 Dai Sep 2007 A1
20070268453 Hong et al. Nov 2007 A1
20070285617 Mills et al. Dec 2007 A1
20080018910 Neal et al. Jan 2008 A1
20080030677 Simpson Feb 2008 A1
20080033546 Liang Feb 2008 A1
20080161913 Brady et al. Jul 2008 A1
20080161914 Brady et al. Jul 2008 A1
20080198331 Azar et al. Aug 2008 A1
20080231809 Haigis Sep 2008 A1
20080269642 Deacon et al. Oct 2008 A1
20080273169 Blum et al. Nov 2008 A1
20080291393 Menezes Nov 2008 A1
20090000628 Somani et al. Jan 2009 A1
20090012609 Geraghty et al. Jan 2009 A1
20090036980 Norrby et al. Feb 2009 A1
20090062911 Bogaert Mar 2009 A1
20090164008 Hong et al. Jun 2009 A1
20090168019 Tuan Jul 2009 A1
20090187242 Weeber et al. Jul 2009 A1
20090210054 Weeber et al. Aug 2009 A1
20090231546 Dai Sep 2009 A1
20090234448 Weeber et al. Sep 2009 A1
20090268155 Weeber Oct 2009 A1
20090268158 Weeber Oct 2009 A1
20090275929 Zickler Nov 2009 A1
20090279048 Hong et al. Nov 2009 A1
20090281552 Hiramatsu et al. Nov 2009 A1
20090292354 Gontijo et al. Nov 2009 A1
20090295295 Shannon et al. Dec 2009 A1
20090303465 Clements et al. Dec 2009 A1
20090323020 Zhao et al. Dec 2009 A1
20100016961 Hong et al. Jan 2010 A1
20100016965 Hong et al. Jan 2010 A1
20100082017 Zickler et al. Apr 2010 A1
20100097569 Weeber et al. Apr 2010 A1
20100130888 Deacon et al. May 2010 A1
20100161048 Schaper, Jr. Jun 2010 A1
20100179793 Chernyak et al. Jul 2010 A1
20100220185 Vertoprakhov et al. Sep 2010 A1
20100234833 Dai Sep 2010 A1
20100315589 Portney Dec 2010 A1
20110080562 Iizuka et al. Apr 2011 A1
20110149236 Weeber Jun 2011 A1
20110166652 Bogaert et al. Jul 2011 A1
20110205486 Zhao Aug 2011 A1
20110211163 Meuse et al. Sep 2011 A1
20110270596 Weeber Nov 2011 A1
20120140166 Zhao Jun 2012 A1
20120238904 Manns et al. Sep 2012 A1
20120249955 Sarver et al. Oct 2012 A1
20120310337 Hacker et al. Dec 2012 A1
20130050637 Roffman et al. Feb 2013 A1
20130226294 Van Der Mooren et al. Aug 2013 A1
20130307965 Widman et al. Nov 2013 A1
20130314669 Levin et al. Nov 2013 A1
20130345807 Olsen et al. Dec 2013 A1
20140016088 De Rossi et al. Jan 2014 A1
20140135919 Gontijo et al. May 2014 A1
20140160436 Kasthurirangan et al. Jun 2014 A1
20140176904 Lai Jun 2014 A1
20140268042 Bor et al. Sep 2014 A1
20140293426 Dobschal Oct 2014 A1
20140320805 Wilzbach et al. Oct 2014 A1
20150062529 Kasthurirangan et al. Mar 2015 A1
20150138350 Videcoq May 2015 A1
20150250583 Rosen et al. Sep 2015 A1
20150320547 Rosen Nov 2015 A1
20150359625 Argal et al. Dec 2015 A1
20150362746 Skudder et al. Dec 2015 A1
20150379348 Whritenor et al. Dec 2015 A1
20160157997 Gerlach et al. Jun 2016 A1
20160299355 Biemold et al. Oct 2016 A1
20160335474 Santos-Villalobos Nov 2016 A1
20170189233 Dewey Jul 2017 A1
Foreign Referenced Citations (76)
Number Date Country
8107675 Jul 1981 DE
3439551 Apr 1986 DE
102005022683 Nov 2006 DE
226400 Jun 1987 EP
227357 Jul 1987 EP
0343067 Nov 1989 EP
0457553 Nov 1991 EP
681198 Nov 1995 EP
0538126 Sep 1996 EP
0810427 Dec 1997 EP
0926531 Jun 1999 EP
949529 Oct 1999 EP
957331 Nov 1999 EP
1424049 Jun 2004 EP
1857077 Nov 2007 EP
1310267 Jan 2008 EP
1424049 Jun 2009 EP
2631891 Aug 2013 EP
3059575 Aug 2016 EP
2745711 Sep 1997 FR
2433782 Jul 2007 GB
2488802 Sep 2012 GB
8603961 Jul 1986 WO
9222264 Dec 1992 WO
9303409 Feb 1993 WO
9507487 Mar 1995 WO
9856315 Dec 1998 WO
9905499 Feb 1999 WO
0019906 Apr 2000 WO
0111418 Feb 2001 WO
0135868 May 2001 WO
0154569 Aug 2001 WO
0163344 Aug 2001 WO
0182839 Nov 2001 WO
0185016 Nov 2001 WO
0189424 Nov 2001 WO
0221194 Mar 2002 WO
02074210 Sep 2002 WO
03009053 Jan 2003 WO
04028356 Apr 2004 WO
2004034129 Apr 2004 WO
2004053568 Jun 2004 WO
2004079637 Sep 2004 WO
2004090611 Oct 2004 WO
2004096014 Nov 2004 WO
05019906 Mar 2005 WO
2005079546 Sep 2005 WO
06025726 Mar 2006 WO
2006032263 Mar 2006 WO
2006047698 May 2006 WO
06060477 Jun 2006 WO
2006060480 Jun 2006 WO
2007067872 Jun 2007 WO
2007092948 Aug 2007 WO
2007133384 Nov 2007 WO
2007142981 Dec 2007 WO
2008045847 Apr 2008 WO
2008083283 Jul 2008 WO
2009020963 Feb 2009 WO
2009029515 Mar 2009 WO
2009076670 Jun 2009 WO
2009105567 Aug 2009 WO
2009137491 Nov 2009 WO
2010009254 Jan 2010 WO
2010009257 Jan 2010 WO
2010028654 Mar 2010 WO
2012052585 Apr 2012 WO
2012074742 Jun 2012 WO
2012083143 Jun 2012 WO
2012085917 Jun 2012 WO
2012154597 Nov 2012 WO
2012166797 Dec 2012 WO
2015022215 Feb 2015 WO
2016032397 Mar 2016 WO
2016087914 Jun 2016 WO
2016123167 Aug 2016 WO
Non-Patent Literature Citations (70)
Entry
Partial International Search Report for Application No. PCT/IB2017/001417, dated Feb. 9, 2018, 10 pages.
Einighammer H.J., “The Individual Virtual Eye”, Dissertation, 2008, 157 pages.
Abelman H., et al. “Tolerance and Nature of Residual Refraction in Symmetric Power Space as Principal Lens Powers and Meridians Change,” Computational and Mathematical Methods in Medicine, Article ID 492383, 2014, vol. 2014, pp. 1-12.
Alfonso J.F., et al., “Prospective Study of the Acri.LISA Bifocal Intraocular Lens,” Journal of Cataract Refractive Surgery, Nov. 2007, vol. 33 (11), pp. 1930-1935.
Alio J.L., et al., “Phakic Anterior Chamber Lenses for the Correction of Myopia: A 7-Year Cumulative Analysis of Complications in 263 Cases,” Ophthalmology, Mar. 1999, vol. 106 (3), pp. 458-466.
Apple D.J., et al., “Anterior Chamber Lenses Part 1: Complications and Pathology and a Review of Designs,” Journal of Cataract Refractive Surgery, Mar. 1987, vol. 13 (2), pp. 157-174.
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 22 (36), pp. 205-221.
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 36 (1), pp. 21-36.
Baikoff G., et al., “Angle-fixated Anterior Chamber Phakic Intraocular Lens for Myopia 7 to -19 Diopters,” Journal of Refractive Surgery, May-Jun. 1998, vol. 14 (3), pp. 282-292.
Baumeister M., et al., “Tilt and Decentration of Spherical and Aspheric Intraocular Lenses: Effect on Higher-Order Aberrations,” Journal of Cataract & Refractive Surgery, 2009, vol. 35 (6), pp. 1006-1012.
Brainard D.H., The Psychophysics Toolbox, Spatial Vision, vol. 10, pp. 433-436.
Brown W.L., “Revisions to Tolerances in Cylinder Axis and in Progressive Addition Lens Power in ANSI Z80.1-2005,” Optometry, 2006, vol. 77 (7), pp. 343-349.
Canovas C., et al., “Customized Eye Models for Determining Optimized Intraocular Lenses Power,” Biomedical Optics Express, Jun. 1, 2011, vol. 2 (6), pp. 1649-1662.
Canovas C., et al., “Hybrid Adaptive-Optics Visual Simulator,” Optical Letters, Jan. 15, 2010, vol. 35 (2), pp. 196-198.
Cheng X., et al., “Predicting Subjective Judgment of Best Focus with Objective Image Quality Metrics,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 310-321.
CILCO Advertisement Brochure, Oct. 1982, 3 pages.
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, Jul. 1, 1992, vol. 31 (19), pp. 3750-3754.
De Almeida M.S., et al., “Different Schematic Eyes and their Accuracy to the in Vivo Eye: A Quantitative Comparison Study,” Brazilian Journal of Physics, Jun. 2007, vol. 37 (2A), 10 pages.
Diffractive Lenses for Extended Depth of Focus and Presbyopic Correction, Presentation from Wavefront Congress held on Feb. 15, 2008, Rochester, New York.
Doskolovich L.L., et al., “Special Diffractive Lenses,” Lens and Optical Systems Design, Apr. 1992, vol. 1780, pp. 393-402.
Gobbi P.G., et al., “Far and Near Visual Acuity with Multifocal Intraocular Lenses in an Optomechanical Eye Model with Imaging Capability,” Journal of Cataract and Refractive Surgery, 2007, vol. 33 (6), pp. 1082-1094.
Gobbi P.G., et al., “Optomechanical Eye Model with Imaging Capabilities for Objective Evaluation of Intraocular Lenses,” Journal of Cataract and Refractive Surgery, 2006, vol. 32 (4), pp. 643-651.
Hill W., et al., “Monte Carlo Simulation of Expected Outcomes with the Acrysof Toric Intraocular Lens,” BMC Ophthalmology, Oct. 2008, vol. 8, pp. 22.
Kim J.H., et al., “The Analysis of Predicted Capsular Bag Diameter using Modified Model of Capsule Measuring Ring in Asians,” Clinical and Experimental Ophthalmology, Apr. 2008, vol. 36 (3), pp. 238-244.
Kim M.J., et al., “Objective Evaluation of Through-Focus Optical Performance of Presbyopia-Correcting Intraocular Lenses Using an Optical Bench System,” Journal of Cataract and Refractive Surgery, 2011, vol. 37 (7), pp. 1305-1312.
Klein S.A., “Optimal Corneal Ablation for Eyes with Arbitrary Hartmann-Shack Aberrations,” Journal of the Optical Society of America A, 1998, vol. 15 (9), pp. 2580-2588.
Liang J., et al, “Objective Measurement of Wave Aberrations of the Human Eye With the Use of a Hartmann-Shack Wave-Front Sensor,” Journal of the Optical Society of America, 1994, vol. 11 (7), pp. 1949-1957.
Liou H.L., et al., “Anatomically Accurate, Finite Model Eye for Optical Modeling,” Journal of Optical Society of America, Aug. 1997, vol. 14 (8), pp. 1684-1695.
Liou H.L., et al., “The Prediction of Spherical Aberration with Schematic Eyes,” Ophthalmic and Physiological Optics, Jan. 1996, vol. 16 (4), pp. 348-354.
Marinho A., “Results are Encouraging for Phakic IOLs, but More Work is needed,” Refractive Surgery, Feb. 2000, p. 12, 15.
Marsack J.D., et al., “Metrics of Optical Quality Derived from Wave Aberrations Predict Visual Performance,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 322-328.
Menapace R., “The Capsular Tension Rings,” Journal of Cataract & Refractive Surgery, Dec. 10, 2008, Chap. 3, pp. 27-44.
Mencucci R., et al., “Clinical outcomes and rotational stability of a 4-haptic toric intraocular lens in myopic eyes,” Journal of Cataract & Refractive Surgery, Sep. 2014, vol. 40 (9), pp. 1479-1487.
Monsoriu J.A., et al., “Devil's Lenses,” Optics Express, Oct. 17, 2007, vol. 15 (21), pp. 13858-13864.
Navarro R., et al., “Accommodation-Dependent Model of the Human Eye with Aspherics,” Journal of the Optical Society of America, Aug. 1985, vol. 2 (8), pp. 1273-1281.
Nio Y.K., et al., “Effect of Intraocular Lens Implantation on Visual Acuity, Contrast Sensitivity, and Depth of Focus,” Journal of Cataract and Refractive Surgery, Nov. 2003, vol. 29 (11), pp. 2073-2081.
Norrby S., et al., “Model Eyes for Evaluation of Intraocular Lenses,” Applied Optics, Sep. 7, 2007, vol. 46 (26), pp. 6595-6605.
Olsen T., “Simple Method to Calculate the Surgically Induced Refractive Change,” Journal of Cataract & Refractive Surgery, Mar. 1993, vol. 19 (2), pp. 319-320.
Peli E., et al., “Appearance of Images Through a Multifocal Intraocular Lens,” Journal of the Optical Society of America, 2001, vol. 18 (2), pp. 302-309.
Piers P.A., et al., “Eye Models for the Prediction of Contrast Vision in Patients with New Intraocular Lens Designs,” Optics Letters, Apr. 1, 2004, vol. 29 (7), pp. 733-735.
Piers P.A., et al., “Theoretical Comparison of Aberration-Correcting Customized and Aspheric Intraocular Lenses,” Journal of Refractive Surgery, Apr. 2007, vol. 23 (4), pp. 374-384.
Praeger D.L., “Praeger Technique for the Insertion of the Copeland Radial IOL Posterior Chamber Placement,” Copeland Lens, 1982, 7 pages.
Siedlecki D., et al., “Radial Gradient index Intraocular Lens: a Theoretical Model,” Journal of Modern Optics, Feb. 20-Mar. 10, 2008, vol. 55 (4-5), pp. 639-647.
Strenn K., et al., “Capsular bag Shrinkage after Implantation of an Open-Loop Silicone Lens and a Poly(methyl methacrylate) Capsule Tension Ring,” Journal of Cataract and Refractive Surgery, Dec. 1997, vol. 23 (10), pp. 1543-1547.
Tehrani M., et al., “Capsule Measuring Ring to Predict Capsular Bag Diameter and Follow its Course after Foldable Intraocular Lens Implantation,” Journal of Cataract Refractive Surgery, Nov. 2003, vol. 29 (11), pp. 2127-2134.
Terwee T., et al., “Visualization of the Retinal Image in an Eye Model With Spherical and Aspheric, Diffractive, and Refractive Multifocal Intraocular Lenses,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 223-232.
Van Den Berg T.J., “Analysis of Intraocular Straylight, Especially in Relation to Age,” Optometry and Vision Science, Feb. 1995, vol. 72 (2), pp. 52-59.
Van Meeteren A., “Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light,” Optica Acta, May 1974, vol. 21 (5), pp. 395-412.
Vass C., et al., “Prediction of Pseudophakic Capsular bag Diameter based on Biometric Variables,” Journal of Cataract and Refractive Surgery, Oct. 1999, vol. 25 (10), pp. 1376-1381.
Villegas E.A., et al., “Correlation between Optical and Psychophy, Sical Parameters as a Function of Defocus,” Optometry and Vision Science, Jan. 1, 2002, vol. 79 (1), pp. 60-67.
Abrahamsson M., et al., “Impairment of Contrast Sensitivity Function (CSF) as a Measure of Disability Glare,” Investigative Ophthalmology & Visual Science, Jul. 1986, vol. 27 (7), pp. 1131-1136.
Aslam, T.M., et al., “Development of a Forced Choice Photographic Questionnaire for Photic Phenomena and Its Testing—Repeatability, Reliability and Validity,” Ophthalmologica, Nov.-Dec. 2004, vol. 218 (6), pp. 402-410.
Beer J.M., et al., “Lasers' Spectral and Temporal Profile Can Affect Visual Glare Disability,” Aviation, Space, and Environmental Medicine, Dec. 2012, vol. 83 (12), pp. 1135-1144.
Calatayud A., et al., “Imaging Quality of Multifocal Intraocular Lenses: Automated Assessment Setup,” Ophthalmic and Physiological Optics, Jul. 2013, vol. 33 (4), pp. 420-426.
Fernandez E.J., et al., “Adaptive Optics Visual Simulator,” Journal of Refractive Surgery, 2002, vol. 18 (5), pp. 5634-S638.
Guirao A., et al., “Corneal Wave Aberration from Videokeratography: Accuracy and Limitations of the Procedure,” Journal of the Optical Society of America, 2000, vol. 17 (6), pp. 955-965.
Jaeken B., et al., “Peripheral Aberrations in the Human Eye for Different Wavelengths: Off-Axis Chromatic Aberration,” Journal of the Optical Society of America A, Sep. 2011, vol. 28 (9), pp. 1871-1879.
Javitt J.C., et al., “Validity and Reliability of the Cataract TyPE Spec: an Instrument for Measuring Outcomes of Cataract Extraction,” American Journal of Ophthalmology, Aug. 2003, vol. 136 (2), pp. 285-290.
Jendritza B.B., et al., “Wavefront-Guided Excimer Laser Vision Correction after Multifocal IOL Implantation,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 274-279.
Johnson C.A., “Psychophysical Factors that Have Been Applied to Clinical Perimetry,” Vision Research, Sep. 2013, vol. 90, pp. 25-31.
Lesmes L.A., et al., “Bayesian Adaptive Estimation of the Contrast Sensitivity Function: the Quick CSF Method,” Journal of Vision, Mar. 2010, vol. 10 (3) 17, pp. 1-21.
Morlock, R., et al., “Patient-Reported Spectacle Independence Questionnaire (PRSIQ): Development and Validation,” American Journal of Ophthalmology, Jun. 2017, vol. 178, pp. 101-114.
Ortiz, C., et al., “Quantification and Monitoring of Visual Disturbances for patients with cataracts using Halo v1.0 software,” Department of Optics, Laboratory of Vision Sciences and Applications, University of Granada, IWBBIO 2013, Mar. 20, 2013, XP055596332, Proceedings, 8 Pages.
Rosen R.,et al., “A Bayesian Method Using through Focus Visual Acuity to Predict Rates of Spectacle Wear for Pseudophakic patients,” Investigative Ophthalmology & Visual Science, Jul. 2018, vol. 59 (9), pp. 1075, ARVO Annual Meeting Abstract, Retrieved from the Internet: (URL: https://iovs.arvojournals.org/article.aspx?articleid=2693341&resultClick=1).
Vitale S., et al., “The Refractive Status and Vision Profile: A Questionnaire to Measure Vision-Related Quality of Life in Persons with Refractive Error,” Ophthalmology, Aug. 2000, vol. 107 (8), pp. 1529-1539.
Weeber H.A., et al., “Influence of Corneal Aberrations on Dysphotopsia with Multifocal IOLs,” ARVO, 2011, Abstract.
Weeber H.A., et al., “Influence of Corneal Aberrations on Dysphotopsia with Multifocal IOLs,” RD3115, 2011.
Weeber H.A., et al., “Optical and Visual Performance of Patient Populations Implanted with Monofocal and Multifocal IOLs in the Presence of Defocus,” Investigative Ophthalmology & Visual Science, 2010, vol. 51, E-Abstract 5751.
Weeber H.A., et al., “Population-based Visual Acuity in the Presence of Defocus Well Predicted by Classical Theory,” Journal of Biomedical Optics, 2010, vol. 15 (4), pp. 040509.
Weeber H.A., et al., “Theoretical Performance of Intraocular Lenses Correcting Both Spherical and Chromatic Aberration,” Journal of Refractive Surgery, 2012, vol. 28 (1), pp. 48-52.
Related Publications (1)
Number Date Country
20180153681 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
62412738 Oct 2016 US