The present disclosure relates generally to oil field exploration and, more particularly, to a system and method for realtime downhole sample volume collection via telemetry.
It is well known in the subterranean well drilling and completion art to perform tests on formations intersected by a wellbore. Such tests are typically performed in order to determine geological or other physical properties of the formation and fluids contained therein. For example, parameters such as permeability, porosity, fluid resistivity, temperature, pressure and bubble point may be determined. These and other characteristics of the formation and fluid contained therein may be determined by performing tests on the formation before the well is completed.
One type of testing procedure that is commonly performed is to obtain a fluid sample from the formation to, among other things, determine the composition of the formation fluids. In this procedure, it is important to obtain a sample of the formation fluid that is representative of the fluids as they exist in the formation. In a typical sampling procedure, a sample of the formation fluids may be obtained by lowering a sampling tool having a sampling chamber into the wellbore on a conveyance such as a wireline, slick line, coiled tubing, jointed tubing or the like. When the sampling tool reaches the desired depth, one or more ports are opened to allow collection of the formation fluids. The ports may be actuated in variety of ways such as by electrical, hydraulic or mechanical methods. Once the ports are opened, formation fluids travel through the ports and a sample of the formation fluids is collected within the sampling chamber of the sampling tool. After the sample has been collected, the sampling tool may be withdrawn from the wellbore so that the formation fluid sample may be analyzed.
Under that traditional approach, the integrity of the sample may not be verified until the sampling tool is withdrawn from the wellbore. If a sampling error has occurred, such as a failure to retain a sample, then the sampling tool must be redeployed and the sampling process restarted. This may result in unnecessary and costly tripping of the sampling tool. Further, even if a sample is successfully captured, any analysis of that sample similarly must be deferred until after the sampling tool is withdrawn.
Some specific exemplary embodiments of the disclosure may be understood by referring, in part, to the following description and the accompanying drawings.
While embodiments of this disclosure have been depicted and described and are defined by reference to exemplary embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and not exhaustive of the scope of the disclosure.
The present disclosure relates generally to oil field exploration and, more particularly, to a system and method for realtime downhole sample volume collection via telemetry.
Illustrative embodiments of the present disclosure are described in detail herein.
In the interest of clarity, not all features of an actual implementation may be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the specific implementation goals, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.
To facilitate a better understanding of the present disclosure, the following examples of certain embodiments are given. In no way should the following examples be read to limit, or define, the scope of the disclosure. Embodiments of the present disclosure may be applicable to horizontal, vertical, deviated, multilateral, u-tube connection, intersection, bypass (drill around a mid-depth stuck fish and back into the well below), or otherwise nonlinear wellbores in any type of subterranean formation. Embodiments may be applicable to injection wells, and production wells, including natural resource production wells such as hydrogen sulfide, hydrocarbons or geothermal wells; as well as borehole construction for river crossing tunneling and other such tunneling boreholes for near surface construction purposes or borehole u-tube pipelines used for the transportation of fluids such as hydrocarbons. Devices and methods in accordance with embodiments described herein may be used in one or more of measurement-while-drilling (“MWD”) and logging-while-drilling (“LWD”) operations. Embodiments described below with respect to one implementation are not intended to be limiting.
In the embodiment shown, a fluid sampler 218 is coupled to the tubular string 212. In other embodiments, the fluid sampler 218 may be deployed downhole using a wireline, slickline, coiled tubing, downhole robot, etc., rather than tubular string 212. A circulating valve 220, a tester valve 222 and a choke 224 also may be coupled to the tubular string 212. Circulating valve 220, tester valve 222 and choke 224 may be of conventional design. As would be appreciated by one of ordinary skill in the art in view of this disclosure, it is not necessary for tubular string 212 to include any specific combination or arrangement of equipment described herein. Additionally, although wellbore 214 is depicted as being cased and cemented, it could alternatively be uncased or open hole.
In an example formation testing operation, tester valve 222 is used to selectively permit and prevent flow through passage 216. Circulating valve 220 is used to selectively permit and prevent flow between passage 216 and an annulus 226 formed radially between tubular string 212 and wellbore 214. Choke 224 is used to selectively restrict flow through tubular string 212. Each of valves 220, 222 and choke 224 may be operated by manipulating pressure in annulus 226 from the surface, or any of them could be operated by other methods if desired.
Choke 224 may be actuated to restrict flow through passage 216 to minimize wellbore storage effects due to the large volume in tubular string 212 above sampler 218. When choke 224 restricts flow through passage 216, a pressure differential is created in passage 216, thereby maintaining pressure in passage 216 at sampler 218 and reducing the drawdown effect of opening tester valve 222. In this manner, by restricting flow through choke 224 at the time a fluid sample is taken in sampler 218, the fluid sample may be prevented from going below its bubble point, i.e., the pressure below which a gas phase begins to form in a fluid phase.
Circulating valve 220 permits hydrocarbons in tubular string 212 to be circulated out prior to retrieving tubular string 212. Circulating valve 220 also allows increased weight fluid to be circulated into wellbore 214.
Although
Flow meter 330 is disposed within inlet 320 such that as oil or other fluids flow from passage 310 to sampler 340, they pass through flow meter 330. In the embodiment of
Although the embodiment of
Regardless of the type of flow meter employed, flow meter 330 may be used to measure the inflow and outflow of fluid from sampler 340. The measurements may, for example, verify that fluid has begun flowing into sampler 340 at the beginning of a sample collection cycle, determine the amount of fluid that has flowed into sampler 340 during a sample collection cycle, or identify whether any fluid has flowed out of sampler 340.
The measurements performed by flow meter 330 may be communicated to a surface operator by means of telemetry communications 355, for example by using telemetry device 350. One of skill in the art will appreciate that many kinds of telemetry may be used consistent with the present disclosure, such as wired telemetry, wireless telemetry, or mud-pulse telemetry. In an alternative embodiment, discussed in more detail below with reference to the embodiment of
Using such telemetry, a surface operator may monitor the sampler in realtime and send appropriate instructions based on the received measurements. For example, if flow meter 330 communicates a measurement showing that fluid has leaked out of sampler 340, the surface operator may initiate the collection of a replacement sample.
As one of skill in the art will appreciate, although the embodiment of
Similar to the sensor 330 of
The measurements captured by sensor 435 may be communicated to a surface operator by means of telemetry. This may be accomplished by directly sending telemetry signals from sampler 400 to the surface, as in the embodiment shown in
As with
A junk piston 518 may separate sample fluid chamber 514 from a displacement fluid chamber 524. In the illustrated embodiment, as fluid flows into sample chamber 514, fluid may be permitted to flow into junk chamber 526. The flow of fluid into junk chamber 526 may be controlled, for example, by a check valve on junk piston 518. As a result of fluid flowing into the junk chamber, junk chamber 526 may expand. The fluid received in junk chamber 526 is prevented from escaping back into sample chamber 514 by the junk piston, for example by means of a check valve. In this manner, the fluid initially received into sample chamber 514 is trapped in junk chamber 526. This initially received fluid is typically laden with debris, or is a type of fluid (such as mud) which it is not desired to sample. Junk chamber 526 thus permits this initially received fluid to be isolated from the fluid sample later received in sample chamber 514.
Once fluid is no longer permitted to flow from sample chamber 514 into junk chamber 526, fluid may begin to fill sample chamber 514. As the fluid sample is received in sample chamber 514, the sample chamber 514 expands and junk piston 518 is displaced downwardly. Downward displacement of the junk piston 518 may be slowed by displacement fluid in a displacement chamber 524. Displacement fluid chamber 524 may initially contain a displacement fluid, such as a hydraulic fluid, silicone oil, or the like, and the flow of displacement fluid out of displacement fluid chamber 524 may be regulated by a check valve or other flow restrictor. This may prevent pressure in the fluid sample received in the sample chamber 514 from dropping below its bubble point.
In the configuration shown in
As discussed with respect to
By using a system such as the embodiment shown in
Thus, a person of ordinary skill in light of the present disclosure will understand that an embodiment is a sample carrier including a sample chamber and a sensor for real-time measurement positioned proximate to the sample chamber.
The sensor may optionally be a flow meter, such as an impeller-type flow meter. Additional types of sensors may include a light sensor, capacitive sensor, a movement sensor, an acceleration sensor, or a continuity sensor. The sample chamber may optionally contain one or more pistons, and the sensor may be coupled to a piston. The one or more pistons may be sampler entry pistons and/or junk pistons.
The sampler carrier may optionally include a telemetry system coupled to the sensor. The telemetry system may communication directly with a surface receiver or may communicate indirectly via a second telemetry system located downhole.
As a person of ordinary skill in light of the present disclosure will understand, an embodiment is a method for sampling, including the steps of deploying a sample chamber downhole, filling the sample chamber with fluid, and performing at least one measurement of the fluid with a sensor while the sampler is downhole.
The sensor may optionally be a flow meter, such as an impeller-type flow meter. Additional types of sensors may include a light sensor, capacitive sensor, a movement sensor, an acceleration sensor, or a continuity sensor. The sample chamber may optionally contain one or more pistons, and the sensor may be coupled to a piston. The one or more pistons may be sampler entry pistons and/or junk pistons.
The at least one measurement may include the fluid's volume, pressure, or composition. The method for sampling may optionally include transmitting the measurement using a telemetry system, including optionally transmitting the measurement to a second downhole telemetry system.
Therefore, the present disclosure is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present disclosure. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. The indefinite articles “a” or “an,” as used in the claims, are defined herein to mean one or more than one of the element that it introduces. Additionally, the terms “couple”, “coupled”, or “coupling” include direct or indirect coupling through intermediary structures or devices.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/059026 | 9/10/2013 | WO | 00 |