This invention pertains generally to aerosol analyzers and more specifically to optical analyzers for the real-time detection and classification of airborne biological and non-biological particles.
There has been significant progress over the last 15 years in the development of both methods and systems that provide real-time detection and classification of airborne biological and non-biological particles. Most of the methods and systems have been based on optical approaches that utilize both particle sizing and laser induced fluorescence (LIF) to discriminate biological from non-biological particles. These methods have included illumination approaches using various wavelengths specific towards exciting endogenous fluorophores commonly found in biological particles. LIF based approaches have also included multiple excitation sources operating at different wavelengths for improved classification. Other approaches have included laser breakdown spectroscopy coupled with LIF detection for measuring both auto-fluorescence and mineral content of single particles, as well as, Raman spectroscopy and Fourier transform infrared spectroscopy of single particles.
There is a growing need for improved environmental biosurveillance in such areas as battlefield and homeland defense, indoor and outdoor air quality monitoring, airborne hospital infection control, contamination control monitoring of biopharmaceutical and other manufacturing operations, sewage plants, animal production houses and other operations where continuous real-time monitoring helps provide early warning and prevention of harmful exposure of microorganisms, viruses and other types of biological particles. With respect to defense applications, the deadliest form of a biological attack is from aerosolized agents. To date, optical methods that utilize both particle sizing and laser induced fluorescence have been applied to battlefield and homeland defense. This approach has proven to be an effective early warning capability, in particular, for building protection applications that monitor for indoor biological attacks. To a lesser extent, real-time airborne microbial monitoring using LIF based detection has been applied towards contamination control monitoring of biopharmaceutical manufacturing and other clean room operations. While these LIF based biological particle counter methods have shown to be useful early warning systems, they are not without limitations and significant room for improvement exists.
There are three primary limitations with LIF based biological particulate detection. First, is their ability to detect single vegetative or spore type organisms. Current fielded LIF based biological particle detectors are limited to detection of vegetative cell and spore aggregate particles or particles that contain numerous vegetative cells or spores per aerosol particle. For both biodefense and other applications the detection of single vegetative cells and spores is required and necessary to provide adequate protection or effective contamination control monitoring. For LIF based approaches, unless a laser source with considerable optical power is used an insufficient amount of light is emitted from fluorescence excitation to reliably and accurately classify a biological from a non-biological particle when the particle size is in the 0.5-1.5 micron diameter in size. This is particularly true for longer excitation wavelengths such as the 350-450 nm wavelength range but also applies, in most instances, for shorter wavelengths such as the 250-300 nm wavelength range.
Second, their ability to discriminate biological from non-biological particles and to classify biological particle types, such as bacterial spores, mold spores, vegetative bacteria, viral aggregates, protein toxin aggregates, and fomite particles containing bacteria, viruses, or fungi is very limited. With a minimum need for discrimination of biological from non-biological, the use of LIF based particle detection approaches are useful for discrimination from inorganic particles and non-fluorescing man-made particles but face serious limitations for particles that have been doped with fluorophores, such as paper particles or clothing particles containing optical brighteners, and commonly encountered particles that have intrinsic fluorescence, such as human skin cell fragments and animal dander. The use of LIF based multi-wavelength excitation approaches have some improved classification over single source approaches but the approaches are not cost effective for widespread application.
Third, current LIF based approaches are limited in their ability to detect biological particle concentration levels of interest, particularly in applications where detection of only a fraction to a few particles per liter of air is required. The ability to both detect in a timely manner and to discriminate these low levels from commonly encountered aerosol backgrounds becomes very challenging for LIF based biological particle detection approaches. Current systems are limited to 1-3 liter per minute air sampling flow rates. This equates to slow response times and long sampling times in order to detect and alarm on the presence of a low concentration of biological particles. The use of aerosol concentrators to compensate for this are limited in their application because the problem of discrimination increases with the increase in sampling flow rate and background aerosol concentration.
Preferred embodiments of the present invention contemplate methods, apparatuses, and systems for detecting and classifying individual airborne biological and non-biological particles, in real time, based on polarized elastic scatter. Particle size and/or autofluorescene content may also be used along with polarized elastic scatter for further orthogonal classification. With polarized elastic scattering, the degree of linear or circular depolarization produced from particle morphology, refractive index, internal asymmetric structures and molecular optical activity can be used for classifying individual airborne particles. Additionally, circular intensity differential scattering (CIDS) and linear intensity differential scattering (LIDS) provide a means for discriminating individual particles. CIDS is based mainly on a particle's intrinsic molecular optical activity and internal asymmetric structures, such as from chiral macromolecular complexes and aggregates commonly found in biological particles. LIDS is based on a particle's shape or morphology, refractive index, intrinsic optical activity and internal asymmetric structures.
When linear depolarization detection is used, the normalized depolarization of light scattered from a particle can be determined by the relationship:
δN=[IV]/[IH+IV]
Where δN represents normalized depolarization, IH represents the scatter intensity for horizontally polarized light and is the same as the as the polarization state of the illumination beam and IV represents the scatter intensity for vertically polarized light. In another configuration, two incident beams of orthogonal linear polarizations can be used for illumination of individual particles and scattered horizontally polarized light is used for measuring the degree of depolarization. In this configuration the ratio of scattered intensity of horizontally polarized light collected during two spatially separated orthogonally linear polarized incident beams can be used to classify individual particles and is given by the relationship:
δ=IHV/IHH
Where δ represents depolarization, IHH represents the scatter intensity for horizontally polarized light and horizontally polarized incident beam, IHV represents the scatter intensity for horizontally polarized light and a vertically polarized incident beam.
When circular depolarization detection is used, the normalized depolarization of light scattered from a particle can be determined by the relationship:
δ+C=[I⊥]/[I∥+I⊥]
δ−C=[I∥]/[I∥+I⊥]
Where δ+C represents circular depolarization when using right handed polarized light as the illumination source, δ−C represents circular depolarization when using left handed polarized light as the illumination source, I⊥ represents the scatter intensity for perpendicularly polarized light and I∥ represents the scatter intensity for parallel polarized light. With this approach either a single circularly polarized source can be used for illumination or two incident beams of right and left handed circular polarization can be used for illumination of individual particles and scattered perpendicularly and parallel polarized light is used for measuring the degree of depolarization. In the dual beam configuration, the ratio of scattered intensity of perpendicularly and parallel polarized light collected during two spatially separated left and right handed circular polarized incident beams can be used to classify individual particles.
When CIDS detection is used, differential scattering of left and right circularly polarized light contributes to the circular dichroism of biological macromolecules. When the diameter of the particle or macromolecular complex exceeds 1/20th the excitation wavelength the differential scattering contribution to circular dichroism becomes important. When using an excitation wavelength outside the absorption band of the chiral particle only differential scattering contributes to the circular dichroism. A chiral scattering particle will produce a differential scattering signal where both its sign and magnitude are directly related to the relative orientations and distances between its chiral scattering elements. This signal can be obtained in a quantitative manner and can be used for discrimination of biological from non-biological particles and for classifying one biological type particle from another. As an example, for a helical structure such as a DNA molecule or an alpha-helix strand in a protein the differential scattering of left and right circularly polarized light is sensitive to the pitch and radius of the helix, as well as, the wavelength of the excitation source. The circular intensity differential scattering (CIDS) at a scattering angle θ can be determined by the relationship:
[IL(θ)−IR(θ)]/[IL(θ)+IR(θ)],
Where IL(θ) is the light scattered at angle θ when the incident beam is left circularly polarized and IR(θ) is the light scattered at angle θ when the incident beam is right circularly polarized. CIDS is not sensitive to size, shape or refractive index but is sensitive to the chirality of biological macromolecules which are present in all airborne bacteria, fungi, viruses and protein aggregate particles.
When LIDS detection is used, differential scattering of vertically and horizontally polarized light is sensitive to the shape, refractive index and chiral content of particles, or more specifically, internal asymmetric structures and molecular optical activity. The linear intensity differential scattering (LIDS) at a scattering angle θ can be determined by the relationship:
[IH(θ)−IV(θ)]/[IH(θ)+IV(θ)],
Where IH(θ) is the light scattered at angle θ when the incident beam is horizontally polarized and IV(θ) is the light scattered at angle θ when the incident beam is vertically polarized. LIDS is sensitive to size, shape and refractive index and is also sensitive to the chirality of biological macromolecules which are present in all airborne bacteria, fungi, viruses and protein aggregate particles.
When linear depolarization detection is used, one preferred embodiment of the present invention includes a method for detecting and classifying a single particle comprising illuminating the particle with a linearly polarized light beam where its polarization is alternated from horizontal to vertical with two vertically spaced beams produced from a single source as the particle traverses the illumination region. A single detector employing a horizontally polarized filter thereby captures polarized and depolarized scattering signals on single particles. The size of the particle can be determined by measuring the elastic scatter intensity with the horizontally polarized source. The degree of depolarization for a certain particle size range may then be compared to a library of signatures for various biological and non-biological type aerosols. With this method an orthogonal fluorescence detection channel can be added provided the selection of the source's excitation is one that can excite the desired endogenous fluorophores commonly encountered in biological particles.
When circular depolarization detection is used, one preferred embodiment of the present invention includes a method for detecting and classifying a single particle comprising illuminating the particle with a circularly polarized light beam where its polarization is alternated from right handed to left handed with two vertically spaced beams produced from a single source as the particle traverses the illumination region. A polarizing beam splitter with two detectors captures parallel and perpendicularly polarized scattering signals on single particles. The size of the particle can be determined by summing the intensity of the two polarized scatter signals. The degree of depolarization for a certain particle size range may then be compared to a library of signatures for various biological and non-biological type aerosols. With this method, an orthogonal fluorescence detection channel can be added provided the selection of the source's excitation is one that can excite the desired endogenous fluorophores commonly encountered in biological particles.
When CIDS detection is used, one preferred embodiment of the present invention includes a method for detecting and classifying a single particle comprising illuminating the particle with a circularly polarized light beam where its polarization is alternated from left to right (or right to left) handedness with two vertically spaced beams produced from a single source as the particle traverses the illumination region thereby capturing circular intensity differential scattering signals on single particles. The size of the particle can be determined by measuring the elastic scatter intensity. The intensity of left handed and right handed circular scatter signals is used to determine the CIDS value per aerosol event. The CIDS value may then be compared to a library of signatures for various biological and non-biological type aerosols. Also with this method an orthogonal fluorescence detection channel can be added provided the selection of the source's excitation is one that can excite the desired endogenous fluorophores commonly encountered in biological particles.
When LIDS detection is used, one preferred embodiment of the present invention includes a method for detecting and classifying a single particle comprising illuminating the particle with a linearly polarized light beam where its polarization is alternated from horizontal to vertical with two vertically spaced beams produced from a single source as the particle traverses the illumination region thereby capturing linear intensity differential scattering signals on single particles. The size of the particle can be determined by measuring the elastic scatter intensity. The intensity of vertically and horizontally polarized scatter signals is used to determine the LIDS value per aerosol event. The LIDS value may then be compared to a library of signatures for various biological and non-biological type aerosols. Also, with this method, an orthogonal fluorescence detection channel can be added provided the selection of the source's excitation is one that can excite the desired endogenous fluorophores commonly encountered in biological particles.
The above summary describes preferred forms of the present invention and is not in any way to be construed as limiting the claimed invention to the preferred forms.
The preferred forms of the presented invention will now be described with reference to
The preferred forms of the present invention relate to enhanced methods, apparatuses and systems for the detection and classification of biological and non-biological particulates in a real-time manner. The various detection schemes exploit one physical phenomena which involves the interaction of light with a single aerosol particle (i.e., polarized elastic scattering). A second physical phenomena which involves the interaction of light with a single aerosol particle may be used (i.e., fluorescence). In addition to these optical phenomena (i.e., polarized elastic scattering and fluorescence), the particle's size is preferably determined substantially simultaneously.
The preferred forms of the present invention are capable of detecting and classifying single airborne particles having an aerodynamic diameter of 10 microns or less (e.g., 0.5 to 1.5 microns).
Described herein are eight optical detectors having aerosol sensing configurations which are variations of linearly polarized and circularly polarized excitation approaches. Particle sizing using polarized elastic scatter detection is applicable to all the sensing configurations with the exception of
In each of the of the preferred optical detectors when measuring only particle size and polarized elastics scatter, a broad range of wavelengths can be used for excitation (e.g., 200-1500 nm). When measuring particle size, polarized elastic scatter, and fluorescence, then the excitation wavelengths need to be within the absorption bands of the endogenous fluorophores of interest such as 250-300 nm and 350-450 nm. Depending on the sensing configuration, the excitation source can be an edge emitting laser diode, vertical cavity surface emitting laser diode, light emitting diode or other laser source. Additionally, one or more of the sources can be configured to produce dual circularly or linearly polarized beams separated in space (e.g., vertically separated) using birefringent optics for illumination of single particles with two or more wavelengths and two polarization states for each wavelength at a time exciting the particle.
For flow rates exceeding 1 liter per minute, laser line generating optics may be used to generate a laser line thickness of from about 5 to about 300 micron, and a depth of field and laser line width that is at least two times (2×) the diameter of the inlet (aerosol orifice). For flow rates exceeding 20 liters per minute the use of a circular inlet may become restrictive and a rectangular inlet may be preferred. In cases of a rectangular inlet used to accommodate sampling flows exceeding 20 liters per minute, a laser line generating approach is preferred with the depth of field and laser line width adjusted to illuminate, at a minimum, the entire rectangular nozzle area. The above laser line generating approaches are to ensure complete illumination of the air sampling region with the purpose of near 100% percent illumination of the aerosol particles sampled. The laser line thickness is desired to be small as permissible with the optical design to ensure the highest possible aerosol count rate without illuminating more than one aerosol particle, in the size range of interest, so as to minimize particle coincidence.
In applications that require little pressure drop during sampling and/or low audible noise during operation the configurations described in the present invention can be operated without an aerosol inlet nozzle. In these configurations, the laser line illumination geometry and collection optics are used to interrogate a predefined region of the sampling volume providing a means for individual particle detection with low pressure drop and low audible noise through the use of axial fans as the vacuum source.
Various light collection geometries can be employed with different parameters applied for the different physical phenomena being measured. For particle sizing, using polarized elastic scatter detection, there are numerous approaches that can be taken and those skilled in the art are familiar with near forward scattering collection, side scatter collection, back scatter collection and wide angle collection using parabolic collectors. For polarized elastic detection, the process is sensitive to the angular collection angle and, therefore, aerosol sensing configurations that include mainly side scatter collection are preferred. For fluorescence detection, collection of fluorescence orthogonal to the direction of the light beam is preferred to minimize effects of stray light on the fluorescence signal(s).
The excitation source 100 is preferably a continuous source or modulated at 20 MHz or greater frequency and can be an edge emitting laser diode, vertical cavity surface emitting laser diode, light emitting diode or some other laser. The wavelength of excitation source 100 can be in the range of 200-1500 nm. Light emitted from source 100 is collimated using an aspheric lens 110. Depending on the source spatial filtering between the source 100 and the aspheric lens 110, or after lens 110 but before the aerosol cell 140 may be necessary. Collimated light is then introduced to beam shaping optics 125. The beam shaping optics 125 can be a single lens or group of lens designed to create a sheet of light at the aerosol nozzle region that is preferably from about 5 to about 300 micron in thickness and a depth of field and beam width that is preferably two times (2×) larger than the diameter of the inlet. In one embodiment, the beam shaping optics 125 can be a spherical lens and a cylinder lens designed to generate the above geometry. In another embodiment, only a cylinder lens is used for the beam shaping optics 125. In a further embodiment, the beam shaping optics 125 are comprised of top hat beam shaping optics which distributes the energy of a Guassian beam to a top hat profile. An example is a plano-convex lens that has a diffractive pattern located on its plane surface. Another example is the use of a single aspheric lens to convert the Guassian beam to a top hat profile. In another embodiment, the beam shaping optics 125 can be a single Powell lens or a spherical lens coupled with a Powell lens. When rectangular nozzles are used the beam shaping optics 125 can be comprised of the same components as listed above for circular nozzles but optical designs are preferably pursued that fulfill the depth of field requirements since the depth of field will be longer than the laser line width in these instances. The depth of field length in these instances can be greater than ten times (10×) the laser line width. To achieve near 100% illumination of sampled particles, within the desired size range, the width and depth of the sheet of light created by the beam shaping optics 125 should exceed, at a minimum, the dimensions of the rectangular nozzle.
Light from the beam optics 125 is introduced to a linear polarizer 120 with an extinction ratio preferably ranging from 100:1 to 107:1. Certain sources such as edge emitting laser diodes and vertical cavity surface emitting laser diodes possess an inherent polarization ratio around 100:1 and depending on the accuracy requirements of the polarization measurement for a particular application the linear polarizer 120 can be omitted. After linear polarization, the collimated light is then introduced to a quarter wave retarder 130 to circularly polarize the beam before introduction to a birefringent crystal 135. Examples of birefringent crystals that can be used include yttrium vandate, barium borate, calcite and rutile. The introduction of the circularly polarized light to the birefringent crystal 135 produces vertically and horizontally polarized beams of equal intensity and separated in space (e.g., vertically separate) by a certain distance depending on the length of the crystal. In various configurations a separation of 250 micron to 1000 micron is preferred.
The light beams are then introduced into the optical viewing region 145 as seen in
In the preferred embodiment illustrated in
For linear depolarization detection and particle sizing, light that has scattered orthogonally to the laser source first passes through a horizontally polarized filter 207 and is then introduced to collection optic 170 and subsequently to light detector 210. The light detector 210 can be a silicon photodiode, gallium arsenide photodiode, avalanche photodiode, silicon photomultiplier, photomultiplier tube or arrays of these types of detectors. The type of detector will vary depending on the collection optic 170 used, the amount of scattered light excepted per aerosol event, the dynamic range of the detector, and the detector's cut-off frequency or response time. The signal produced from light detector 210 is then introduced to an amplifier circuit 220 whereby a 100 nanosecond to 10 microsecond current pulse is first converted to an analog voltage and then to a digital signal using an analog-to-digital converter 230. The signal from 230 is then introduced to the signal processor 240 for analysis. The signal processor 240 can be a microcontroller, digital signal processor, field programmable gate array or a microcomputer, as would be readily understood by one skilled in the field of signal processing.
As previously explained, for the configuration illustrated in
The amplifier circuits 220 for each channel can be configured to perform analog signal processing functions. The analog input bandwidth for the amplifier circuits 220 for each channel can be configured to capture the fastest expected current pulses. The pulse time is primarily a function of the aerosol particle's migration time through the optical viewing region 145 and is expected to be in the range of 100 nanoseconds to 10 microseconds. Additional analog signal processing functions include the triggering of a pulse detector circuit when an analog voltage level from the detection channels exceeds a preprogrammed level, integration and holding of light detector pulse for each detection event, production of a pulse height level for each detection channel, the use of one or more amplifier stages for each detection channel to capture the entire signal range for particles ranging in size from submicron in aerodynamic diameter to 25 micron or larger, and the production of an analog to digital conversion signal for each of the two detection events.
For both particle sizing and linear depolarization detection, the signal processor 240 is preferably configured to receive digital signals from the two detections events that occurred as the single particle traversed the horizontally and vertically polarized beams. For particle sizing, the first detection event is preferably used to size the particle and pulse height analysis is performed on each of the aerosol events occurring in the first and second illumination points or areas in the optical viewing region 145. For linear depolarization detection, the amplitudes of each detection per aerosol event is used for the depolarization measurement. The degree of depolarization for each aerosol event can be calculated by performing one of the calculations below:
δN=[IV]/[IH+IV] or δ=IHV/IHH
The linear depolarization value is then preferably binned with the particle size for each aerosol event. Using particle size and linear depolarization value data for each aerosol particle, preferably a comparison can be made to a library of aerosol types from the previous measurements of known aerosols that include bacterial spores, vegetative cells, viruses, viral aggregates, protein toxin aggregates, fungal particles, pollen particles, man-made biological particles and non-biological aerosols such as salt particles, water droplets, dust particles, organic carbon particles and other relevant non-biological particles depending on the application. With the library and unknown particle data, polarized elastic scatter plots can be generated as a function of particle size permitting the detection and classification of biological and non-biological particles.
In the embodiment illustrated in
For particle sizing, the horizontally polarized scatter signal is used to size the particle and pulse height analysis is performed on the scatter amplitudes from vertically and horizontally polarized light. For linear depolarization detection, the amplitudes from each detection event for the two detectors is used for the depolarization measurement. The degree of depolarization for each aerosol event can be calculated by performing one of the calculations below:
δN=[IV]/[IH+IV] or δ=IHV/IHH
The linear depolarization value is then binned with the particle size for each aerosol event. Using particle size and linear depolarization value data for each aerosol particle a comparison is preferably made to a library of aerosol types from the previous measurements of known aerosols that include bacterial spores, vegetative cells, viruses, viral aggregates, protein toxin aggregates, fungal particles, pollen particles, man-made biological particles and non-biological aerosols such as salt particles, water droplets, dust particles, organic carbon particles and other relevant non-biological particles depending on the application. With the library and unknown particle data, polarized elastic scatter plots can be generated as a function of particle size permitting the detection and classification of biological and non-biological particles.
When measuring particle size, polarized elastic scatter, and fluorescence, the excitation wavelengths need to be within the absorption bands of the endogenous fluorophores of interest such as 250-300 nm and 350-450 nm. These excitation wavelength ranges correspond to the absorption bands to one or more endogenous fluorophores commonly encountered in biological particles, which include, but are not limited to aromatic amino acids, NADH, flavins, chlorophylls, and sideophores. For the fluorescence detection channel, similar detection electronics and detectors as that described in the above embodiments can be used with an additional fluorescence filter 208 for passing a band of light that is matched with the emission wavelengths of the desired endogenous fluorophores. In this embodiment, both the linear depolarization value obtained for each particles and the presence or absence of fluorescence and the fluorescence intensity can be used for classification of biological particles from non-biological particles and to classify biological types from one another.
With circular depolarization detection, the normalized depolarization of light scattered from a particle is given by the relationship:
δ+C=[I⊥]/[I∥+I⊥]
δ−C=[I∥]/[I∥+I⊥]
Where δ+C represents circular depolarization when using right handed polarized light as the illumination source, δ−C represents circular depolarization when using left handed polarized light as the illumination source, I⊥ represents the scatter intensity for perpendicularly polarized light and I∥ represents the scatter intensity for parallel polarized light. In this embodiment, circular depolarization measurements can be performed on single particles using both left handed and right handed circularly polarized excitation. The same detectors and electronics as the embodiment illustrated in
Signal processing for this embodiment involves measuring the polarized scatter intensity of parallel and perpendicularly polarized light for each illumination event per aerosol particle and then calculating the left handed and right handed circular depolarization ratios for each particle. The circular depolarization values are then binned with the particle size for each aerosol event. Particle size and circular depolarization value data for each aerosol particle is then compared to a library of aerosol types from the previous measurements of known aerosols that include bacterial spores, vegetative cells, viruses, viral aggregates, protein toxin aggregates, fungal particles, pollen particles, man-made biological particles and non-biological aerosols such as salt particles, water droplets, dust particles, organic carbon particles and other relevant non-biological particles depending on the application. With the library and unknown particle data, polarized elastic scatter plots can be generated as a function of particle size permitting the detection and classification of biological and non-biological particles.
[IL−IR]/[IL+IR],
Where IL is the light scattered intensity when the incident beam is left circularly polarized and IR is the light scattered intensity when the incident beam is right circularly polarized. The current pulses produced from the detection events are used for measuring the CIDS value for each particle. The CIDS value is then binned with the particle size for each aerosol event. Using particle size and CIDS value data for each aerosol particle, a comparison can be made to a library of aerosol types from the previous measurements of known aerosols that include bacterial spores, vegetative cells, viruses, viral aggregates, protein toxin aggregates, fungal particles, pollen particles, man-made biological particles and non-biological aerosols such as salt particles, water droplets, dust particles, organic carbon particles and other relevant non-biological particles depending on the application. With the library and unknown particle data, polarized elastic scatter plots can be generated as a function of particle size permitting the detection and classification of biological and non-biological particles.
[IH−IV]/[IH+IV],
Where IH is the light scattering intensity when the incident beam is horizontally polarized and IV is the light scattered when the incident beam is vertically polarized. The current pulses produced from the detection events are used for measuring the LIDS value for each particle. The LIDS value is then binned with the particle size for each aerosol event. Using particle size and LIDS value data for each aerosol particle, a comparison can be made to a library of aerosol types from the previous measurements of known aerosols that include bacterial spores, vegetative cells, viruses, viral aggregates, protein toxin aggregates, fungal particles, pollen particles, man-made biological particles and non-biological aerosols such as salt particles, water droplets, dust particles, organic carbon particles and other relevant non-biological particles depending on the application. With the library and unknown particle data, polarized elastic scatter plots can be generated as a function of particle size permitting the detection and classification of biological and non-biological particles.
The forgoing disclosure of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims appended hereto, and by their equivalents. The claims are not limited to the preferred embodiments and have been written to preclude such a narrow construction using the principles of claim differentiation.
Further, in describing representative embodiments of the present invention, the specification may have presented the preferred method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order presented, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.