The disclosure relates generally to reamers for enlarging boreholes in subterranean formations. More specifically, the disclosed embodiments relate to reamer blades for expandable reamers and fixed-blade reamers carrying superabrasive cutting elements having substantially circular cutting faces at least one of oriented and exposed to reduce or eliminate the need to alter an as-produced geometry of the superabrasive cutting elements.
Reamers are typically employed for enlarging boreholes in subterranean formations. In drilling oil, gas, and geothermal wells, casing is usually installed and cemented to, among other things, prevent the well bore walls from caving into the borehole while providing requisite shoring for subsequent drilling operation to achieve greater well depths. Casing is also installed to isolate different formations, to prevent cross flow of formation fluids, and to enable control of formation fluids and pressure as the borehole is drilled. To increase the depth of a previously drilled borehole, new casing, or liner is extended below the initial casing. The diameter of any subsequent sections of the well may be reduced because the drill bit and any further casing or liner must pass through the interior of the initial casing. Such reductions in the borehole diameter may limit the production flow rate of oil and gas through the borehole. Accordingly, a borehole may be enlarged in diameter below the initial casing to a diameter greater than an outer diameter of the initial casing prior to installing additional casing or liner to minimize any reduction in interior diameter of a production-ready (i.e., cased or lined and cemented) borehole and enable better production flow rates of hydrocarbons through the borehole.
One conventional approach used to enlarge a subterranean borehole includes the use of an expandable reamer, alone or above a pilot bit sized to pass through the initial casing. Expandable reamers may include blades carrying cutting elements and that are pivotably or slidingly affixed to a tubular body and actuated between a retracted position and an expanded position. Another conventional approach used to enlarge a subterranean borehole includes employing a bottom-hole assembly comprising a fixed blade reamer, commonly termed a “reamer wing,” alone or above a pilot drill bit. The reamer may include a number of blades of differing radial extent to enable the reamer to pass eccentrically through the initial casing and subsequently, when the reamer is rotated about a central axis, enlarge the borehole below the initial casing.
In both approaches, superabrasive cutting elements such as those comprising polycrystalline diamond compacts (PDCs) may be used to engage and degrade the formation. Such cutting elements, when employed on the gage of a reamer blade, may require machining, such as grinding, after the cutting elements are affixed to a reamer blade to establish a cutting diameter of the reamer, to create a smooth wall of the borehole after the borehole is enlarged by other, more distal (with regard to the extent of the borehole) superabrasive cutting elements, and to reduce reactive torque on the reamer due to contact of the gage cutting elements with the borehole wall. For example, a linear edge may be ground into a side of a superabrasive table of an otherwise cylindrical cutting element. Such machining may require an additional step in production, and thus may increase the time and cost associated with manufacturing a reaming tool. Furthermore, superabrasive cutting elements, such as those comprising PDCs, exhibit internal residual compressive and tensile stresses attributable to the high pressure, high temperature process employed to form the PDC, to attach the PDC to a supporting substrate, or both, particularly, for example, at an interface between a polycrystalline diamond table of a PDC and a supporting tungsten carbide substrate. Machining can alter the magnitude and type of stresses resident in the as-formed PDC as well as symmetrical residual stress distribution, potentially compromising the integrity of the cutting superabrasive element, leading to early failure by mechanisms such as spalling or delamination of the PDC from the supporting substrate.
In one embodiment, a downhole tool configured to enlarge a borehole may comprise at least one blade extending laterally from a central portion of the tool, and the at least one blade may comprise a gage portion. Cutting elements having substantially circular cutting faces may be affixed to the at least one blade, and each of the cutting elements may comprise a cutting edge for contacting the borehole. Cutting edges of at least one cutting element located on the gage portion may be defined substantially by an arcuate portion of a cutting face periphery. The at least one cutting element located on the gage portion may exhibit a cutting face back rake angle greater than a back rake angle of cutting faces of cutting elements on at least one other portion of the at least one blade.
In another embodiment, a reamer blade may comprise a gage portion and cutting elements having substantially circular cutting faces affixed to the at least one blade. Each of the cutting elements may comprise a cutting edge for contacting the borehole. Cutting edges of at least one cutting element located on the gage portion may be defined substantially by an arcuate portion of a cutting face periphery. The at least one cutting element located on the gage portion may exhibit a cutting face back rake angle greater than a back rake angle of cutting faces of cutting elements on at least one other portion of the at least one blade.
While the disclosure concludes with claims particularly pointing out and distinctly claiming specific embodiments, various features and advantages of embodiments of the disclosure may be more readily ascertained from the following description when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not meant to be actual views of any particular reamer tool or component thereof, but are merely idealized representations employed to describe illustrative embodiments. Thus, the drawings are not necessarily to scale.
Referring to
A plurality of blades 114 (only one blade 114 is visible, and other blades are not within the plane of
The expandable reamer 100 may optionally include a plurality of stabilizers 116 extending radially outwardly from the housing 102. Such stabilizers 116 may center the expandable reamer 100 in the borehole while tripping into position through a casing or liner string and while drilling and reaming the borehole by contacting and sliding against the wall of the borehole. In other embodiments, the expandable reamer 100 may lack such stabilizers 116. In such embodiments, the housing 102 may comprise a larger outer diameter in the longitudinal portion where the stabilizers are shown in
In pass through condition, shown in
With reference now to
The updrill shoulder portion 310 may be configured to, for example, ease removal of the expandable reamer 100 from the borehole or to enable the expandable reamer 100 to enlarge the borehole as the drill string and expandable reamer 100 are retracted from the borehole. The downdrill shoulder portion 304 may vary from a distal end 306 (i.e., an end farthest from the surface of the borehole) corresponding to an initial cutting diameter to a proximal end 308 corresponding to a larger, final or near-final cutting diameter substantially comprising a gage diameter of the enlarged borehole. As shown in
A final cutting diameter and a finished surface of the borehole wall may be established by cutting edges 314 of at least one cutting element 312 located on the gage portion 302 of the reamer blade 300. The at least one cutting element 312 may include a superabrasive material, such as polycrystalline diamond, as described above in connection with the plurality of cutting elements 312. The cutting elements 312 may each comprise a substantially cylindrical shape with a cutting face diameter of, for example, 13 mm (0.51 inches), 16 mm (0.63 inches), or other sizes.
Because conventional drilling tools rotate as they advance through the formation, a cutting profile (i.e., a shape of the cutting edge 314) of the one or more cutting elements 312 attached to the gage portion 302 of the reamer tool 300 may leave a helical pattern in the borehole wall. For example, the cutting profile of a cylindrical cutting element may be defined by a portion of a periphery of the one or more cutting elements 312 in contact with the formation. As a result, a recess in the borehole wall corresponding to the cutting profile (i.e., a curved shape formed by the portion of the circumference) of the one or more cutting elements 312 may be formed along a helical pattern in the borehole wall as the expandable reamer 100 concurrently rotates and advances through the formation. Accordingly, hard or superabrasive material (e.g., PDC) of at least some of the cylindrical cutting elements 312 located in the gage portion 302 of the reamer blade 300 may conventionally be machined to include a planar surface oriented so that each cutting element includes a linear cutting edge oriented parallel to the longitudinal (i.e., rotational) axis of the expandable reamer 100 (
Machining a planar surface into the cutting elements may compromise the structural integrity of the one or more cutting elements 312. For example, and as noted above, the cutting elements 312 may exhibit residual internal stresses resulting from the typically high processing temperatures and the potentially significant differences in thermal expansion between dissimilar materials in the cutting elements 312, such as diamond grains and metallic binder in the diamond table of a PDC. Residual stresses may also be present at the interface between the table of superabrasive material (e.g., polycrystalline diamond) and the supporting substrate of, for example, tungsten carbide, the magnitude, type and location of such stresses varying, depending upon interface configuration. The distribution of residual stress may be uniform or variable throughout each cutting element 312, depending on size and distribution of diamond particle feedstock used to form the polycrystalline diamond, concentration of diamond and catalyst, use of other additives and filler materials, etc. For example, residual stresses in a single cutting element 312 may increase or decrease uniformly as radial distance from a central axis of the cutting element 312 increases, or residual stress may vary between locations at the same radial distance from the central axis. Similarly, residual stresses may be constant or varying along lines parallel to a longitudinal axis of the cutting element 312. Removing material from the cutting element 312 by machining a planar surface may result in a modified stress distribution with higher and/or undesirable residual stresses in some regions. Such modified residual stresses may lead to accelerated wear or premature failure of the cutting elements 312 by, for example, spalling, delamination of the superabrasive table from the supporting substrate, or other failure mechanisms.
Conventionally, the planar surfaces are machined into the cutting elements 312 after the cutting elements have been affixed to a tool, for example, the expandable reamer blade 300. For example, machining to form the planar surfaces may take place after the cutting elements have been brazed into pockets of the reamer blade 300. Machining to form the planar surfaces may include, for example, grinding or milling. The cutting elements may be milled or ground until sufficient material has been removed to achieve the desired outside cutting diameter of the expandable reamer 100 (
In some aspects of the present disclosure, the need for machining such planar surfaces to create a linear edge may be reduced or eliminated by altering the orientation of the cutting face of the at least one cutting element 312 disposed in the gage portion 302 of the expandable reamer blade 300.
For example, the orientation of the at least one cutting element 312 with respect to the blade 300 may be characterized at least partially by a cutting face back rake angle.
With reference again to
In other aspects of the disclosure, each of the plurality of cutting elements 312 disposed on the gage portion 302 may include a different cutting face back rake angle 434. For example, the back rake angle of each of the plurality of cutting elements 312 disposed on the gage portion 302 may progressively increase from angles of about 35° near a distal end 504 of the gage portion 302 to about 75° near a proximal end 506 of the gage portion 302. Alternatively or additionally, the cutting face back rake angles of the plurality of cutting elements 312 disposed on the gage portion 302 may vary between discrete areas of the gage portion 302. For example, an area of the gage portion 302 between the distal end 504 and a midpoint of the gage portion 302 may include cutting elements with back rake angles of around 50°. Another area of the gage portion 302 between the midpoint and the proximal end 506 may include cutting elements with back rake angles of around 70°. Furthermore, the back rake angle 434 of each of the plurality of cutting elements 312 may vary between rows. For example, the cutting elements 312 disposed in a first row 500 of the gage portion 302 may include a first back rake angle, and the cutting elements 312 disposed in a second row 502 of the gage portion 302 may include a second, greater back rake angle. Alternatively, the back rake angles of cutting faces in both rows 500 and 502 may be substantially the same.
As back rake angle 434 (
In addition to altering back rake angle 434, the need for tip grinding may also be reduced by varying the exposure of the plurality of cutting elements 312 disposed on the gage portion 302. Referring again to
Additional, non-limiting embodiments within the scope of the present disclosure include, but are not limited to:
A downhole tool configured to enlarge a borehole, comprising at least one blade extending laterally from a central portion of the tool, the at least one blade comprising a gage portion, and cutting elements having substantially circular cutting faces affixed to the at least one blade, each of the cutting elements comprising a cutting edge for contacting the borehole, wherein cutting edges of at least one cutting element located on the gage portion are defined substantially by an arcuate portion of a cutting face periphery, the at least one cutting element located on the gage portion exhibiting a cutting face back rake angle greater than a back rake angle of cutting faces of cutting elements on at least one other portion of the at least one blade.
The downhole tool of embodiment 1, wherein the at least one cutting element exhibits a cutting face back rake angle of greater than about thirty-five (35) degrees.
The downhole tool of embodiments 1 or 2, wherein the at least one cutting element exhibits a cutting face back rake angle of less than about seventy-five (75) degrees.
The downhole tool of any one of embodiments 1 through 3, wherein the at least one cutting element located on the gage portion comprises a plurality of cutting elements, a cutting face of each cutting element exhibiting a different back rake angle, and wherein cutting face back rake angles of the plurality of cutting elements progressively increase from a distal end to a proximal end of the gage portion of the at least one blade.
The downhole tool of embodiment 4, wherein the cutting face back rake angles of the plurality of cutting elements progressively increase from about thirty-five (35) degrees to about seventy-five (75) degrees.
The downhole tool of any one of embodiments 1 through 5, wherein the at least one cutting element located on the gage portion comprises a plurality of cutting elements, each cutting element of the plurality of cutting elements exhibiting substantially the same back rake angle.
The downhole tool of embodiment 6, wherein a cutting face of each cutting element of the plurality of cutting elements exhibits a back rake angle of about fifty-five (55) degrees.
The downhole tool of any one of embodiments 1 through 7, wherein the cutting edge of the at least one cutting element extends above a surface of the at least one blade a distance about equal to or less than one and a half (1.5) times a radius of the cutting face of the at least one cutting element.
The downhole tool of embodiment 8, wherein the cutting edge of the at least one cutting element extends above the surface of the at least one blade a distance about equal to or less than the radius of the cutting face of the at least one cutting element.
The downhole tool of embodiment 8, wherein the cutting edge of the at least one cutting element extends above the surface of the at least one blade a distance about equal to or less than half (0.5 times) the radius of the at least one cutting element.
The downhole tool of any one of embodiments 1 through 10, wherein the downhole tool comprises an expandable reamer.
The downhole tool of embodiment 1 through 11, wherein the downhole tool comprises a fixed-wing reamer.
A reamer blade, comprising a gage portion, and cutting elements having substantially circular cutting faces affixed to the at least one blade, each of the cutting elements comprising a cutting edge for contacting the borehole, wherein cutting edges of at least one cutting element located on the gage portion are defined substantially by an arcuate portion of a cutting face periphery, the at least one cutting element located on the gage portion exhibiting a cutting face back rake angle greater than a back rake angle of cutting faces of cutting elements on at least one other portion of the at least one blade.
The reamer blade of embodiment 13, wherein the at least one cutting element exhibits a cutting face back rake angle of greater than about thirty-five (35) degrees.
The reamer blade of embodiments 13 or 14, wherein the at least one cutting element exhibits a cutting face back rake angle of less than about seventy-five (75) degrees.
The reamer blade of any one of embodiments 13 through 15, wherein the at least one cutting element located on the gage portion comprises a plurality of cutting elements, a cutting face of each cutting element exhibiting a different back rake angle, and wherein cutting face back rake angles of the plurality of cutting elements progressively increase from a distal end to a proximal end of the gage portion of the at least one blade.
The reamer blade of embodiment 16, wherein the cutting face back rake angles of the plurality of cutting elements progressively increase from about thirty-five (35) degrees to about seventy-five (75) degrees.
The reamer blade of embodiments 16 or 17, wherein the at least one cutting element located on the gage portion comprises a plurality of cutting elements, each cutting element of the plurality of cutting elements exhibiting substantially the same back rake angle.
The reamer blade of any one of embodiments 13 through 18, wherein the cutting edge of the at least one cutting element extends above a surface of the at least one blade a distance about equal to or less than a radius of the cutting face of the at least one cutting element.
The reamer blade of embodiment 19, wherein the cutting edge of the at least one cutting element extends above the surface of the at least one blade a distance about equal to or less than half (0.5 times) the radius of the at least one cutting element.
While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that the scope of this disclosure is not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made to produce embodiments within the scope of this disclosure, such as those hereinafter claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being within the scope of this disclosure, as contemplated by the inventors.
Number | Name | Date | Kind |
---|---|---|---|
2136518 | Nixon | Nov 1938 | A |
2532418 | Pate | Dec 1950 | A |
2638988 | Williams | May 1953 | A |
2874784 | Baker et al. | Feb 1959 | A |
3083765 | Kammerer | Apr 1963 | A |
3126065 | Kammerer | Mar 1964 | A |
3171502 | Kammerer | Mar 1965 | A |
3283834 | Kammerer | Nov 1966 | A |
3289760 | Kammerer | Dec 1966 | A |
3351137 | Schulz et al. | Nov 1967 | A |
4403659 | Upchurch | Sep 1983 | A |
4693328 | Furse et al. | Sep 1987 | A |
4893678 | Stokley et al. | Jan 1990 | A |
5139098 | Blake | Aug 1992 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5788000 | Maury et al. | Aug 1998 | A |
5862870 | Hutchinson et al. | Jan 1999 | A |
5967247 | Pessier | Oct 1999 | A |
6006845 | Illerhaus et al. | Dec 1999 | A |
RE36817 | Pastusek | Aug 2000 | E |
6123160 | Tibbitts | Sep 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6173795 | McGarian et al. | Jan 2001 | B1 |
6289999 | Dewey et al. | Sep 2001 | B1 |
6349780 | Beuershausen | Feb 2002 | B1 |
6378632 | Dewey et al. | Apr 2002 | B1 |
6668949 | Rives | Dec 2003 | B1 |
6681860 | Yokley et al. | Jan 2004 | B1 |
6702020 | Zachman et al. | Mar 2004 | B2 |
6732817 | Dewey et al. | May 2004 | B2 |
7048078 | Dewey et al. | May 2006 | B2 |
7314099 | Dewey et al. | Jan 2008 | B2 |
20040159468 | Hoffmaster | Aug 2004 | A1 |
20080190670 | Welch et al. | Aug 2008 | A1 |
20100224414 | Radford et al. | Sep 2010 | A1 |
20110005841 | Wood et al. | Jan 2011 | A1 |
20110287924 | Stevens | Nov 2011 | A1 |
20120205163 | Azar et al. | Aug 2012 | A1 |
20130133949 | Xu et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1044314 | Oct 2000 | EP |
Entry |
---|
International Preliminary Report on Patentability for International Application No. PCT/US2014/054258, dated Mar. 8, 2016, 13 pages. |
International Search Report for International Application No. PCT/US2014/054258, dated Dec. 16, 2014, three pages. |
Written Opinin of the International Searching Authority for International Application No. PCT/US2014/054258, dated Dec. 16, 2014, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20150068813 A1 | Mar 2015 | US |