This disclosure related to an expandable drill bit for drilling and reaming operation.
Under-reaming is an essential part of well drilling operation across reactive formations or special casing design. Under-reaming allows a casing to be run to a desired point. In some cases, if under reaming was not performed, several reaming trips are performed to increase the chance of success of running the casing. Performing several reaming trips keeps the formation open and un-cased for a period of time, which can also cause some formation to react and swell resulting in tight spots while running the casing that might lead unsuccessful operations. Under reaming occurs after drilling a small pilot hole in a separate run or occurs while drilling with an under reamer arranged in the Bottom hole assembly (BHA).
In certain aspects, a reamer drill bit to form a wellbore includes a body having an outer surface defining a plurality of grooves, each groove extending from a first end of the body to a second end of the body. The grooves each include at least one groove recess, at least one groove peak connected by a sloped section, and a track arranged in the sloped section. A cutter arm of the reamer drill bit is configured to expand radially away from the body. The cutter arm is also slidably attached to the body and configured to slide longitudinally relative to the body. Each cutter arm has an interior surface with at least one arm valley, and at least one arm protrusion. The at least one groove recess receives the at least one arm protrusion and the at least one arm valley receives the at least one groove peak. The cutter arm is configured to slide longitudinally along the track.
In some embodiments, the sloped section includes a recessed track extending from a first end at the at least one groove recess to a second end at the at least one groove peak. The interior surface of the cutter arm can include a cam configured to engage with the recessed track of the body. The second end of the track can include a (first) lock configured to lock the cam to the second end of the track and/or in an expanded position. The reamer drill bit can also include a second lock configured to hold the cutter arm in a retracted position.
Some reamer drill bits include a central axis and the reamer drill bit is centered on the axis.
The first end of the sloped section may be radially closer to the axis than the second end of the sloped section.
In some cases, the interior surface of the cutter arm includes a recessed track configured to engage with a cam disposed on the peak of the grooves of the body. The track can extend from a first end to a second end.
In some embodiments, each of the plurality of grooves include a second recess and a second peak.
In some reamer drill bits, the cutter arm further includes a cutting surface opposite the interior surface. The cutting surface may be perpendicular to the interior surface.
In some cases, the body further includes a plurality of outlets defined in each of the grooves of the body. The plurality of outlets can be connected to a fluid source and a pump configured to convey fluid from the fluid source to the outlets. In some cases, the plurality of outlets connect to the fluid source via a fluid tubing in the body. The plurality of outlets may include a first outlet defined in the first groove recess of the body. Some plurality of outlets have a second outlet defined in a second recess of each groove of the outer surface of the body.
In some cases, the reamer drill bit also includes an actuation sub-assembly configured to open and close the fluid tubing. The actuation sub-assembly may include an activation port configured to open or close based on an actuator. The actuator can be a ball, down-link or and radio frequency identification chip.
In some cases, the body also includes at least one nozzle at the second end of the body fluidly connected to a fluid source. The nozzle can be fluidly connected to the fluid source via nozzle tubing.
Some plurality of grooves are toothed grooves and/or wavy grooves.
In certain aspects, a method to expand a cutter arm of a reamer drill bit includes unlocking, by an actuation sub-assembly, a lock connecting the cutter arm of the drill reamer bit to a body of the drill reamer bit. The cutter arm extends along a first end of the reamer drill bit to a second end of the reamer drill bit. The method also includes opening, by the actuation sub-assembly, a fluid channel fluidly connected to a fluid source. The fluid channel extends to an outlet at an outer surface of a body of the reamer drill bit. An interior surface of a cutter arm is slidably attached to the body covers the outlet. The method also includes flowing high pressure fluid through the outlet to push the cutter arm radially outward away from the body.
In some cases, the method also includes locking, by a second lock arranged in a track of a sloped section of the body, the cutter arm to the body in an extend position.
Opening, by the actuation sub-assembly, the fluid channel fluidly connected to the fluid source can include receiving an actuation signal from an actuator. The actuator can be a ball, an IFRD signal, or a down-link signal.
In some cases, opening, by the actuation sub-assembly, the fluid channel fluidly connected to the fluid source includes opening a plurality of fluid channels fluidly connected to the fluid source.
In some embodiments, the method also includes translating the reamer drill bit such the cutter arm receives a downhole force that translates the cutter arm along a track of a sloped section of the body.
In some cases, flowing high pressure fluid through the outlet to push the cutter arm radially outward, includes flowing high pressure fluid through a plurality of outlets arranged on the outer surface of the body.
In some methods, the high pressure fluid has a pressure of 300 psi to 750 psi.
Some methods also include flowing fluid from the fluid source to a nozzle disposed on the second end of the reamer drill bit.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
This disclosure relates to a reamer drill bit with expandable and retractable cutter arms. The cutter arms are configured to drill both the pilot hole and ream the opening of the wellbore for a casing, thereby reducing the time that a newly formed wellbore remains uncased and reducing the likelihood of swelling. If the uncased wellbore does swell, the some drill bit can be constricted from moving by tight spots. The reamer drill bit can reduce the risk of the drill bit being trapped within a swollen un-cased wellbore because the expandable arms can re-ream the swollen wellbore from the floor of the wellbore. The downhole tool can then be removed. This configuration also reduces operation run time by drilling and reaming the wellbore in a single run and reduces the likelihood of broken components that can occur when removing a downhole tool from a swollen un-cased wellbore.
A first lock 120 is arranged on each peak 114c to lock the cutter arm 104 in the extended position, shown in
The first sloped section 114d defines a recessed track (not shown) that extends from a first (end) point 124 at the first recess 114a of the groove 114 to a second (end) point 126 at the peak 114c of the groove 114 to a third (end) point 127 at the second recess 114b of the groove 114. The first point 124 of the first sloped section 114d is radially closer to the axis 107 than the second point 126 of the first sloped section 114d. The first lock 120 is arranged at the second point 126 and is configured to lock a cam (not shown) of the cutter arm 104.
The outer surface 112 of the body 110 defines multiple outlets 128 in each groove 114 of the body 110. A first outlet 128a is arranged in the first recess 114a and a second outlet 128b is arranged in the second recess 114b. The outlets 128 are fluidly connected to a fluid source via a fluid tubing 130. A pump (not shown) is configured to convey fluid from the fluid source to the outlets 128.
The body 110 further includes an actuation sub-assembly 132 having an actuation port 134 arranged at an opening of the fluid tubing 130. The actuation port 134 controls the inflow of fluid to the outlets 128. The actuation sub-assembly 132 is configured to open or close the fluid tubing 130. When closed, the actuation port 134 prevents fluid communication between the fluid source and the outlets 128. When open, the actuation port 134 fluidly connects the fluid source and the outlets 128. The actuation sub-assembly 132 also includes an actuator (not shown) that opens or closes the actuation port 134. The actuator can be a ball, down-link, or radio-frequency ID chips (RFID).
The body 110 also includes nozzles 146 arranged at the second end 118 of the body 110. The nozzles 146 are fluidly connected to the fluid source and are configured to spray fluid onto the floor of the wellbore 106.
The cutter arm 104 includes a first protrusion 152, a second protrusion 154, and a valley 156 arranged between the first protrusion 152 and second protrusion 154. The first protrusion 152 has a cam 158 extending from the first protrusion 158, for example from a peak of the first protrusion. The track in the groove 114 engages the cam 158 such that the cam 158 follows the track as the cutter arm 104 moves longitudinally from the first end 116 of the body 110 towards the second end 118 of the body 110. The cutting surface 150 can include spikes or teeth to cut the formation. The first lock of the body may lock the cam and/or the first protrusion. The first protrusion can also include a latch to engage with the second lock so that the cutter arms 104 remain in the retracted position.
When the cutter arms 104 are in the retracted position, the reamer drill bit 102 has a diameter dretracted. The second lock 122 is engaged with the cutter arm 104 so that the cutter arm 104 is longitudinally constrained relative to the body 110 and the cam 158 is prevented from translating along the track. This reamer drill bit 102 is in the retracted configuration during drilling operations, which can include drilling and transportation uphole and/or downhole. The cutter arms 104 extend radially as the cutter arm 104 translates longitudinally from the first end 116 of the body 110 to the second end 118 of the body 110.
When the cutter arms 104 are in the extended position, the reamer drill bit 102 has a diameter dextended. The first lock 120 is engaged with the cutter arm 104 so that the cutter arm 104 is longitudinally constrained relative to the body 110 and the cam 158 is prevented from translating along the track. This reamer drill bit 102 is in the extended configuration during reaming operation, which can include reaming, transportation uphole and/or downhole, and cutting a swollen formation. In some cases, the cutter arms are in the extended position, or transitioning from the retracted position to the extended position, during drilling operations. The cutter arms 104 can retract into the retracted position, shown in
To move the cutter arms 104 from the retracted position to the extended position, the actuation sub-assembly 132 is first actuated by receiving a signal from an actuator. The actuator may be an RFID signal received by an RFID chip, a hydraulic actuator, a ball drop actuator, or any other actuator known in the art. After the actuation sub-assembly receives the actuation signal from the actuator, the actuation port 134 is opened and the second lock 122 is disengaged, by the actuation sub-assembly 132. Fluid flows from the fluid source through the fluid tubing 130 to the outlets 128 in the outer surface 112 of the body 110. As the cutter arms 104 are in the retracted position, the interior surface 148 of the cutter arm 104 abuts or mates with the outer surface 112 of the body 110. The high pressure fluid flows through the outlets 128 and pushes the cutter arms 104 radially outward away from the body 110 and axis 107, which is translated to longitudinal movement and radial movement by the track and cam 158 connection. In some cases, the reamer drill bit 102 is translated uphole such the cutter arms 104 receive a downhole force that translates the cutter arms 104 downhole along a track of the first sloped section 114d of the body 110. The cam 158 moves from the first point 124 of the track to the second point 126 of the track. The first lock 120 at the second point 126 of the track at the peak 114c of the body 110 locks. The lock is prompted to lock or unlock upon receipt of a signal, for example an RFID signal or a pressure signal. When the first lock 120 is locked, the cutter arm 104 is longitudinally and radially constrained to the body in the extend position.
In some cases, the track is defined in the cutter arm and the cam is disposed on the peak of the groove. In such a configuration, the track in the cutter arm receives the cam on the groove.
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims.