This invention relates in general to earth formation drilling, and more particularly to a reaming and stabilization tool and method for its use in a borehole.
Earth formation drilling is often accomplished using a long string of drilling pipes and tools coupled together. The drilling string is rotated together in order to rotate a cutting bit at the end of the string. This cutting bit creates the hole which the rest of the drilling string moves through. For various reasons, it may be desirable to widen the walls of the hole after it has been created by the cutting bit. Bore-hole underreamers exist to accomplish the widening of the hole. An underreamer may be coupled to the drilling string between two other elements of the drilling string. It may then be sent down hole with the drilling string, rotating with the drilling string, and widening the hole.
In accordance with the present invention, the disadvantages and problems associated with underreamer life span and functionality have been substantially reduced or eliminated. In particular, the problem of clogging of the underreamer, which may prevent proper retraction of the cutting arms and thereby cause premature breakage of the cutting arms, has been reduced or eliminated.
In accordance with one embodiment of the present invention, a drilling tool includes a tubular body defining a longitudinal axial cavity extending therethrough and defining at least one cutter element recess. The drilling tool also includes a cutter element at least partially disposed within the at least one cutter element recess and includes at least first and second cutting arms at least substantially disposed within the cutter element recess in a retracted position. The first and second cutting arms are operable to move from the retracted position to an extended position in which the first and second cutting arms extend at least partially beyond a periphery of the tubular body. The first and second cutting arms and the tubular body enclose a space when the first and second cutting arms are in the extended position.
Technical advantages of certain embodiments of the present invention include expandable underreaming or cutting arms which have significant thickness, yet are still capable of substantially retracting within the underreamer body when not in use. A thicker, more massive cutting arm will be better able to withstand the forces exerted by the formation being cut. Increasing the thickness of the cutting arms may hamper the flow of drilling fluids through the underreamer. Therefore, the underreamer has been designed with thick cutting arms that do not significantly impinge the flow of the drilling fluid.
Another technical advantage of certain embodiments of the present invention is a clogging resistant design. The cutting arms at full extension will project beyond the body of the underreamer. However, the space formed under the cutting arms may remain closed off from the drilling mud and debris circulating around the exterior of the underreamer. This is the case because the apex of the angle formed under the cutting arms does not extend beyond the periphery of the tubular body. For example, it lies outside of a recess defined by the tubular body for the cutting arms. The cutting arms are also sized to correspond to the opening through which they extend. This design prevents debris from clogging the space behind the cutting arms reducing the possibility that the cutting arms are prevented from retracting into the underreamer. Further, jets of drilling fluid from the interior of the underreamer may be directed into the space under the cutting arms to maintain a flow of drilling fluid away from areas which may otherwise become clogged.
Other technical advantages of the present invention will be readily apparent to one skilled in the art from the following figures, descriptions, and claims. Moreover, while specific advantages have been enumerated above, various embodiments may include all, some, or none of the enumerated advantages.
For a more complete understanding of the present invention and its advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
The present invention relates to a reaming and stabilization tool to be used in a borehole. One embodiment of the present invention may include a tubular body to be mounted between a first section of a drill string and a second section of the drill string. The tubular body may have an axial cavity and, peripherally, housings provided with openings to the outside. A cutter element may be housed in each housing. The cutter element may include at least two cutting arms articulated on each other and on the tubular body. The cutting arms are able to be moved between a retracted position in which they are situated inside their housing and an extension position in which they are deployed outside.
The tool may also include a drive mechanism arranged inside the tubular body so as to be axially offset with respect to the cutter elements. The drive mechanism is capable of effecting a movement between two extreme positions. The tool may also include a transmission mechanism capable of transmitting the movement of the drive mechanism to the articulated cutting arms of each cutter element. In a first of the extreme positions of the drive mechanism, the cutting arms of each cutter element may be in their retracted position and, in a second of the extreme positions, the cutting arms may be in their extension position.
The production of cutter elements in the form of articulated cutting arms offers the advantage of being able to provide large-diameter drill hole reaming. However, cutting arms which greatly project out of the tubular body present the danger of rapid clogging of the articulations of the cutting arms and their housings, which may prevent the correct functioning of the tool. Moreover, in their position deployed greatly outside the body of the tool, the articulations of the cutting arms may be subjected to enormous forces due to the resistance of the formation to be eroded during the rotation of the tool and its progressive axial sinking into it, which may cause rapid damage to these articulations.
To resist these stresses, the articulated cutting arms may be designed so as to be solid, which may result in relatively bulky cutting arms. In their retracted position the cutting arms should allow the circulation of drilling mud, without hindrance, inside the tubular body of the tool. This consideration complicates the interaction between the drive mechanism and the cutting arms.
Particular embodiments of the present invention include a reaming and stabilization tool which is very strong, offers possibilities of reaming greater than the tools currently available on the market and prevents the aforementioned problems of clogging.
To resolve these problems, according to the invention, a reaming and stabilization tool to be used in a borehole, as described above, has been provided. The tool may further include the cutting arms in the extension position forming between them and the tubular body of the tool a space which is closed off from the exterior of the tool. The chips resulting from the drilling and/or reaming may not penetrate below the articulations of the cutting arms. Even in the extension position, the housing may not be clogged by the chips circulating around the tubular body and cutting arms. According to a particular embodiment, the tool may have a ratio between the diameter of the borehole enlarged by the cutting arms in the extension position and the outside diameter of the tool greater than or equal to 1.3, perhaps, for example, 1.5.
According to one embodiment of the invention, the cutting arms have, between their retracted position and their extension position, an intermediate position. Beyond this intermediate position, a movement of the cutting arms towards the extension position causes a force exerted on the cutting arms by a formation to be eroded to be converted by the transmission mechanism into a traction on the drive mechanism in the direction of its second extreme position. Although the cutting arms prevent chips from entering the space below them, the angle between the cutting arms is sufficiently small that the reaction force exerted by the formation to be eroded on the cutting arms is in the same direction as the force exerted by the drive mechanism on the cutting arms to bring them into the extension position. The system thus becomes self-locking in the extension position and the drive force no longer needs to be applied to maintain the cutting arms in the extension position.
Each cutter element may include first and second cutting arms. The first cutting arm may be articulated first on the tubular body by a first pivot shaft and second on the second cutting arm by a second pivot shaft. The second cutting arm may be articulated by the second pivot shaft and a third pivot shaft on the transmission mechanism. In the extension position of the cutting arms, only the second pivot shaft is situated outside the tool. In this way, in the extension position of the cutting arms, the closed space formed between the two cutting arms and the tubular body has a triangular shape having an angle at the vertex that is situated inside the housing.
According to one embodiment of the invention, the drive mechanism may be a hollow piston capable of sliding in the axial cavity of the tubular body. The transmission mechanism may include, for each housing, a transmission element coupled to each cutter element. Each transmission element may be capable of sliding in its housing. An elongate slot may be provided in the tubular body between the housing and the axial cavity. A projection on the transmission element may pass through the slot and bear on the hollow piston so as to follow the hollow piston in its axial movement. The hollow piston may close off fluid communication between the housings and the axial cavity in the tubular body, while allowing circulation of drilling mud through the tool. This embodiment may allow an arrangement of the drive mechanism offset with respect to the cutter elements. This allows the cutting arms to have a maximum thickness as the housing can extend in from the periphery of the tubular body as far as the axial passage where the muds circulate.
According to an alternative embodiment of the invention, each housing may have a bottom, two parallel lateral walls disposed at a distance from each other and two front walls. Each cutting arm and the transmission element may have a width corresponding to the distance between the lateral walls and be capable of sliding along the lateral walls during extension of the cutting arms. The cutting arms may be laterally in abutment on each of the lateral walls. A first cutting arm at a first end and one of the front walls may bear on each other through first mutually cooperating surfaces. The first cutting arm at a second end and a second cutting arm at a first end may bear on each other through second cooperating surfaces. The second cutting arm at a second end and the transmission element at a first end may bear on each other through third cooperating surfaces. In this way, the cutting arms of the tool are supported in their extension position by the walls of the housing and the transmission element. The forces on the cutting arms are transmitted by the cutting arms to other parts of the tool through mutual abutments on surfaces conformed so as to be able to cooperate, or support the cutting arms. This relieves the pivot shafts of these tensions.
According to another embodiment of the invention, the tool may include an activation device. The activation device may axially hold the hollow piston inside the tubular body in an initial position corresponding to a retracted position of the cutting arms in their housings. The activation device may be capable of releasing the hollow piston at a suitable moment, thereby allowing the hollow piston to perform its axial movement according to a hydraulic fluid pressure. The tool may include at least one return spring that opposes the axial movement and directs the hollow piston towards its initial position. The tool according to the invention may also include a capture device inside the tubular body. The capture device may be activated to a capture position in which the hollow piston is captured by the capture device when, under the action of the return spring, the hollow piston regains its initial position. In a particular embodiment, the tool may include the activation device and the capture device arranged on only one side of the hollow piston. Such an arrangement may make it possible to avoid the presence or passage of constructional elements of the tool between the housings of the cutting arms and the axial cavity in the tubular body through which the drilling muds circulate.
Further details and particularities of the invention will emerge from the description given below non-limitingly and with reference to the accompanying drawings.
In the example illustrated, a cutter element 4 is housed in each housing 3 and includes two cutting arms 5 and 6 operable to articulate on each other. Cutting arm 5 is articulated on tubular body 1 by pivot shaft 7 and on cutting arm 6 by pivot shaft 8. Cutting arm 6 is also articulated by pivot shaft 9 on a transmission mechanism, which is, in the example illustrated, in the form of a transmission element 10. The retracted position of cutting arms 5 and 6 in their housing 3 is illustrated in
Cutter elements 4 may have more articulated cutting arms than two. Moreover, cutter elements 4 are provided with cutting tips, and the surfaces of cutting arms 5 and 6 are conformed, in the example illustrated, to have in the extension position a front area 11. Front area 11 is inclined towards the front, or downhole, side of the tool, and is intended to produce an enlargement of the borehole during the descent of the tool. Cutting arms 5 and 6 also include a central area 12 that is substantially parallel to the axis of the tool in the extension position of the cutting arms 5 and 6. Central area 12 is intended to stabilize the tool with respect to the broadened hole. It is also possible to provide a rear, or uphole, area with cutting tips operable to produce a broadening of the borehole when the drill string is being raised.
Housings 3 are recessed into tubular body 1 and extend inward almost to axial cavity 2. The full depth of housing 3 may be occupied by cutting arms 5 and 6. In this way, the thickness of the cutting arms 5 and 6 may be maximized because the majority of the diameter of tubular body 1 not dedicated to axial cavity 2 may be occupied by cutting arms 5 and 6. This design also includes an adequate axial cavity 2 to allow passage of the drilling muds without hindrance.
In the extension position, cutting arms 5 and 6 form between them and tubular body 1 a space 14. Space 14 has a triangular shape in a profile view, and is closed off from the drilling muds circulating outside tubular body 1. As can be seen in
A drive mechanism, which, in the example embodiment illustrated, is designed in the form of a hollow piston 15, is arranged inside tubular body 1. Hollow piston 15 is in a position axially offset with respect to cutter elements 4, or in other words, hollow piston 15 is not located beneath cutter elements 4. Axial cavity 2 may have a larger diameter than would have otherwise been possible with a coaxial design of cutter elements 4 and hollow piston 15. This design allows circulation of the drilling muds without hindrance inside tubular body 1.
A transmission element 10 is disposed in each housing 3 so as to be able to move longitudinally therein. At its opposite end to that articulated on cutting arm 6, each transmission element 10 has, in this example, a projection 16 which enters inside tubular body 1 through an elongate slot 17. Transmission elements 10 bear on hollow piston 15 and follow hollow piston 15 in its axial movements.
Hollow piston 15 separates axial cavity 2 from tubular body 1, and also separates axial cavity 2 from housings 3. In the example illustrated, front face 76 of hollow piston 15 is in contact with the drilling mud circulating inside axial cavity 2 of tubular body 1. These muds are able to accumulate in annular chamber 60, through radial holes 19 in communication with axial cavity 2. The rear faces 77 and 78 of hollow piston 15 are in abutment with the projections 16 of transmission elements 10 and return spring seat 73, respectively. Return spring 18 and transmission element 10 are in communication with the drilling fluid circulating outside tubular body 1 through the opening to the outside of the housings 3. Return spring 18 and transmission element 10 are therefore exposed to the pressure of the hydraulic fluid present in the borehole, i.e., the drilling fluid circulating outside tubular body 1. Return spring 18 also abuts tubular body 1 at the end of return spring 18 opposite front face 76 of hollow piston 15.
Hollow piston 15 can slide between two extreme positions. The first position is illustrated in
In any position of hollow piston 15, hollow piston 15 closes off fluid communication between housings 3 and axial cavity 2. However, hollow piston 15 allows drilling muds to circulate through axial cavity 2 of the tool.
Each housing 3 has a bottom 20 (see
As can be seen in
As illustrated in
In the extension position, cutting arms 5 and 6 are designed to be largely supported by lateral walls 21 and 22 against the forces exerted by the resistance of the formation to be eroded during the rotation of the tool. Lateral walls 21 and 22 of housing 3 also frame transmission elements 10. Only pivot shaft 8 of cutting arms 5 and 6 is situated outside housing 3, while pivot shafts 7 and 9 are disposed within housing 3. The resistance forces exerted by the formation to be eroded during the forward progression of the tool and the forces exerted by the tool on the formation by cutting arms 5 and 6 are principally absorbed by cutting arms 5 and 6 and transmission element 10. This relieves pivot axes 7, 8 and 9 of the majority of these stresses.
The section of main portion 1c of tubular body 1 between the top of transmission element 10 adjacent cutting arm 6 and the top of downhole portion 1b adjacent bottom wall 3b may have a length L and a diameter D as illustrated in
As illustrated in
To facilitate triggering extension of cutting arms 5 and 6 from their retracted position, pivot axis 8 may be offset towards the outside of tubular body 1 with respect to a plane passing through pivot axes 7 and 9. In the example illustrated, transmission element 10 includes a triggering finger 31, which, as illustrated in
As illustrated in
In the extension position illustrated in
There exists between the retracted position and the extension position an intermediate position of cutting arms 5 and 6 at which the resistance force from the formation to be eroded becomes a traction force on the drive mechanism. However, in the extension position, which is very favorable from the kinematic point of view, space 14 of housing 3 remains closed to the outside.
To further prevent penetration of external hydraulic fluid, which may be filled with chips, into housing 3, a strangled passage 32 may be provided between each closed space 14 and axial cavity 2. Strangled passage 32 allows injection into space 14 of jets of internal hydraulic fluid under high pressure. This injection prevents penetration of external hydraulic fluid into space 14, and simultaneously cleans cutting arms 5 and 6. In the example illustrated, strangled passages 32 are in communication with axial cavity 2 through perforations 33, which also serve as filters.
In a particular embodiment, illustrated in
The activation device may be capable of axially holding hollow piston 15 inside tubular body 1 in an initial position. The initial position corresponds to the retracted position of cutting arms 5 and 6, and facilitates the descent of the tool into the borehole to a location where underreaming is desired. When the tool has arrived at the location to be underreamed, the activation device releases hollow piston 15, enabling it to perform its axial movement.
In the example illustrated, hollow piston 15 is extended by two successive extension tubes 34 and 35 that are screwed onto hollow piston 15. Extension tubes 34 and 35 extend inside tubular body 1, which is itself extended by a joining element 36. Joining element 36 couples tubular body 1 to the drill string. Joining element 36 is covered in its internal cavity with three successive sockets 37, 38, and 39 that are screwed onto each other and are fixed on joining element 36 by fixing pins 40.
At the downstream, or downhole, end of socket 39 of joining element 36, there is arranged an external tubular slide 41 that is coupled to extension tube 35 of hollow piston 15 by several shear pins 42.
Inside extension tube 34 and hollow piston 15, there is arranged an internal tubular slide 43. Tubular slide 43 is coupled firstly to extension tube 34 by shear pins 44 and secondly to a sleeve 45 disposed between extension tube 35 and the successive sockets 37, 38, and 39 of joining element 36 of tubular body 1, by coupling pins 46. Coupling pins 46 are passed through elongate slots 47 provided in the axial direction in extension tube 35.
In one embodiment, the tool may have a stop mechanism that prevents axial sliding of external tubular slide 41 and hollow piston 15 in the non-activated position of the tool. In this position, illustrated in
An obturation ball 48 may be introduced into axial cavity 2, thereby closing off the cavity in external tubular slide 41. This causes the hydraulic pressure inside axial cavity 2 to increase abruptly. Under the effect of this increase in pressure as well as the mechanical impact of obturation ball 48 on external tubular slide 41, shear pins 42 are sheared, and hollow piston 15 is released to slide in the upstream direction. External tubular slide 41 is projected forward, or downhole, into the position depicted in
An increase in hydraulic pressure in chamber 60 directs hollow piston 15 upwards, thereby compressing return spring 18. Conversely, a reduction in pressure allows hollow piston 15 to return to its initial position under the direction of return spring 18. Hollow piston 15 can thus fulfill its role as a driving mechanism for cutting arms 5 and 6.
At the end of use of the tool, it may be desirable to raise the tool from the borehole. Raising the tool is facilitated by capturing hollow piston 15 in its initial position with cutting arms 5 and 6 in the retracted position. Throughout the functioning of the tool, the capture device is in a non-activated position, as illustrated in
In the non-activated position, extension tube 34 of hollow piston 15 is provided with an internal housing in which there is arranged an elastic clamping collar 50. Elastic clamping collar 50 surrounds internal tubular slide 43. Socket 38 of joining element 36 is also provided with an internal housing in which there is arranged another elastic clamping collar 51, which surrounds sleeve 45.
An obturation ball 52 may be introduced into axial cavity 2, as depicted in
During this sliding, clamping collar 50 comes to be fixed in an external housing 53 in slide 43, thereby coupling slide 43 to hollow piston 15 by extension tube 34. Clamping collar 51 also comes to be fixed in an external housing 54 provided on sleeve 45 fixed to hollow piston 15. This fixes sleeve 45 to socket 38 and thereby to tubular body 1.
In the capture position, circulation of drilling muds is re-established in axial cavity 2 by lateral passages 55. Lateral passages 55 make it possible to short-circuit ball 52 and re-establish flow around ball 52. Once the movable parts are fixed, the tool may be raised to the surface.
With reference to
The tool may also include a bolt that, in a closed position, holds the capture device in a non-activated position. An electric control member could be coupled to a bolt activator and be capable of controlling a movement of the bolt into an open position in which it releases the capture device so that it makes a movement into the capture position. In particular embodiments, the activation and deactivation of the tool may be controlled by a single bolt, such as, for example, the bolt illustrated in
As illustrated in
A ball may be introduced into axial cavity 2 to close off the thinned downstream end of sliding tube 108. When the thinned downstream end of sliding tube 108 is closed off, the hydraulic pressure inside the axial cavity 2 will increase abruptly. The increased pressure and the mechanical impact of the ball on sliding tube 108 will cause shear pin 109 to be sheared. Sliding tube 108 will thereby be released to move downstream. Passage of the drilling mud may be re-established through lateral holes 110 in the sliding tube 108. Lateral holes 110 are blocked by intermediate sleeve 105 and become cleared as sliding tube 108 moves downstream.
An adequate increase in hydraulic pressure in the chamber 60 will now result in piston 15 sliding upwards, accompanied by intermediate sleeve 105 and tubular slide 102. Piston 15 will compress return spring 18 and direct a movement of the transmission element 10 longitudinally upwards and a movement of the cutting arms 5 and 6 outwards.
In order to raise the tool, the internal pressure of the mud may be decreased to return piston 15 to its initial position with cutting arms 5 and 6 in the retracted position. A ball of appropriate size may then be introduced into axial cavity 2 to lodge in the thinned upstream portion of tubular slide 102. When the ball lodges against the thinned upstream portion of tubular slide 102, the hydraulic pressure inside axial cavity 2 will abruptly increase. The effect of this increase in pressure, as well as the mechanical impact of the ball on the tubular slide 102, will cause shear pins 103 to be sheared. The tubular slide 102 is thus released to move downstream. The downstream movement of tubular slide 102 is limited by a bearing shoulder 111 inside an upstream cavity of the intermediate sleeve 105. Flow of the drilling mud may then re-established through lateral holes 112 in tubular slide 102. As illustrated in
As can be seen in
In certain embodiments, the surfaces on which the external and internal pressures apply may be such that piston 15 is pushed in a downstream direction. Such a situation adds a hydraulic force to the spring force of return spring 18 to retract cutting arms 5 and 6 and to return and maintain piston 15 in a position corresponding to the withdrawn position of cutting arms 5 and 6.
Although the present invention has been described with several embodiments, a myriad of changes, variations, alterations, transformations, and modifications may be suggested to one skilled in the art, and it is intended that the present invention encompass such changes, variations, alterations, transformations, and modifications as fall within the scope of the appended claims.
This application is a Continuation of U.S. patent application Ser. No. 12/146,160 filed on Jun. 25, 2008 now U.S. Pat. No. 7,584,811, which is a Continuation of U.S. patent application Ser. No. 11/147,935 filed Jun. 8, 2005 now U.S. Pat. No.7,401,666, which is a Continuation-in-Part of International Patent Application Serial No. PCT/BE2004/000083 entitled “Reaming and Stabilization Tool for Use in a Borehole” filed on Jun. 9, 2004, each of which are hereby incorporated in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
274740 | Douglass | Mar 1883 | A |
336187 | Wells | Feb 1886 | A |
1411484 | Fullilove | Apr 1922 | A |
1454843 | Brown | Jun 1923 | A |
1485642 | Stone | Mar 1924 | A |
1607662 | Boynton | Nov 1926 | A |
1631449 | Alford | Jun 1927 | A |
1671474 | Jones | May 1928 | A |
1686403 | Boynton | Oct 1928 | A |
1750629 | Crum | Mar 1930 | A |
1772710 | Denney | Aug 1930 | A |
1804850 | Triplett | May 1931 | A |
1878260 | Bunker | Sep 1932 | A |
2060352 | Stokes | Nov 1936 | A |
2169502 | Santiago | Aug 1939 | A |
2239996 | Chappell | Apr 1941 | A |
2271472 | Balduf | Jan 1942 | A |
2427052 | Grant | Sep 1947 | A |
2438673 | McMahan | Mar 1948 | A |
2450223 | Barbour | Sep 1948 | A |
2499916 | Harris | Mar 1950 | A |
2710172 | Kammerer, Jr. | Jun 1955 | A |
2754089 | Kammerer, Jr. | Jul 1956 | A |
2758819 | Kammerer, Jr. | Aug 1956 | A |
2809015 | Phipps | Oct 1957 | A |
2822150 | Muse et al. | Feb 1958 | A |
2834578 | Carr | May 1958 | A |
2872160 | Barg | Feb 1959 | A |
2882019 | Carr et al. | Apr 1959 | A |
3105562 | Stone et al. | Oct 1963 | A |
3123162 | Rowley | Mar 1964 | A |
3180436 | Kellner et al. | Apr 1965 | A |
3224507 | Cordary et al. | Dec 1965 | A |
3351144 | Park | Nov 1967 | A |
3365010 | Howell et al. | Jan 1968 | A |
3425500 | Fuchs | Feb 1969 | A |
3433313 | Brown | Mar 1969 | A |
3556233 | Gilreath et al. | Jan 1971 | A |
3749184 | Andeen | Jul 1973 | A |
3974886 | Blake, Jr. | Aug 1976 | A |
4055226 | Weber | Oct 1977 | A |
4081042 | Johnson et al. | Mar 1978 | A |
4091883 | Weber | May 1978 | A |
4141421 | Gardner | Feb 1979 | A |
4177866 | Mitchell | Dec 1979 | A |
4186810 | Allan | Feb 1980 | A |
4190124 | Terry | Feb 1980 | A |
4231437 | Swersky et al. | Nov 1980 | A |
4411557 | Booth | Oct 1983 | A |
4458761 | Van Vreeswyk | Jul 1984 | A |
4503919 | Suied | Mar 1985 | A |
4589504 | Simpson | May 1986 | A |
4660657 | Furse et al. | Apr 1987 | A |
4664206 | Butler | May 1987 | A |
4821817 | Cendre et al. | Apr 1989 | A |
4842083 | Raney | Jun 1989 | A |
4889197 | Boe | Dec 1989 | A |
4915181 | Labrosse | Apr 1990 | A |
5010967 | Desai | Apr 1991 | A |
5036921 | Pittard et al. | Aug 1991 | A |
5060738 | Pittard et al. | Oct 1991 | A |
5086852 | Van Buskirk | Feb 1992 | A |
5139098 | Blake | Aug 1992 | A |
5184687 | Abdrakhmanov et al. | Feb 1993 | A |
5255741 | Alexander | Oct 1993 | A |
5265684 | Rosenhauch | Nov 1993 | A |
5271472 | Leturno | Dec 1993 | A |
5318137 | Johnson et al. | Jun 1994 | A |
5318138 | Dewey et al. | Jun 1994 | A |
5330016 | Paske et al. | Jul 1994 | A |
5332048 | Underwood et al. | Jul 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5368114 | Tandberg et al. | Nov 1994 | A |
5560440 | Tibbitts | Oct 1996 | A |
5590724 | Verdgikovsky | Jan 1997 | A |
5655609 | Brown et al. | Aug 1997 | A |
5788000 | Maury et al. | Aug 1998 | A |
5957222 | Webb et al. | Sep 1999 | A |
5957226 | Holte | Sep 1999 | A |
6059051 | Jewkes et al. | May 2000 | A |
6070677 | Johnston, Jr. | Jun 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6189631 | Sheshtawy | Feb 2001 | B1 |
6209665 | Holte | Apr 2001 | B1 |
6213226 | Eppink et al. | Apr 2001 | B1 |
6244664 | Ebner et al. | Jun 2001 | B1 |
6269893 | Beaton et al. | Aug 2001 | B1 |
6289999 | Dewey et al. | Sep 2001 | B1 |
6360830 | Price | Mar 2002 | B1 |
6360831 | Åkesson et al. | Mar 2002 | B1 |
6378632 | Dewey et al. | Apr 2002 | B1 |
6419025 | Lohbeck et al. | Jul 2002 | B1 |
6427788 | Rauchenstein | Aug 2002 | B1 |
6464024 | Beaton et al. | Oct 2002 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6732817 | Dewey | May 2004 | B2 |
7036611 | Radford et al. | May 2006 | B2 |
7048078 | Dewey et al. | May 2006 | B2 |
7401666 | Fanuel et al. | Jul 2008 | B2 |
RE41119 | Akesson et al. | Feb 2010 | E |
20030079913 | Eppink et al. | May 2003 | A1 |
20030155155 | Dewey et al. | Aug 2003 | A1 |
20040065479 | Fanuel et al. | Apr 2004 | A1 |
20040065480 | Fanuel et al. | Apr 2004 | A1 |
20040134687 | Radford et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
1012545 | Dec 2000 | BE |
2 839 868 | Apr 1979 | DE |
0 086 701 | Aug 1983 | EP |
0 301 890 | Feb 1989 | EP |
0 577 545 | Mar 1993 | EP |
0 568 292 | Nov 1993 | EP |
569203 | Apr 1924 | FR |
218774 | Jul 1924 | GB |
295150 | Aug 1928 | GB |
540027 | Oct 1941 | GB |
1 586 163 | Mar 1981 | GB |
2 128 657 | May 1984 | GB |
2 180 570 | Apr 1987 | GB |
8 503 371 | Jul 1987 | NL |
9905391 | Feb 1999 | WO |
WO 0031371 | Jun 2000 | WO |
WO 02072994 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090314548 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12146160 | Jun 2008 | US |
Child | 12550310 | US | |
Parent | 11147935 | Jun 2005 | US |
Child | 12146160 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/BE2004/000083 | Jun 2004 | US |
Child | 11147935 | US |