Embodiments of the invention relate to a reaming tool suitable for running on casing or liner, and a method of reaming a bore hole.
When running casing or liner into a predrilled bore hole, it is desirable that the bore hole will have been drilled with intended cylindricity, to its designed diameter, and without marked deviations, such as doglegs, along its path. Unfortunately, due to transitions between formations, irregularities such as stringers within a formation, the use of out-of-tolerance drill bits, damage to drill bits after running into the bore hole, bottom hole assembly (BHA) configurations employed by the driller, and various other factors, the ideal bore hole is rarely achieved.
Therefore, it is desirable to provide the casing or liner being run into the existing bore hole with a cutting structure at the leading end thereof to enable enlargement, as necessary, of portions of the bore hole so that the casing or liner may be run into the bore hole to the full extent intended. Various approaches have been attempted in the past to provide a casing or liner string with a reaming capability, with inconsistent results.
Embodiments of the reaming tool of the invention comprise a substantially tubular body having a concave nose portion extending to a side wall through a substantially arcuate shoulder transition region. The reaming tool further comprises cutting structure for enlarging, also termed “reaming,” of a bore hole through contact with the side wall thereof. The term “tool” is used herein in a non-limiting sense, and the apparatus of embodiments of the present invention may also be characterized as a reaming bit or reaming shoe.
In some embodiments, the concave nose portion of the reaming tool may have at least one port therethrough extending to an interior of the body. In some embodiments, a plurality of circumferentially spaced, spirally configured blades may extend on an exterior of the body from proximate the shoulder transition region and define junk slots therebetween. An axially leading end of each blade may commence with substantially no standoff from the body and taper radially outwardly to a portion having a substantially constant standoff and having a radially inwardly extending, beveled, axially trailing end. A plurality of cutting elements may be disposed along a rotationally leading edge of each blade of the plurality proximate an axially leading end thereof.
Another embodiment of the invention comprises a method of drilling out a reaming tool configured as a shoe having a nose at an axially leading end thereof and a side wall extending axially to the rear thereof. The method comprises initially engaging the nose proximate a central portion thereof with a drill bit, rotating the drill bit inside the reaming tool, and drilling out the nose from the central portion thereof radially outwardly toward a periphery thereof and the side wall of the body.
An embodiment of the present invention comprises a reaming tool, configured as a reaming bit or shoe, suitable for running on a casing or liner string (hereinafter referred to for the sake of convenience as a “casing string” to encompass such general type of tubular string). The reaming tool includes a tubular body having structure at a trailing end thereof for connecting the body to the leading end of a casing string and extending toward a nose at the leading end thereof.
The nose is configured with a shallow cone profile surrounding the center thereof, and a plurality of blades extend in a steeply pitched spiral configuration from a periphery of the nose, commencing at their leading ends with substantially no standoff from the body, toward the trailing end of the body. The blades taper axially and radially outwardly from the periphery of the nose to a greater, substantially constant standoff from the body to a location proximate their axially trailing ends and defining junk slots therebetween. The center of the nose includes a port therein through which drilling fluid (and, later, cement) may be circulated downwardly through the casing string, out onto the face of the nose and into the junk slot, which circulation may be enhanced through the use of additional side ports through the periphery of the nose from the interior of the body.
The rotationally leading edges (taken in the direction of intended rotation, conventionally clockwise, of the casing string when rotational reaming is contemplated) of each blade between the leading end thereof and a point at which the blade reaches full diameter are provided with a plurality of superabrasive cutting elements, which may comprise polycrystalline diamond compact (PDC) cutting elements facing in the direction of intended rotation. The PDC cutting elements are set outside the pass through diameter of a drill bit intended to be later run into the reaming tool for drillout, to facilitate the drillout process. Cutting elements of other materials, such as, for example, tungsten carbide (WC) may also be employed if suitable for the formation or formations to be encountered, these cutting elements again being set outside the pass through diameter. Radially outer faces of the blades along the tapered portion thereof are provided with a relatively thick layer of crushed tungsten carbide, placed rotationally behind the PDC cutting elements. Bearing elements in the form of, for example, tungsten carbide or PDC ovoids are disposed in recesses in the exterior surfaces of the blades, in the tapered portions thereof, the ovoids being overexposed (extending farther from the radially outer surface of the blades) than the PDC cutting elements and in locations rotationally behind the PDC cutting elements. The bearing elements and their relative exposure prevent potentially damaging contact between the PDC cutting elements and the interior of a larger tubular conduit through which the casing string is run before encountering the open, predrilled bore hole. The radially outer surfaces of the blades axially trailing the tapered portions bearing the PDC cutting elements are provided with a layer of tungsten carbide, at least along the rotationally leading and trailing edges of the blades. The longitudinally trailing ends of the blades may be tapered axially and radially inwardly toward the body, and provided with a relatively thick layer of crushed tungsten carbide.
The interior profile of the body is configured to optimize drillout by conventional rotary bits without leaving large segments of material of the remaining tool nose in the bore hole.
Referring now to
A plurality of blades 20 is disposed on the exterior of tubular body 12, extending from a location proximate the trailing edge of the transition shoulder wall 18 with no standoff therefrom, and increasing in standoff as they taper radially outwardly as they extend toward their respective axially trailing ends to provide a radially outer surface of increasing diameter. The axially trailing ends of the blades 20 comprise beveled or chamfered surfaces 22 of decreasing diameter, extending to the exterior of the body 12. The blades 20 are configured in a steeply pitched, spiral configuration on the exterior of the body 12, the circumferential extent of each blade 20 being great enough to ensure complete, 360° coverage of the exterior of body 12 by the plurality of blades 20. Junk slots 24 are defined on the exterior of side wall 16, from a position proximate transition shoulder wall 18, each junk slot 24 being circumferentially aligned with a side port P. Junk slots 24 initially increase in depth from their respective leading ends, following the increase in standoff of blades 20 and being defined between the side edges of the latter.
Superabrasive cutting elements in the form of PDC cutting elements 30 are disposed along the rotationally leading edges of each blade 20. The PDC cutting elements 30 may comprise any suitable PDC cutting element configuration. One nonlimiting example of a suitable PDC cutting element is disclosed in U.S. Pat. No. 5,435,403, assigned to the Assignee of the present invention. As noted above, the PDC cutting elements 30 are set outside the pass through diameter of a drill bit intended to be later run into the reaming tool 10 for drillout, to facilitate the drillout process. It is also contemplated that superabrasive cutting elements other than PDC cutting elements, as well as cutting elements of other materials, may be employed in implementing the present invention. For example, thermally stable product (TSP) diamond cutting elements, diamond impregnated cutting segments, cubic boron nitride (CBN) cutting elements and tungsten carbide (WC) cutting elements may be utilized, in consideration of the characteristics of the formation or formations being reamed and the ability to employ relatively less expensive cutting elements when formation characteristics permit.
Radially outer surfaces 32 of the blades 20 along the tapered portion thereof are provided with a relatively thick layer of crushed tungsten carbide 34, placed rotationally behind the PDC cutting elements 30. In the embodiment of
The nose 14 of the reaming tool 10 is configured with an analytically derived shell (wall) thickness, selected for ease of drillout. A minimum thickness is designed by finite element analysis (FEA) for the intended weight and torque to be applied to the reaming tool 10 during use. The thickness is optimized so that the design affords a safety factor of 2 to 3 over the desired loading parameters under which reaming tool 10 is to be run.
The concavity of the nose 14 may be varied in degree, providing the reaming tool 10 the ability to guide itself through a formation while allowing the nose portion to be drilled out without leaving large segments of material in the bore hole. It is also notable that the absence of blades 20 in the nose area projecting above the face of the nose 14 allows for an uninterrupted cut of material of the body shell in the nose, making the reaming tool 10 PDC bit-drillable.
As noted previously, the bearing elements 36, comprising tungsten carbide ovoid-ended inserts or formed of other suitable materials, are overexposed with respect to the PDC cutting elements 30 as well as to the tungsten carbide layer 38, to prevent damaging contact between the superabrasive cutting elements carried on blades 20 and the interior of casing or liner through which reaming tool 10 may be run.
The provision of both PDC cutting elements 30 as well as tungsten carbide layers 34, 38 and 40 enables rotational or reciprocating reaming. Full circumferential coverage of the carbide layers 34, 38 and 40 enables reciprocating reaming. The PDC cutting elements 30 enable aggressive, rotational reaming in a conventional (clockwise) direction. The carbide layers 34 and, 38, which extend to the top of the gage on both the rotationally leading and trailing edges of the blades 20, allow the reaming tool 10 to ream in a counterclockwise rotational direction as well. Blades 20 also incorporate tapered, rotationally leading edges to reduce reactive torque and reduce sidecutting aggressiveness. The thick layer of crushed tungsten carbide 40 on the axially trailing ends of the blades 20 provides an updrill reaming capability.
Referring now to
While the present invention has been described in the context of an illustrated, example embodiment, those of ordinary skill in the art will recognize and appreciate that the invention is not so limited. Additions and modifications to, and deletions from, the described embodiments within the scope of the invention will be readily apparent to those of ordinary skill in the art.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/800,621 filed May 15, 2006, and the disclosure of such application is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
1342424 | Cotten | Jun 1920 | A |
1981525 | Price | Nov 1934 | A |
1997312 | Satre | Apr 1935 | A |
2215913 | Brown | Sep 1940 | A |
2334788 | O'Leary | Nov 1943 | A |
2869825 | Crawford | Jan 1959 | A |
2940731 | Poole | Jun 1960 | A |
3266577 | Turner | Aug 1966 | A |
3565192 | McLarty | Feb 1971 | A |
3624760 | Bodine | Nov 1971 | A |
3825083 | Flarity et al. | Jul 1974 | A |
3997009 | Fox | Dec 1976 | A |
4190383 | Pryke et al. | Feb 1980 | A |
4255165 | Dennis et al. | Mar 1981 | A |
4351401 | Fielder | Sep 1982 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4618010 | Falgout, Sr. et al. | Oct 1986 | A |
4624316 | Baldridge et al. | Nov 1986 | A |
4673044 | Bigelow et al. | Jun 1987 | A |
4682663 | Daly et al. | Jul 1987 | A |
4759413 | Bailey et al. | Jul 1988 | A |
4782903 | Strange | Nov 1988 | A |
4842081 | Parant | Jun 1989 | A |
4956238 | Griffin | Sep 1990 | A |
5025874 | Barr et al. | Jun 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5127482 | Rector, Jr. | Jul 1992 | A |
5135061 | Newton, Jr. | Aug 1992 | A |
5168941 | Krueger et al. | Dec 1992 | A |
5186265 | Henson et al. | Feb 1993 | A |
5259469 | Stjernstrom et al. | Nov 1993 | A |
5271472 | Leturno | Dec 1993 | A |
5285204 | Sas-Jaworsky | Feb 1994 | A |
5289889 | Gearhart et al. | Mar 1994 | A |
5311954 | Quintana | May 1994 | A |
5314033 | Tibbitts | May 1994 | A |
5322139 | Rose et al. | Jun 1994 | A |
5341888 | Deschutter | Aug 1994 | A |
5379835 | Streich | Jan 1995 | A |
5402856 | Warren et al. | Apr 1995 | A |
5423387 | Lynde | Jun 1995 | A |
5435403 | Tibbitts | Jul 1995 | A |
5443565 | Strange, Jr. | Aug 1995 | A |
5450903 | Budde | Sep 1995 | A |
5497842 | Pastusek et al. | Mar 1996 | A |
5531281 | Murdock | Jul 1996 | A |
5533582 | Tibbitts | Jul 1996 | A |
5605198 | Tibbitts et al. | Feb 1997 | A |
5706906 | Jurewicz et al. | Jan 1998 | A |
5720357 | Fuller et al. | Feb 1998 | A |
5765653 | Doster et al. | Jun 1998 | A |
5787022 | Tibbitts et al. | Jul 1998 | A |
5842517 | Coone | Dec 1998 | A |
5887655 | Haugen et al. | Mar 1999 | A |
5887668 | Haugen et al. | Mar 1999 | A |
5950747 | Tibbitts et al. | Sep 1999 | A |
5957225 | Sinor | Sep 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5979571 | Scott et al. | Nov 1999 | A |
5992547 | Caraway et al. | Nov 1999 | A |
6009962 | Beaton | Jan 2000 | A |
6021859 | Tibbitts et al. | Feb 2000 | A |
6050354 | Pessier et al. | Apr 2000 | A |
6062326 | Strong et al. | May 2000 | A |
6063502 | Sue et al. | May 2000 | A |
6065554 | Taylor et al. | May 2000 | A |
6073518 | Chow et al. | Jun 2000 | A |
6098730 | Scott et al. | Aug 2000 | A |
6123160 | Tibbitts | Sep 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6298930 | Sinor et al. | Oct 2001 | B1 |
6321862 | Beuershausen et al. | Nov 2001 | B1 |
6360831 | Akesson et al. | Mar 2002 | B1 |
6401820 | Kirk et al. | Jun 2002 | B1 |
6408958 | Isbell et al. | Jun 2002 | B1 |
6412579 | Fielder | Jul 2002 | B2 |
6415877 | Fincher et al. | Jul 2002 | B1 |
6439326 | Huang et al. | Aug 2002 | B1 |
6443247 | Wardley | Sep 2002 | B1 |
6460631 | Dykstra et al. | Oct 2002 | B2 |
6484825 | Watson et al. | Nov 2002 | B2 |
6497291 | Szarka | Dec 2002 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6513606 | Krueger | Feb 2003 | B1 |
6540033 | Sullivan et al. | Apr 2003 | B1 |
6543312 | Sullivan et al. | Apr 2003 | B2 |
6568492 | Thigpen et al. | May 2003 | B2 |
6571886 | Sullivan et al. | Jun 2003 | B1 |
6606923 | Watson et al. | Aug 2003 | B2 |
6612383 | Desai et al. | Sep 2003 | B2 |
6620308 | Gilbert | Sep 2003 | B2 |
6620380 | Thomas et al. | Sep 2003 | B2 |
6622803 | Harvey et al. | Sep 2003 | B2 |
6626251 | Sullivan et al. | Sep 2003 | B1 |
6648081 | Fincher et al. | Nov 2003 | B2 |
6655481 | Findley et al. | Dec 2003 | B2 |
6659173 | Kirk et al. | Dec 2003 | B2 |
6672406 | Beuershausen | Jan 2004 | B2 |
6702040 | Sensenig | Mar 2004 | B1 |
6702045 | Elsby | Mar 2004 | B1 |
6708769 | Haugen et al. | Mar 2004 | B2 |
6747570 | Beique et al. | Jun 2004 | B2 |
6779613 | Dykstra et al. | Aug 2004 | B2 |
6779951 | Vale et al. | Aug 2004 | B1 |
6817633 | Brill et al. | Nov 2004 | B2 |
6848517 | Wardley | Feb 2005 | B2 |
6857487 | Galloway | Feb 2005 | B2 |
6983811 | Wardley | Jan 2006 | B2 |
7025156 | Caraway | Apr 2006 | B1 |
7036611 | Radford et al. | May 2006 | B2 |
7044241 | Angman | May 2006 | B2 |
7066253 | Baker | Jun 2006 | B2 |
7096982 | McKay et al. | Aug 2006 | B2 |
7117960 | Wheeler et al. | Oct 2006 | B2 |
7137460 | Slaughter et al. | Nov 2006 | B2 |
7178609 | Hart et al. | Feb 2007 | B2 |
7204309 | Segura et al. | Apr 2007 | B2 |
7216727 | Wardley | May 2007 | B2 |
7367410 | Sangesland | May 2008 | B2 |
20020112894 | Caraway | Aug 2002 | A1 |
20040245020 | Giroux et al. | Dec 2004 | A1 |
20050145417 | Radford et al. | Jul 2005 | A1 |
20050152749 | Anres et al. | Jul 2005 | A1 |
20050183892 | Oldham et al. | Aug 2005 | A1 |
20060070771 | McClain et al. | Apr 2006 | A1 |
20070079995 | McClain et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
1222448 | Jun 1987 | CA |
2411856 | Dec 2001 | CA |
4432710 | Apr 1996 | DE |
0028121 | May 1981 | EP |
1006260 | Apr 2004 | EP |
2086451 | May 1982 | GB |
2170528 | Aug 1986 | GB |
2345503 | Jul 2000 | GB |
2351987 | Jan 2001 | GB |
2396870 | Jul 2004 | GB |
9325794 | Dec 1993 | WO |
WO 9628635 | Sep 1996 | WO |
9813572 | Apr 1998 | WO |
9936215 | Jul 1999 | WO |
WO 9937881 | Jul 1999 | WO |
0050730 | Aug 2000 | WO |
0142617 | Jun 2001 | WO |
0146550 | Jun 2001 | WO |
0194738 | Dec 2001 | WO |
0246564 | Jun 2002 | WO |
03087525 | Oct 2003 | WO |
2004076800 | Sep 2004 | WO |
2004097168 | Nov 2004 | WO |
2005071210 | Aug 2005 | WO |
WO 2005083226 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070289782 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60800621 | May 2006 | US |