The present invention generally relates to a vehicle seating assembly, and more particularly to a vehicle seating assembly having a modular seating assembly design.
Vehicles that include modular seating designs provide increased comfort and value to the consumer.
According to one aspect of the present invention, a vehicle seating assembly includes a composite support structure formed by a lower pressure compression mold and defines at least one open section. A subassembly is disposed over the composite support structure and includes a trim piece integrally formed on the subassembly and defines a center seat and at least one cushion attachment support is disposed adjacent to the at least one open section. A seat cushion insert is operably coupled to the at least one cushion attachment support and is disposed over the at least one open section and defines a side seat.
According to another aspect of the present invention, a frameless seating assembly for a vehicle includes a low pressure compression molded composite support structure defining first and second open sections. An overmolded subassembly is operably coupled to the composite support structure and defines a center seat. First and second cushion inserts are operably coupled to the support structure and are disposed over the first and second open sections to define first and second side seats.
According to yet another aspect of the present invention, a vehicle seating assembly includes a low pressure compression molded composite support structure. A subassembly is disposed over the composite support structure and defines a center seat and first and second side openings. First and second seat cushion inserts are operably coupled via snap-fit connection to the support structure.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
Referring to
Referring again to
Referring now to the embodiment illustrated in
Referring now to the embodiment shown in
Referring now to the embodiment shown in
Referring now to the embodiments shown in
Referring now to the embodiment shown in
Referring again to the embodiment shown in
Referring again to the embodiments shown in
Referring again to the embodiment shown in
Referring now to the embodiments shown in
Referring again to the embodiments shown in
Referring now to the embodiment shown in
Referring now to the embodiment shown in
Yet another aspect of the present invention is to provide a method of creating a modular vehicle seat design which allows easy customizability in order to increase value and comfort to the vehicle passenger. Prior vehicle seat methods include using a single piece of polyurethane foam in order to create a vehicle seating assembly. Using a single piece of foam makes it difficult to add functionality or other customizable features as desired by consumers. Additionally, the large volume of foam needed to create a prior art vehicle seat takes up valuable packaging space and also traps heat which reduces functionality. Moreover, styling and other visual features are limited when using a single piece of polyurethane foam to create the vehicle seating assembly. The present invention uses the three piece design which begins with the composite support structure 22 which is formed by a low pressure compression mold. The composite support structure 22 is a shell which allows for storage of other components and also holds a suspension mat 90 in order to provide increased comfort to the vehicle passenger. The sub-assembly 26 is disposed over the composite support structure 22 and includes a trim piece 28 formed on the sub-assembly 26 which defines a center seat 30. The seat cushion insert 34 is operably coupled to the cushion attachment supports 32 which are disposed adjacent to the open section 24. Moreover, the seat cushion insert 34 is disposed over the at least one open section 24 and defines a side seat 36. The seat cushion insert 34 is customizable and can include the controller 69 which may house the climate control system 75, the heater mat, or thigh supports 100 which may extend or tilt to provide additional comfort to the vehicle passenger. Importantly, the vehicle seating assembly 20 of the present invention is a frameless design and does not utilize a traditional seat frame.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who receive this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
2958369 | Pitts et al. | Nov 1960 | A |
3403938 | Cramer et al. | Oct 1968 | A |
3612607 | Lohr | Oct 1971 | A |
3929374 | Hogan et al. | Dec 1975 | A |
4324431 | Murphy et al. | Apr 1982 | A |
4334709 | Akiyama et al. | Jun 1982 | A |
4353595 | Kaneko et al. | Oct 1982 | A |
4541669 | Goldner | Sep 1985 | A |
4629248 | Mawbey | Dec 1986 | A |
4720141 | Sakamoto et al. | Jan 1988 | A |
4726086 | McEvoy | Feb 1988 | A |
4822092 | Sweers | Apr 1989 | A |
4861104 | Malak | Aug 1989 | A |
4915447 | Shovar | Apr 1990 | A |
5018790 | Jay | May 1991 | A |
5067772 | Koa | Nov 1991 | A |
5171062 | Courtois | Dec 1992 | A |
5174526 | Kanigowski | Dec 1992 | A |
5518294 | Ligon, Sr. et al. | May 1996 | A |
5544942 | Vu Khac et al. | Aug 1996 | A |
5560681 | Dixon et al. | Oct 1996 | A |
5647635 | Aumond et al. | Jul 1997 | A |
5755493 | Kodaverdian | May 1998 | A |
5769489 | Dellanno | Jun 1998 | A |
5826938 | Yanase et al. | Oct 1998 | A |
5836648 | Karschin et al. | Nov 1998 | A |
5882073 | Burchi et al. | Mar 1999 | A |
5902014 | Dinkel et al. | May 1999 | A |
5913568 | Brightbill et al. | Jun 1999 | A |
5951039 | Severinski et al. | Sep 1999 | A |
6024406 | Charras et al. | Feb 2000 | A |
6062642 | Sinnhuber et al. | May 2000 | A |
6106071 | Aebischer et al. | Aug 2000 | A |
6145925 | Eksin et al. | Nov 2000 | A |
6155593 | Kimura et al. | Dec 2000 | A |
6179379 | Andersson | Jan 2001 | B1 |
6189966 | Faust et al. | Feb 2001 | B1 |
6196627 | Faust et al. | Mar 2001 | B1 |
6199252 | Masters et al. | Mar 2001 | B1 |
6206466 | Komatsu | Mar 2001 | B1 |
6217062 | Breyvogel et al. | Apr 2001 | B1 |
6220661 | Peterson | Apr 2001 | B1 |
6224150 | Eksin et al. | May 2001 | B1 |
6296308 | Cosentino et al. | Oct 2001 | B1 |
6312050 | Eklind | Nov 2001 | B1 |
6364414 | Specht | Apr 2002 | B1 |
6375269 | Maeda et al. | Apr 2002 | B1 |
6394546 | Knoblock et al. | May 2002 | B1 |
6454353 | Knaus | Sep 2002 | B1 |
6523892 | Kage et al. | Feb 2003 | B1 |
6550856 | Ganser et al. | Apr 2003 | B1 |
6565150 | Fischer et al. | May 2003 | B2 |
6619605 | Lambert | Sep 2003 | B2 |
6682140 | Minuth et al. | Jan 2004 | B2 |
6695406 | Plant | Feb 2004 | B2 |
6698832 | Boudinot | Mar 2004 | B2 |
6736452 | Aoki et al. | May 2004 | B2 |
6758522 | Ligon, Sr. et al. | Jul 2004 | B2 |
6808230 | Buss et al. | Oct 2004 | B2 |
6824212 | Malsch et al. | Nov 2004 | B2 |
6848742 | Aoki et al. | Feb 2005 | B1 |
6860559 | Schuster, Sr. et al. | Mar 2005 | B2 |
6860564 | Reed et al. | Mar 2005 | B2 |
6866339 | Itoh | Mar 2005 | B2 |
6869140 | White et al. | Mar 2005 | B2 |
6890029 | Svantesson | May 2005 | B2 |
6938953 | Håland et al. | Sep 2005 | B2 |
6955399 | Hong | Oct 2005 | B2 |
6962392 | O'Connor | Nov 2005 | B2 |
6988770 | Witchie | Jan 2006 | B2 |
6997473 | Tanase et al. | Feb 2006 | B2 |
7040699 | Curran et al. | May 2006 | B2 |
7100992 | Bargheer et al. | Sep 2006 | B2 |
7131694 | Buffa | Nov 2006 | B1 |
7159934 | Farquhar et al. | Jan 2007 | B2 |
7185950 | Pettersson et al. | Mar 2007 | B2 |
7213876 | Stoewe | May 2007 | B2 |
7229118 | Saberan et al. | Jun 2007 | B2 |
7261371 | Thunissen et al. | Aug 2007 | B2 |
7344189 | Reed et al. | Mar 2008 | B2 |
7350859 | Klukowski | Apr 2008 | B2 |
7393005 | Inazu et al. | Jul 2008 | B2 |
7425034 | Bajic et al. | Sep 2008 | B2 |
7441838 | Patwardhan | Oct 2008 | B2 |
7445292 | Moule | Nov 2008 | B2 |
7467823 | Hartwich | Dec 2008 | B2 |
7478869 | Lazanja et al. | Jan 2009 | B2 |
7481489 | Demick | Jan 2009 | B2 |
7506924 | Bargheer et al. | Mar 2009 | B2 |
7506938 | Brennan et al. | Mar 2009 | B2 |
7530633 | Yokota et al. | May 2009 | B2 |
7543888 | Kuno | Jun 2009 | B2 |
7578552 | Bajic et al. | Aug 2009 | B2 |
7597398 | Lindsay | Oct 2009 | B2 |
7614693 | Ito | Nov 2009 | B2 |
7641281 | Grimm | Jan 2010 | B2 |
7669925 | Beck et al. | Mar 2010 | B2 |
7669928 | Snyder | Mar 2010 | B2 |
7712833 | Ueda | May 2010 | B2 |
7717459 | Bostrom et al. | May 2010 | B2 |
7726733 | Balser et al. | Jun 2010 | B2 |
7735932 | Lazanja et al. | Jun 2010 | B2 |
7752720 | Smith | Jul 2010 | B2 |
7753451 | Maebert et al. | Jul 2010 | B2 |
7775602 | Lazanja et al. | Aug 2010 | B2 |
7784863 | Fallen | Aug 2010 | B2 |
7802843 | Andersson et al. | Sep 2010 | B2 |
7819470 | Humer et al. | Oct 2010 | B2 |
7823971 | Humer et al. | Nov 2010 | B2 |
7845729 | Yamada et al. | Dec 2010 | B2 |
7850247 | Stauske et al. | Dec 2010 | B2 |
7857381 | Humer et al. | Dec 2010 | B2 |
7871126 | Becker et al. | Jan 2011 | B2 |
7891701 | Tracht et al. | Feb 2011 | B2 |
7909360 | Marriott et al. | Mar 2011 | B2 |
7931294 | Okada et al. | Apr 2011 | B2 |
7931330 | Itou et al. | Apr 2011 | B2 |
7946649 | Galbreath et al. | May 2011 | B2 |
7963553 | Huynh et al. | Jun 2011 | B2 |
7963595 | Ito et al. | Jun 2011 | B2 |
7963600 | Alexander et al. | Jun 2011 | B2 |
7971931 | Lazanja et al. | Jul 2011 | B2 |
7971937 | Ishii et al. | Jul 2011 | B2 |
8011726 | Omori et al. | Sep 2011 | B2 |
8016355 | Ito et al. | Sep 2011 | B2 |
8029055 | Hartlaub | Oct 2011 | B2 |
8038222 | Lein et al. | Oct 2011 | B2 |
8075053 | Tracht et al. | Dec 2011 | B2 |
8109569 | Mitchell | Feb 2012 | B2 |
8123246 | Gilbert et al. | Feb 2012 | B2 |
8128167 | Zhong et al. | Mar 2012 | B2 |
8162391 | Lazanja et al. | Apr 2012 | B2 |
8162397 | Booth et al. | Apr 2012 | B2 |
8167370 | Arakawa et al. | May 2012 | B2 |
8196887 | Dahlbacka et al. | Jun 2012 | B2 |
8210568 | Ryden et al. | Jul 2012 | B2 |
8210605 | Hough et al. | Jul 2012 | B2 |
8210611 | Aldrich et al. | Jul 2012 | B2 |
8226165 | Mizoi | Jul 2012 | B2 |
8342607 | Hofmann et al. | Jan 2013 | B2 |
8360530 | Onoda et al. | Jan 2013 | B2 |
8540318 | Folkert et al. | Sep 2013 | B2 |
8696067 | Galbreath et al. | Apr 2014 | B2 |
20040084937 | Berta | May 2004 | A1 |
20040195870 | Bohlender et al. | Oct 2004 | A1 |
20050200166 | Noh | Sep 2005 | A1 |
20060043777 | Friedman et al. | Mar 2006 | A1 |
20070120401 | Minuth et al. | May 2007 | A1 |
20080174159 | Kojima et al. | Jul 2008 | A1 |
20090066122 | Minuth et al. | Mar 2009 | A1 |
20090165263 | Smith | Jul 2009 | A1 |
20090322124 | Barkow et al. | Dec 2009 | A1 |
20100038937 | Andersson et al. | Feb 2010 | A1 |
20100140986 | Sawada | Jun 2010 | A1 |
20100171346 | Laframboise et al. | Jul 2010 | A1 |
20100187881 | Fujita et al. | Jul 2010 | A1 |
20100201167 | Wieclawski | Aug 2010 | A1 |
20100231013 | Schlenker | Sep 2010 | A1 |
20100270840 | Tanaka et al. | Oct 2010 | A1 |
20100301650 | Hong | Dec 2010 | A1 |
20100320816 | Michalak | Dec 2010 | A1 |
20110018498 | Soar | Jan 2011 | A1 |
20110074185 | Nakaya et al. | Mar 2011 | A1 |
20110095513 | Tracht et al. | Apr 2011 | A1 |
20110095578 | Festag | Apr 2011 | A1 |
20110109127 | Park et al. | May 2011 | A1 |
20110109128 | Axakov et al. | May 2011 | A1 |
20110121624 | Brncick et al. | May 2011 | A1 |
20110133525 | Oota | Jun 2011 | A1 |
20110163574 | Tame et al. | Jul 2011 | A1 |
20110163583 | Zhong et al. | Jul 2011 | A1 |
20110186560 | Kennedy et al. | Aug 2011 | A1 |
20110187174 | Tscherbner | Aug 2011 | A1 |
20110254335 | Pradier et al. | Oct 2011 | A1 |
20110260506 | Kuno | Oct 2011 | A1 |
20110272548 | Rudkowski et al. | Nov 2011 | A1 |
20110272978 | Nitsuma | Nov 2011 | A1 |
20110278885 | Procter et al. | Nov 2011 | A1 |
20110278886 | Nitsuma | Nov 2011 | A1 |
20110298261 | Holt et al. | Dec 2011 | A1 |
20120032486 | Baker et al. | Feb 2012 | A1 |
20120037754 | Kladde | Feb 2012 | A1 |
20120063081 | Grunwald | Mar 2012 | A1 |
20120080914 | Wang | Apr 2012 | A1 |
20120091695 | Richez et al. | Apr 2012 | A1 |
20120091766 | Yamaki et al. | Apr 2012 | A1 |
20120091779 | Chang et al. | Apr 2012 | A1 |
20120109468 | Baumann et al. | May 2012 | A1 |
20120119551 | Brncick et al. | May 2012 | A1 |
20120125959 | Kucera | May 2012 | A1 |
20120127643 | Mitchell | May 2012 | A1 |
20120129440 | Kitaguchi et al. | May 2012 | A1 |
20120162891 | Tranchina et al. | Jun 2012 | A1 |
20120175924 | Festag et al. | Jul 2012 | A1 |
20120187729 | Fukawatase et al. | Jul 2012 | A1 |
20120248833 | Hontz et al. | Oct 2012 | A1 |
20120261974 | Yoshizawa et al. | Oct 2012 | A1 |
20130076092 | Kulkarni et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
0754590 | Jan 1997 | EP |
0926969 | Jan 2002 | EP |
1266794 | Mar 2004 | EP |
1123834 | Oct 2004 | EP |
1050429 | Oct 2005 | EP |
1084901 | Jun 2006 | EP |
1674333 | Aug 2007 | EP |
1950085 | Dec 2008 | EP |
1329356 | Nov 2009 | EP |
201178557 | Apr 2011 | JP |
WO9511818 | May 1995 | WO |
WO9958022 | Nov 1999 | WO |
WO2006131189 | Dec 2006 | WO |
WO2007028015 | Aug 2007 | WO |
2008019981 | Feb 2008 | WO |
WO2008073285 | Jun 2008 | WO |
WO2011021952 | Feb 2011 | WO |
WO2012008904 | Jan 2012 | WO |
Entry |
---|
Freedman Seating Company, “Go Seat,” http://www.freedmanseating.com/images/uploads/files/GOSeat—Brochure—10-19.pdf (date unknown). |
Metro Magazine, “Vehicle Seating Manufacturers Offer Flexible Design Options, Enhanced Construction,” http://www.metro-magazine.com/article/print/2012/01/vehicle-seating-manufacturers-offer-flexible-design-options-enhanced-construction.aspx, Jan. 2012. |
M. Grujicic et al., “Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger-vehicle occupants,” Materials and Design 30 (2009) 4273-4285. |
“Thigh Support for Tall Drivers,” http://cars.about.com/od/infiniti/ig/2009-Infiniti-G37-Coupe-pics/2008-G37-cpe-thigh-support.htm (1 page). |
Mladenov, “Opel Insignia Receives Seal of Approval for Ergonomic Seats,” Published Aug. 27, 2008, http://www.automobilesreview.com/auto-news/opel-insignia-receives-seal-of-approval-for-ergonomic-seats/4169/ (2 pages). |
Brose India Automotive Systems, “Adaptive Sensor Controlled Headrest,” http://www.indiamart.com/broseindiaautomotivesystems/products.html, Oct. 9, 2012 (12 pages). |
eCOUSTICS.com, “Cineak Motorized Articulating Headrest Preview,” http://www.ecoustics.com/ah/reviews/furniture/accessories/cineak-motorized-headrest, Oct. 9, 2012 (3 pages). |
“‘Performance’ Car Seat Eliminates Steel,” Published in Plastics News—Indian Edition Plastics & Polymer News, (http://www.plasticsinfomart.com/performance-car-seat-eliminates-steel/), Jan. 2012, 3 pages. |
“Frankfurt 2009 Trend—Light and Layered.” by Hannah Macmurray, Published in GreenCarDesign, (http://www.greencardesign.com/site/trends/00138-frankfurt-2009-trend-light-and-layered), Sep. 2009, 9 pages. |
“Imola Pro-fit”, Cobra, (http://cobra.subesports.com/products/cat/seats/brand/Cobra/prodID/656), Date unknown, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150165950 A1 | Jun 2015 | US |