Rear suspension systems for laterally tiltable multitrack vehicles

Information

  • Patent Grant
  • 9925843
  • Patent Number
    9,925,843
  • Date Filed
    Tuesday, February 24, 2015
    9 years ago
  • Date Issued
    Tuesday, March 27, 2018
    6 years ago
Abstract
A rear suspension system for a laterally tiltable, multitrack vehicle may include first and second trailing arms. The rear suspension system may further include first and second balancer systems acting between the first and second trailing arms. The first balancer system may create a torque to influence a leaning angle of the vehicle when the suspension system is in use. The second balancer system may suppress a resonant vertical motion of the vehicle when the suspension system is in use.
Description
TECHNICAL FIELD

The present disclosure relates generally to laterally tiltable multitrack vehicles, such as, for example, motor vehicles, and more particularly to rear suspensions for laterally tiltable multitrack vehicles.


BACKGROUND

In recent years, interest in motor vehicles with innovative designs has grown in view of the continued expansion of urban areas, the large number of vehicles operating in these areas, and the problems associated therewith, including, for example, traffic jams, parking shortages, and environmental pollution. One solution to such problems (i.e., parking and congestion) is to design vehicles in a manner that permits a plurality of vehicles to share a parking space or a driving lane. In order for such a solution to be feasible, however, such vehicles must be small and, in particular, narrow. Accordingly, vehicles of this type are usually sized to carry no more than one to two persons. Additionally, due to their small size and low weight, such vehicles generally require less engine power output than conventional motor vehicles, which may also reduce the emissions caused by such vehicles without compromising the driving performance of the vehicles.


In recent years, various attempts have therefore been made to develop a laterally tiltable multitrack vehicle, having either three or four wheels, in which the entire vehicle or a part thereof may tilt in toward a rotation center (e.g., a curve bend inner side) in a similar manner to a bicycle or motorcycle. In other words, both the body and wheels of a tiltable vehicle may lean into a curve during cornering such that the wheels stay parallel to the body throughout the curve. Accordingly, like a bicycle or motorcycle, such vehicles are statically in an instable equilibrium and would fall over without any external correction by the driver or another device. Unlike a bicycle or motorcycle, however, in which the vehicle can be easily stabilized by moving the center of gravity of the driver (i.e., via input from the driver), such tiltable multitrack vehicles generally require suspensions that can help stabilize the vehicle during cornering, or, for example, on banked roads.


Accordingly, various innovative suspensions also have been developed for laterally tiltable multitrack vehicles. Such suspensions, for example, generally incorporate a balancing device that can create a torque to influence the leaning angle of the vehicle. Additionally, for safety and ride comfort, such suspensions should also provide a spring/damping function between the body of the vehicle and the wheels of the vehicle, similar to the suspension spring/damper elements of a conventional motor vehicle.


It may, therefore, be desirable to provide a rear suspension system for a laterally tiltable multitrack vehicle that provides both a balancing function and a spring/damping function. It may be further desirable to provide a rear suspension system that provides a spring/damping function that does not compromise the system's balancing function to allow both weight and cost optimized suspension components.


SUMMARY

In accordance with various exemplary embodiments, a rear suspension system for a laterally tiltable, multitrack vehicle may include first and second trailing arms. The rear suspension system may further include first and second balancer systems acting between the first and second trailing arms. The first balancer system may create a torque to influence a leaning angle of the vehicle when the suspension system is in use. The second balancer system may suppress a resonant vertical motion of the vehicle when the suspension system is in use.


In accordance with various additional exemplary embodiments, a rear suspension system for a laterally tiltable, multitrack vehicle may include first and second trailing arms, each trailing arm extending between a rear wheel of the vehicle and a frame rail of the vehicle. The rear suspension system may also include a first balancer system acting between the first and second trailing arms. The first balancer system may be configured to create a torque to influence a leaning angle of a body of the vehicle. The rear suspension system may further include a second balancer system acting between the first and second trailing arms. The second balancer system may be configured to suppress a resonant vertical motion of the body of the vehicle.


In accordance with various further exemplary embodiments, a method of stabilizing a tiltable, multitrack vehicle may include distributing a first load via a first balancer system during a roll motion of the vehicle. The method may further include distributing a second load via a second balancer system during a jounce/rebound motion of the vehicle, the second balancer system differing from the first balancer system. Distributing the first load may influence a leaning angle of the vehicle. Distributing the second load may suppress a resonant vertical motion of the vehicle.


Additional objects and advantages of the present disclosure will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the present disclosure. Various objects and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present disclosure.


The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and together with the description, serve to explain the principles of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

At least some features and advantages will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:



FIG. 1 is a plan view of an exemplary embodiment of a multitrack, laterally tiltable vehicle in accordance with the present disclosure;



FIG. 2 is a side view of the multitrack, laterally tiltable vehicle of FIG. 1;



FIG. 3 is a rear view of the multitrack, laterally tiltable vehicle of FIG. 1;



FIG. 4 is a schematic view of a conventional rear suspension system within the multitrack, laterally tiltable vehicle of FIG.;



FIG. 5 is a perspective view of the conventional rear suspension system of FIG. 4;



FIG. 6 is a schematic view of an exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure;



FIG. 7 is a perspective view of the suspension system of FIG. 6;



FIG. 8 is a schematic view of another exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure;



FIG. 9 is a schematic view of yet another exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure;



FIG. 10 is a schematic view of yet another exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure;



FIG. 11 is a schematic view of yet another exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure; and



FIG. 12 is a schematic view of yet another exemplary embodiment of a rear suspension system for use within the multitrack, laterally tiltable vehicle of FIG. 1, in accordance with the present disclosure.





Although the following detailed description makes reference to illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art. Accordingly, it is intended that the claimed subject matter be viewed broadly.


DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. The various exemplary embodiments are not intended to limit the disclosure. To the contrary, the disclosure is intended to cover alternatives, modifications, and equivalents.


In accordance with various exemplary embodiments, the present disclosure contemplates a rear suspension system for a laterally tiltable, multitrack vehicle that has independent leaning and spring/damper functions. In this manner, the suspension system may provide both functions (i.e., leaning and damping), without compromising the performance of either function. For instance, the exemplary embodiments described herein may utilize both a balancing actuator and at least one spring/damper element, while providing a separate load path for each function. Various exemplary embodiments described herein, for example, contemplate a rear suspension system comprising two separate balancer systems to separate the load paths of the leaning and spring/damper functions, thereby allowing the at least one spring/damper element to be compressed/expanded during a jounce/rebound motion of the vehicle (e.g., due to bumps in the road), while only experiencing minor length changes during a roll motion of the vehicle (e.g., during cornering of the vehicle).



FIGS. 1-3 illustrate an exemplary embodiment of a multitrack, laterally tiltable vehicle in accordance with the present disclosure. As shown in FIGS. 1-3, a vehicle 1 may include four wheels 2a, 2b, 2c, and 2d. Front wheel 2a is mounted on the right side of a front axle 3a of the vehicle 1 and front wheel 2b is mounted on the left side of the front axle 3a. Rear wheel 2c is mounted on the right side of the vehicle 1 to a right rear trailing arm 12 of the vehicle 1 and rear wheel 2d is mounted on the left side of the vehicle 1 to a left rear trailing arm 13 of the vehicle 1. In various embodiments, the vehicle 1 is designed for transporting one to two persons or occupants 4. As shown in the exemplary embodiment of FIGS. 1-3, in accordance with various exemplary embodiments, the vehicle 1 may be designed such that the two occupants 4 sit one behind the other in the vehicle 1. In accordance with various additional embodiments, the vehicle 1 may also have a closed body 5 that forms a cabin to protect the occupants 4, for example, from weather, and provides additional protection in the event of an accident.


Those of ordinary skill in the art would understand that the vehicle 1 illustrated in FIGS. 1-3 is exemplary only and intended to illustrate one embodiment of a multitrack, laterally tiltable vehicle in accordance with the present disclosure. Accordingly, multitrack, laterally tiltable vehicles in accordance with the present disclosure may have various body designs, occupant configurations, and numbers and/or configurations of wheels without departing from the scope of the present disclosure and claims. For example, although the vehicle illustrated and described with reference to FIGS. 1-3 includes four wheels 2a, 2b, 2c, and 2d, various additional embodiments of the present disclosure contemplate a vehicle that has only three wheels. Furthermore, those of ordinary skill in the art would understand that the vehicle 1, may have any type of motor or power source known to those of ordinary skill, including, but not limit to, an electric motor, a combustion engine, or a combination thereof (i.e., a hybrid drive).


As shown in the rear view of FIG. 3, both the vehicle body 5 and the wheels 2a, 2b, 2c, and 2d may tilt during the lateral tilting of the vehicle 1. In other words, both the body 5 and the wheels 2a, 2b, 2c, and 2d may lean into a curve during the cornering of the vehicle 1 such that the wheels 2a, 2b, 2c, and 2d stay mainly parallel to the body 5 throughout the curve. Accordingly, as such, vehicle 1 is statically in an instable equilibrium, and may fall over without an external correction. Thus, as above, vehicle 1 requires a suspension system, such as, for example, a rear suspension system, that can help stabilize the vehicle during cornering and provide increased safety and ride comfort (i.e., through the damping of vehicle jounce/rebound motion).



FIGS. 4 and 5 illustrate an exemplary arrangement of the components of a conventional rear suspension system for a multitrack, laterally tiltable vehicle such as the vehicle 1. The suspension system 10 includes a pair of trailing arms 12, 13 respectively connected to the rear wheels 2c, 2d of the vehicle 1, and a balancer system 14 that is connected to the trailing arms 12, 13 via, for example, a pair of respective links 18c, 18d. The balancer system 14 includes, for example, an actuator (i.e., torque device) 15, which is connected to a balancer control arm 16 and to the body 5 of the vehicle 1 (e.g., at a body mount 19) via, for example, a spring/damper element 20. The balancer control arm 16 extends between the trailing arms 12, 13 of the suspension system 10. In this manner, as would be understood by those of ordinary skill in the art, the balancer system 14 may create a leaning torque via the actuator 15 to influence a leaning angle of the vehicle 1. As above, to suppress vibration of the vehicle 1, the suspension system 10 may also include at least one spring/damper element 20 that is positioned between the balancer control arm 16 and the body 5 of the vehicle 1. As would be understood by those of ordinary skill in the art, however, this configuration links the balancer control arm 16 to the spring/damper element 20 such that the balancer 16 must also carry the suspension and road loads of the spring/damper element 20. In other words, all the vertical forces that go into the spring/damper element 20 also go into the balancer control arm 16.



FIGS. 6 and 7 illustrate an exemplary embodiment of a rear suspension system 100 for a multitrack, laterally tiltable vehicle, such as, for example, the vehicle 1, in accordance with the present disclosure. Similar to the conventional suspension system 10 illustrated in FIGS. 4 and 5, the suspension system 100 includes a balancer system 104 comprising an actuator 105 that is configured to create a torque to influence a leaning angle of the vehicle 1 and at least one spring/damper element, the system 100 comprising two spring/damper elements 112c, 112d, that are configured to suppress the otherwise resonant up and down (i.e., vertical) motions of the vehicle 1. Unlike the system 10, however, the suspension system 100 provides separate load paths for each of its leaning and spring/damper functions. In accordance with various embodiments, for example, the suspension system 100 includes two separate balancer systems to separate the load paths of the leaning and spring/damper functions.


In various embodiments of the present disclosure, for example, the rear suspension system 100 includes first and second trailing arms 102, 103 respectively connected to each wheel 2c, 2d. In accordance with various embodiments, for example, the suspension system 100 may be in the form of a trailing-arm suspension (or a trailing-link suspension) and may utilize two parallel arms to locate the wheels 2c, 2d. Thus, in accordance with such embodiments, as shown best perhaps in FIG. 6, each trailing arm 102, 103 may also include a joint 111 for mounting (e.g., at a body mount 119) the trailing arm to a frame rail 6 (see FIG. 1) of the vehicle 1.


In accordance with various exemplary embodiments, for example, when the suspension system 100 is in use, the first and second trailing arms 102, 103 are each respectively connected to a hub (not shown) that is disposed within an internal space of the rear wheels 2c, 2d. Thus, when the suspension system 100 is in use, the trailing arms 102, 103 are arranged on either side of the frame rail 6 (which is connected to the body 5) of the vehicle 1, such that the first trailing arm 102 extends between the rear wheel 2c and the frame rail 6 and the second trailing arm 103 extends between the rear wheel 2d and the frame rail 6.


As used herein, the term “frame rail” refers to any type of vehicle frame rail, including but not limited to, rails that form the main structure of the chassis (i.e., the body) of the motor vehicle and subframe rails that form frame sections that attach to the chassis.


Those of ordinary skill in the art would understand, however, that the suspension system 100 of FIGS. 6 and 7 is exemplary only in that the trailing arms 102, 103 may have various alternative configurations (i.e., shapes and/or cross-sections), lengths, dimensions, and/or connection/mounting points without departing from the scope of the present disclosure and claims. Those of ordinary skill in the art would understand, for example, that the longitudinal length D (see FIG. 6) between respective connecting rods 118c, 118d and spring/damper elements 112c, 112d may vary and may be chosen based upon a particular suspension application and the available package space within the vehicle. Furthermore, the trailing arms 102, 103 may be configured to connect to the wheels 2c, 2d and the frame rail 6 via any method and/or technique known to those of ordinary skill in the art.


The suspension system 100 also includes first and second balancer systems 104 and 114 acting between the first and second trailing arms 102, 103. As illustrated in FIGS. 6 and 7, in accordance with various embodiments, the first balancer system 104 includes a first balancer control arm 106 extending in a transverse direction between the trailing arms 102, 103, a first hinged control arm 108 connected to the first balancer control arm 106, and an actuator 105 attached to the first hinged control arm 108. In various embodiments, for example, the first hinged control arm 108 is configured to connect the first balancer control arm 106 to the body 5 of the vehicle 1 (via, e.g., a joint 111 and mount 119) and transfer all actuator loads from the body 5 to the first balancer control arm 106, while also permitting a jounce/rebound motion of the vehicle 1.


The actuator 105 is also attached to the first hinged control arm 108. In this manner, when the suspension system 100 is in use, the actuator 105 may apply a torque to the first balancer control arm 106 to rotate the first balancer control arm 106 (e.g., to influence a leaning angle of the vehicle body 5) without being subjected to the loads from the vehicle body 5. In accordance with various embodiments, for example, the first balancer arm 106 may be pivotally connected to each of the trailing arms 102, 103 via a respective connecting rod 118c, 118d. Thus, when the suspension system 100 is in use, the rotational forces (i.e., counteracting torque) provided by the actuator 105 may be transmitted to the trailing arms 102, 103 (and the wheels 2c, 2d) via the connecting rods 118c, 118d.


As used herein, the term “actuator” refers to any type of device or motor that can create a torque, including but not limited to, an electric motor and/or a hydraulic motor. Accordingly, actuators in accordance with the present disclosure may be operated by various sources of energy, including, for example, an electric current, a battery, hydraulic fluid pressure, or pneumatic pressure, and may convert that energy into rotational motion.


As above, the suspension system 100 also includes a second balancer system 114 acting between the first and second trailing arms 102, 103. In accordance with various exemplary embodiments, the second balancer system 114 includes a second balancer control arm 116 extending in a transverse direction between the trailing arms 102, 103, and at least one spring/damper element. As illustrated in FIGS. 6 and 7, in various exemplary embodiments, the second balancer system 114 includes two vertical spring/damper elements 112c, 112d connected to opposite ends of the second balancer control arm 116, which extend vertically between the control arm 116 and respective trailing arms 102, 103.


As shown in FIG. 7, each spring/damper element 112c, 112d may include a shock absorber 107 and a coil spring 109. In this manner, when the suspension system 100 is in use, the spring/damper elements 112c, 112d are configured to be compressed and expanded during the jounce/rebound motion of the vehicle 1 to suppress what would otherwise become a resonant up and down motion of the vehicle 1.


As above, those of ordinary skill in the art would understand that the suspension system 100 of FIGS. 6 and 7 is exemplary only and intended to illustrate one embodiment of a rear suspension system in accordance with the present disclosure. FIGS. 8-12, for example, illustrate various additional exemplary embodiments of suspension systems 200, 300, 400, 500, and 600 contemplated by the present disclosure, which like the suspension system 100, include two separate balancer systems to separate the load paths of the leaning and spring/damper functions of the suspensions.



FIGS. 8-10 respectively illustrate exemplary embodiments of a rear suspension system 200, 300, and 400 for a multitrack, laterally tiltable vehicle, such as, for example, the vehicle 1. Similar to the suspension system 100 illustrated in FIGS. 6 and 7, each suspension system 200, 300, and 400 includes first and second trailing arms 202, 203; 302, 303; and 402, 403 respectively connected to each wheel 2c, 2d. Each suspension system 200, 300, and 400 also includes first and second balancer systems 204, 214; 304, 314; and 404, 414 acting between the first and second trailing arms 202, 203; 302, 303; and 402, 403. Similar to the system 100, each first balancer system 204, 304, 404 includes a first balancer control arm 206, 306, 406 extending in a transverse direction between the trailing arms 202, 203; 302, 303; 402, 403, a first hinged control arm 208, 308, 408 connected to the first balancer control arm 206, 306, 406, and an actuator 205, 305, 405 attached to the first hinged control arm 208, 308, 408.


Like system 100, each actuator 205, 305, 405 is also attached to the first hinged control arm 208, 308, 408. Thus, as above, when the suspension system 200, 300, 400 is in use, the actuator 205, 305, 405 may apply a torque to the first balancer control arm 206, 306, 406 to rotate the first balancer control arm 206, 306, 406 (e.g., to influence a leaning angle of the vehicle body 5) without being subjected to the loads from the vehicle body 5. Thus, in a similar manner to system 100, the first balancer control arm 206, 306, 406 may be pivotally connected to each of the trailing arms 202, 203; 302, 303; 402, 403 via a respective connecting rod 218c, 218d; 318c, 318d; 418c, 418d, which may transmit the rotational forces provided by the actuator 205, 305, 405 to the trailing arms 202, 203; 302, 303; 402, 403 (and the wheels 2c, 2d) when the suspension system 200, 300, 400 is in use.


Each suspension system 200, 300, 400 also includes a second balancer system 214, 314, 414 acting between the first and second trailing arms 202, 203; 302, 303; 402, 403. As illustrated in FIG. 8, in accordance with various embodiments, the second balancer system 214 includes a second balancer control arm 216 extending in a transverse direction between the trailing arms 202, 203, which is pivotally connected to each of the trailing arms 202, 203 via a respective connecting rod 228c, 228d. The second balancer system 214 further includes a second hinged control arm 220 that is connected to the second balancer control arm 216, and a vertical spring/damper element 212 that is connected to the second hinged control arm 220.


As illustrated in FIG. 9, in accordance with various additional embodiments, the second balancer system 314 includes a leaf spring 312 extending in a transverse direction between the trailing arms 302, 303, which is pivotally connected to each of the trailing arms 302, 303 via a respective connecting rod 328c, 328d.


As illustrated in FIG. 10, in accordance with various further embodiments, the second balancer system 414 includes two link arms 416c, 416d and a lateral spring/damper element 412 operating between the link arms 416c, 416d. As shown in FIG. 10, each link arm 416c, 416d is pivotally connected to a trailing arm 402, 403 via a respective connecting rod 428c, 428d, and extends in a transverse direction between the trailing arms 402, 403. In this manner, the link arms 416c, 416d may extend toward one another between the trailing arms 402, 403 to support a lateral spring/damper element 412 therebetween. In various embodiments, for example, the link arm 416c may support a first end of the lateral spring/damper element 412 and the link arm 416d may support a second end of the lateral spring/damper element 412, as illustrated in FIG. 10.



FIGS. 11 and 12 respectively illustrate additional exemplary embodiments of rear suspension systems 500 and 600 for a multitrack, laterally tiltable vehicle, such as, for example, the vehicle 1. Similar to the suspension systems 100, 200, 300, and 400 illustrated in FIGS. 6-10, each suspension system 500, 600 includes first and second trailing arms 502, 503; 602, 603 respectively connected to each wheel 2c, 2d, and first and second balancer systems 504, 514; 604, 614 acting between the first and second trailing arms 502, 503; 602, 603. In contrast to the suspension systems illustrated above, however, the suspension systems 500 and 600 each utilize about a 90 degree angle on each of the trailing arms 502, 503; 602, 603 to move the various components carried by the trailing arms 502, 503; 602, 603 into a better package space within the vehicle 1. Those of ordinary skill in the art would understand, however, that the suspension systems 500 and 600 are exemplary only and that the suspension systems 500 and 600 may utilize various trailing arms 502, 503; 602, 603 having various angles, in order to move the various components carried by the trailing arms 502, 503; 602, 603 into an appropriate package space within the vehicle 1.


With reference to FIG. 11, similar to the embodiments of FIGS. 6-10, the suspension system 500 includes a first balancer system having a first balancer control arm 506 extending in a transverse direction between the trailing arms 502, 503, a first hinged control arm 508 connected to the first balancer control arm 506, and an actuator 505 attached to the first hinged control arm 508. As above, when the suspension system 500 is in use, the actuator 505 may therefore apply a torque to the first balancer control arm 508 to rotate the first balancer control arm 506 (e.g., to influence a leaning angle of the vehicle body 5) without being subjected to the loads from the vehicle body 5.


Thus, in a similar manner, the first balancer control arm 506 may be pivotally connected to each of the trailing arms 502, 503 via a respective connecting rod 518c, 518d, which may transmit the rotational forces provided by the actuator 505 to the trailing arms 502, 503 (and the wheels 2c, 2d) when the suspension system 500 is in use. As illustrated in FIG. 11, however, since the trailing arms 502, 503 have about a 90 degree angle, the connecting rods 518c, 518d may be situated parallel to a lower portion of the trailing arms 502, 503 (and to the ground). In this manner, the trailing arms 502, 503 may reposition the actuator 505 with respect to the body 5 of the vehicle 1 to move the actuator 505 into a better package space within the body 5 of the vehicle 1.


As above, the suspension system 500 also includes a second balancer system 514 acting between the first and second trailing arms 502, 503. Similar to the embodiments of FIGS. 6 and 7, the second balancer system 514 includes a second balancer control arm 516 extending in a transverse direction between the trailing arms 502, 503, and two vertical spring/damper elements 112c, 112d connected to opposite ends of the second balancer control arm 116 and extending vertically between the control arm 516 and respective trailing arms 502, 503.


With reference to FIG. 12, also similar to the embodiments of FIGS. 6-10, the suspension system 600 includes a first balancer system having a first balancer control arm 606 extending in a transverse direction between the trailing arms 602, 603, a first hinged control arm 608 connected to the first balancer control arm 606, and an actuator 605 attached to the first hinged control arm 608. Thus, in a similar manner, when the suspension system 600 is in use, the actuator 605 may apply a torque to the first balancer control arm 608 to rotate the first balancer control arm 606 (e.g., to influence a leaning angle of the vehicle body 5) without being subjected to the loads from the vehicle body 5. As above, the first balancer control arm 606 may therefore be pivotally connected to each of the trailing arms 602, 603 via a respective connecting rod 618c, 618d, which may transmit the rotational forces provided by the actuator 605 to the trailing arms 602, 603 (and the wheels 2c, 2d) when the suspension system 600 is in use.


As above, the suspension system 600 also includes a second balancer system 614 acting between the first and second trailing arms 602, 603. Similar to the embodiment of FIG. 10, the second balancer system 614 includes two link arms 616c, 616d and a lateral spring/damper element 612 operating between the link arms 616c, 616d. As above, each link arm 616c, 616d is pivotally connected to a trailing arm 602, 603 via a respective connecting rod 628c, 628d, and extends in a transverse direction between the trailing arms 602, 603. In this manner, similar to the embodiment of FIG. 10, the link arms 616c, 616d may extend toward one another between the trailing arms 602, 603 to support a lateral spring/damper element 612 therebetween. As illustrated in FIG. 12, however, since the trailing arms 502, 503 have about a 90 degree angle, the connecting rods 628c, 628d may be situated parallel to a lower portion of the trailing arms 602, 603 (and to the ground). In this manner, the trailing arms 602, 603 may reposition the lateral spring/damper element 612 with respect to the body 5 of the vehicle 1 to move the lateral spring/damper element 612 into a better package space within the body 5 of the vehicle 1.


As above, those of ordinary skill in the art would understand that the suspension systems 200, 300, 400, 500, and 600 of FIGS. 8-12 are exemplary only, and that the first and second balancer systems portrayed in FIGS. 8-12 may have various alternative configurations, components, arrangements of components, interface locations with the trailing arms to which they connect, and/or longitudinal lengths therebetween to create both a torque to influence a leaning angle of a vehicle and suppress a resonant vertical motion of the vehicle, without departing from the scope of the present disclosure and claims. Those of ordinary skill in the art would understand, for example, that both the longitudinal length D (see FIG. 6) between the balancer systems and the longitudinal length d (see FIG. 11) between the rear balancer interface (i.e., with the trailing arms) and the wheel hub may vary and may be chosen based upon a particular suspension application and the available package space within the vehicle.


Furthermore, those of ordinary skill in the art would understand that the positions of the actuator and spring/damper element are interchangeable. In other words, as illustrated in FIGS. 6-11, in various embodiments, the first balancer system which creates the torque (and carries the actuator) is the front balancer; while the second balancer system which suppresses the resonant vertical motion (and carries the at least one spring/damper element) is the rear balancer. And, as illustrated in FIG. 12, in various additional embodiments, the second balancer system (which carries the at least one spring/damper element) is the front balancer; while the first balancer system (which carries the actuator) is the rear balancer. The present disclosure, therefore, contemplates switching the positions of the first and second balancer systems based on the available package space within the vehicle.


An exemplary method for stabilizing a tiltable, multitrack vehicle in accordance with an exemplary embodiment of the present disclosure is set forth in the following description with reference to the vehicle 1 of the embodiment of FIGS. 1-3. To stabilize the vehicle 1 during a roll motion of the vehicle 1, a first load may be distributed via a first balancer system. As described above, for example, as the vehicle 1 goes around a bend, the vehicle 1 may tilt into the bend such that wheels 2c, 2d and the body 5 of the vehicle 1 lean into the bend. To stabilize the vehicle 1 (e.g., preventing overturning of the vehicle 1), a balancer system 104 (see FIGS. 6 and 7) may act to counteract the torque created by the lean of the vehicle 1. In this manner, in accordance with various embodiments, distributing the first load may influence a leaning angle of the vehicle 1.


To stabilize the vehicle during a jounce/rebound motion of the vehicle 1, a second load may be distributed via a second balancer system that differs from the first balancer system. As also described above, as the vehicle 1 goes over a bump in the road, a vibrational motion may develop between the body 5 of the vehicle 1 and the wheels 2c, 2d of the vehicle 1. To stabilize the vehicle 1 (e.g., preventing a resonant up and down motion of the vehicle 1), a balancer system 114 (see FIGS. 6 and 7) may act to dampen out the vibrational motion created by the uneven road conditions. In this manner, in accordance with various embodiments, distributing the second load may suppress a resonant vertical (i.e., up and down) motion of the vehicle 1.


While the present disclosure has been disclosed in terms of exemplary embodiments in order to facilitate better understanding of the disclosure, it should be appreciated that the disclosure can be embodied in various ways without departing from the principle of the disclosure. Therefore, the disclosure should be understood to include all possible embodiments which can be embodied without departing from the principle of the disclosure set out in the appended claims. Furthermore, although the present disclosure has been discussed with relation to automotive vehicles, and rear suspensions, those of ordinary skill in the art would understand that the present teachings as disclosed would work equally well for any type of vehicle having wheels connected to the vehicle via any type of suspension system.


For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the written description and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “an actuator” includes two or more different actuators. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.


It will be apparent to those skilled in the art that various modifications and variations can be made to the system and method of the present disclosure without departing from the scope its teachings. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the teachings disclosed herein. It is intended that the specification and embodiment described herein be considered as exemplary only.

Claims
  • 1. A rear suspension for a laterally tiltable, multitrack vehicle, comprising: first and second balancer systems extending transversely between and independently connecting first and second trailing arms to form first and second independent load paths, respectively,wherein the first balancer system creates a torque along the first load path to influence a leaning angle of the vehicle and the second balancer system suppresses a resonant vertical motion of the vehicle along the second load path.
  • 2. The rear suspension of claim 1, wherein the first and second trailing arms are parallel to one another.
  • 3. The rear suspension of claim 1, wherein, when the suspension is in use, the first and second trailing arms are each configured to extend between a rear wheel of the vehicle and a frame rail of the vehicle.
  • 4. The rear suspension of claim 1, wherein the first balancer system comprises a first balancer control arm extending in a transverse direction between and connected to each of the first and second trailing arms, a first hinged control arm connected to the first balancer control arm, and an actuator attached to the first hinged control arm.
  • 5. The rear suspension of claim 1, wherein the second balancer system comprises two link arms and a lateral spring/damper element operating between the link arms.
  • 6. The rear suspension of claim 1, wherein the second balancer system comprises a leaf spring.
  • 7. The rear suspension of claim 1, wherein the second balancer system comprises a second balancer control arm extending in a transverse direction between and connected to each of the first and second trailing arms and at least one spring/damper element.
  • 8. The rear suspension of claim 7, wherein the at least one spring/damper element comprises a shock absorber and a coil spring.
  • 9. The rear suspension of claim 7, wherein the second balancer system comprises two vertical spring/damper elements connected to opposite ends of the second balancer control arm.
  • 10. The rear suspension of claim 7, wherein the second balancer system further comprises a second hinged control arm connected to the second balancer control arm, and wherein the at least one spring/damper element is connected to the second hinged control arm.
  • 11. The rear suspension of claim 1, wherein each of the first and second trailing arms has about a 90 degree angle.
  • 12. The rear suspension of claim 11, wherein the first balancer system comprises an actuator, and wherein the first and second trailing arms are configured to reposition the actuator with respect to a body of the vehicle.
  • 13. The rear suspension of claim 11, wherein the second balancer system comprises a lateral spring/damper element, and wherein the first and second trailing arms are configured to reposition the spring/damper element with respect to a body of the vehicle.
  • 14. The rear suspension of claim 1, wherein the first balancer system comprises a first balancer control arm and the second balancer system comprises a second balancer control arm, the first and second balancer control arms extending adjacent to one another in parallel between and transverse to the first and second trailing arms.
  • 15. The rear suspension of claim 14, wherein the first balancer system comprises a vertical connecting rod at each end of the first balancer control arm, the vertical connecting rods connecting the first balancer system to the first and second trailing arms.
  • 16. A rear suspension for a laterally tiltable, multitrack vehicle, comprising: first and second trailing arms, each of the first and second trailing arms extending between a rear wheel of the vehicle and a frame rail of the vehicle;a first balancer system extending transversely between and connected to each of the first and second trailing arms, the first balancer system being configured to create a torque to influence a leaning angle of a body of the vehicle and to provide a first load path for the torque; anda second balancer system extending transversely between and connected to each of the first and second trailing arms, the second balancer system being configured to provide a second load path for suspension and road loads and to suppress a resonant vertical motion of the body of the vehicle caused by the suspension and road loads,wherein each of the first and second load paths links the first trailing arm to the second trailing arm, andwherein the first balancer system is connected to each of the first and second trailing arms at a different location than the second balancer system such that the first load path is separate and distinct from the second load path.
  • 17. The rear suspension of claim 16, wherein the first balancer system comprises a first balancer control arm extending in a transverse direction between and connected to each of the first and second trailing arms, a first hinged control arm connected to the first balancer control arm, and an actuator attached to the first hinged control arm.
  • 18. The rear suspension of claim 16, wherein the second balancer system comprises a second balancer control arm extending in a transverse direction between and connected to each of the first and second trailing arms and at least one spring/damper element.
  • 19. The suspension of claim 16, wherein the second balancer system comprises two link arms and a lateral spring/damper element operating between the two link arms.
  • 20. The rear suspension of claim 16, wherein the second balancer control system comprises a leaf spring.
  • 21. The rear suspension of claim 16, wherein each of the first and second trailing arms has about a 90 degree angle.
  • 22. The rear suspension of claim 16, wherein the first balancer system comprises a first balancer control arm and the second balancer system comprises a second balancer control arm, the first and second balancer control arms extending adjacent to one another in parallel between and transverse to the first and second trailing arms.
  • 23. The rear suspension of claim 22, wherein the first balancer system comprises a vertical connecting rod at each end of the first balancer control arm, the vertical connecting rods connecting the first balancer system to the first and second trailing arms.
  • 24. A method of stabilizing a tiltable, multitrack vehicle comprising a first rear wheel mounted to a first rear trailing arm and a second rear wheel mounted to a second rear trailing arm, the method comprising: distributing a first load via a first balancer system during a roll motion of the vehicle to influence a leaning angle of the vehicle, the first balancer system being connected to each of the first rear trailing arm and the second rear trailing arm; anddistributing a second load via a second balancer system during a jounce/rebound motion of the vehicle to suppresses a resonant vertical motion of the vehicle, the second balancer system being connected to each of the first rear trailing arm and the second rear trailing arm at a different location than the first balancer system such that a load path of the first balancer system, which links the rear trailing arms, is separate and distinct from a load path of the second balancer system, which links the rear trailing arms.
  • 25. A rear suspension for a laterally tiltable, multitrack vehicle, comprising: first and second balancer systems, the first balancer system comprising a first balancer control arm and the second balancer system comprising a second balancer control arm, the first and second balancer controls arms extending adjacent to one another in parallel transversely between and independently connected to each of first and second trailing arms,the first balancer system being configured to create a torque along a first load path to influence a leaning angle of the vehicle, andthe second balancer system being configured to suppress a resonant vertical motion of the vehicle along a second, independent load path.
US Referenced Citations (218)
Number Name Date Kind
2186065 Fischer Jan 1940 A
2353503 Rost et al. Jul 1944 A
2474471 Dolan Jun 1949 A
3309097 Fritz Mar 1967 A
3417985 Hannan Dec 1968 A
3558123 Yew Jan 1971 A
3572456 Healy Mar 1971 A
3589700 Ruet Jun 1971 A
3733087 Allison May 1973 A
3990725 Allison Nov 1976 A
3992036 Allison Nov 1976 A
4273357 Pashkow Jun 1981 A
4351410 Townsend Sep 1982 A
4375293 Solbes Mar 1983 A
4458918 Rumpel Jul 1984 A
4614359 Lundin Sep 1986 A
4632413 Fujita et al. Dec 1986 A
4657271 Salmon Apr 1987 A
4659106 Fujita et al. Apr 1987 A
4685690 Fujita et al. Aug 1987 A
4779893 Juechter Oct 1988 A
4887829 Prince Dec 1989 A
5040812 Patin Aug 1991 A
5040823 Lund Aug 1991 A
5069476 Tsutsumi et al. Dec 1991 A
5116069 Miller May 1992 A
5161425 Baskett et al. Nov 1992 A
5161822 Lund Nov 1992 A
5207451 Furuse et al. May 1993 A
5324056 Orton Jun 1994 A
5337847 Woods et al. Aug 1994 A
5347457 Tanaka et al. Sep 1994 A
5445443 Hauser et al. Aug 1995 A
5580089 Kolka Dec 1996 A
5611555 Vidal Mar 1997 A
5762351 Soohoo Jun 1998 A
5765115 Ivan Jun 1998 A
5765846 Braun Jun 1998 A
5772224 Tong Jun 1998 A
5791425 Kamen et al. Aug 1998 A
5825284 Dunwoody et al. Oct 1998 A
5839082 Iwasaki Nov 1998 A
5927424 Van Den Brink et al. Jul 1999 A
6026920 Obeda et al. Feb 2000 A
6116618 Shono et al. Sep 2000 A
6142494 Higuchi Nov 2000 A
6149226 Hoelzel Nov 2000 A
6213561 Witthaus Apr 2001 B1
6250649 Braun Jun 2001 B1
6311795 Skotnikov Nov 2001 B1
6328125 Van Den Brink et al. Dec 2001 B1
6367824 Hayashi Apr 2002 B1
6390505 Wilson May 2002 B1
6425585 Schuekle et al. Jul 2002 B1
6435522 Van Den Brink et al. Aug 2002 B1
6446980 Kutscher et al. Sep 2002 B1
6454035 Waskow et al. Sep 2002 B1
6460835 Hamano et al. Oct 2002 B1
6467783 Blondelet et al. Oct 2002 B1
6511078 Sebe Jan 2003 B2
6554293 Fennel et al. Apr 2003 B1
6564129 Badenoch May 2003 B2
6637758 Woo Oct 2003 B2
6654674 Lu et al. Nov 2003 B2
6697726 Takagi et al. Feb 2004 B2
6702265 Zapletal Mar 2004 B1
6722676 Zadok Apr 2004 B2
6725135 McKeown et al. Apr 2004 B2
6805362 Melcher Oct 2004 B1
6817617 Hayashi Nov 2004 B2
7066474 Hiebert et al. Jun 2006 B2
7073806 Bagnoli Jul 2006 B2
7097187 Walters et al. Aug 2006 B2
7131650 Melcher Nov 2006 B2
7229086 Rogers Jun 2007 B1
7343997 Matthies Mar 2008 B1
7389592 Tsuruta et al. Jun 2008 B2
7487985 Mighell Feb 2009 B1
7568541 Pfeil et al. Aug 2009 B2
7571787 Saiki Aug 2009 B2
7591337 Suhre et al. Sep 2009 B2
7607695 Moulene Oct 2009 B2
7631721 Hobbs Dec 2009 B2
7640086 Nakashima et al. Dec 2009 B2
7641207 Yang Jan 2010 B2
7648148 Mercier Jan 2010 B1
7665742 Haerr et al. Feb 2010 B2
7673883 Damm Mar 2010 B2
7731210 Pedersen Jun 2010 B2
7887070 Kirchner Feb 2011 B2
7896360 Buma Mar 2011 B2
7914020 Boston Mar 2011 B2
7946596 Hsu et al. May 2011 B2
7967306 Mighell Jun 2011 B2
8016302 Reeve Sep 2011 B1
8050820 Yanaka et al. Nov 2011 B2
8070172 Smith et al. Dec 2011 B1
8104781 Gazarek Jan 2012 B2
8260504 Tsujii et al. Sep 2012 B2
8262111 Lucas Sep 2012 B2
8345096 Ishiyama et al. Jan 2013 B2
8641064 Krajekian Feb 2014 B2
8651503 Rhodig Feb 2014 B2
8818700 Moulene et al. Aug 2014 B2
8925940 Michell Jan 2015 B2
9045015 Spahl et al. Jun 2015 B2
9090281 Spahl et al. Jul 2015 B2
9145168 Spahl et al. Sep 2015 B2
9216763 Huntzinger Dec 2015 B2
9248857 Spahl et al. Feb 2016 B2
9283989 Spahl et al. Mar 2016 B2
9296420 Sasaki et al. Mar 2016 B2
9493208 Sasaki et al. Nov 2016 B2
20010028154 Sebe Oct 2001 A1
20020109310 Lim et al. Aug 2002 A1
20020171216 Deal Nov 2002 A1
20020190494 Cocco Dec 2002 A1
20030071430 Serra et al. Apr 2003 A1
20030102176 Bautista Jun 2003 A1
20030141689 Hamy Jul 2003 A1
20030197337 Dodd et al. Oct 2003 A1
20040051262 Young Mar 2004 A1
20040100059 Van Den Brink May 2004 A1
20040134302 Ko et al. Jul 2004 A1
20040199314 Meyers et al. Oct 2004 A1
20040236486 Krause et al. Nov 2004 A1
20050051976 Blondelet et al. Mar 2005 A1
20050082771 Oh Apr 2005 A1
20050127656 Sato et al. Jun 2005 A1
20050184476 Hamm Aug 2005 A1
20050199087 Li et al. Sep 2005 A1
20050206101 Bouton Sep 2005 A1
20050275181 Macisaac Dec 2005 A1
20060049599 Lehane Mar 2006 A1
20060091636 Shelton May 2006 A1
20060151982 Mills Jul 2006 A1
20060170171 Pedersen Aug 2006 A1
20060180372 Mercier et al. Aug 2006 A1
20060220331 Schafer et al. Oct 2006 A1
20060226611 Xiao et al. Oct 2006 A1
20060249919 Suzuki et al. Nov 2006 A1
20060276944 Yasui et al. Dec 2006 A1
20070029751 Marcacci Feb 2007 A1
20070075517 Suhre et al. Apr 2007 A1
20070078581 Nenninger et al. Apr 2007 A1
20070126199 Peng et al. Jun 2007 A1
20070151780 Tonoli et al. Jul 2007 A1
20070182110 Urababa Aug 2007 A1
20070182120 Tonoli et al. Aug 2007 A1
20070193803 Geiser Aug 2007 A1
20070193815 Hobbs Aug 2007 A1
20070228675 Tonoli et al. Oct 2007 A1
20070241522 Tsai Oct 2007 A1
20080001377 Rogic Jan 2008 A1
20080012262 Carabelli et al. Jan 2008 A1
20080033612 Raab Feb 2008 A1
20080100018 Dieziger May 2008 A1
20080114509 Inoue et al. May 2008 A1
20080115994 Martini May 2008 A1
20080135320 Matthies Jun 2008 A1
20080164085 Cecinini Jul 2008 A1
20080197597 Moulene et al. Aug 2008 A1
20080197599 Comstock et al. Aug 2008 A1
20080223634 Yamamoto et al. Sep 2008 A1
20080227365 Lo Sep 2008 A1
20080238005 James Oct 2008 A1
20080255726 Fischlein et al. Oct 2008 A1
20080258416 Wilcox Oct 2008 A1
20080272562 Sabelstrom et al. Nov 2008 A1
20090026719 Koch et al. Jan 2009 A1
20090085311 Kim et al. Apr 2009 A1
20090105906 Hackney et al. Apr 2009 A1
20090108555 Wilcox Apr 2009 A1
20090171530 Bousfield Jul 2009 A1
20090194961 Dieziger Aug 2009 A1
20090194965 Boston Aug 2009 A1
20090197731 Kobler Aug 2009 A1
20090289437 Steinhilber Nov 2009 A1
20090299565 Hara et al. Dec 2009 A1
20090312908 Van Den Brink Dec 2009 A1
20090314566 Rust Dec 2009 A1
20090315282 Kirchner Dec 2009 A1
20100025944 Hara et al. Feb 2010 A1
20100030441 Kosaka Feb 2010 A1
20100032914 Hara et al. Feb 2010 A1
20100032915 Hsu et al. Feb 2010 A1
20100044977 Hughes et al. Feb 2010 A1
20100044979 Haeusler et al. Feb 2010 A1
20100152987 Gorai Jun 2010 A1
20100219600 Dada Sep 2010 A1
20110006498 Mercier Jan 2011 A1
20110095494 White Apr 2011 A1
20110148052 Quemere Jun 2011 A1
20110215544 Rhodig Sep 2011 A1
20110254238 Kanou Oct 2011 A1
20120098225 Lucas Apr 2012 A1
20120248717 Tsujii et al. Oct 2012 A1
20130062133 Budweil Mar 2013 A1
20130068550 Gale Mar 2013 A1
20130127131 Michel May 2013 A1
20130153311 Huntzinger Jun 2013 A1
20130168934 Krajekian Jul 2013 A1
20140252730 Spahl et al. Sep 2014 A1
20140252731 Spahl et al. Sep 2014 A1
20140252732 Spahl et al. Sep 2014 A1
20140252733 Spahl et al. Sep 2014 A1
20140252734 Spahl et al. Sep 2014 A1
20140312580 Gale Oct 2014 A1
20140346753 Huang et al. Nov 2014 A1
20140353937 Girelli Consolaro Dec 2014 A1
20140365078 Gerecke et al. Dec 2014 A1
20150045171 Schimpf et al. Feb 2015 A1
20150094909 Illg Apr 2015 A1
20160009180 Barrass Jan 2016 A1
20160059661 Saeger et al. Mar 2016 A1
20160059923 Simon et al. Mar 2016 A1
20160144680 Simon et al. May 2016 A1
20160244094 Spahl et al. Aug 2016 A1
Foreign Referenced Citations (151)
Number Date Country
1918013 Feb 2007 CN
679966 Aug 1939 DE
1937578 Jan 1963 DE
6801096 Nov 1967 DE
4035128 Jun 1992 DE
4135585 May 1993 DE
4236328 Sep 1993 DE
4315017 Sep 1994 DE
19621947 Oct 1997 DE
19735912 Mar 1998 DE
19717418 Oct 1998 DE
19800292 Jun 1999 DE
19848294 Oct 1999 DE
19838328 Dec 1999 DE
19846275 Dec 1999 DE
19831162 Jul 2000 DE
10251946 Mar 2004 DE
10349655 Jun 2005 DE
102004027202 Oct 2005 DE
102004058523 Jun 2006 DE
102007006546 Aug 2007 DE
112006002581 Sep 2008 DE
102007024769 Nov 2008 DE
102008046588 Mar 2010 DE
102009042662 Mar 2011 DE
102010000884 Jul 2011 DE
102010000886 Jul 2011 DE
102010055947 Aug 2011 DE
102010041404 Mar 2012 DE
102010046317 Mar 2012 DE
102012217416 Mar 2014 DE
0592377 Apr 1994 EP
0606191 Jul 1994 EP
0626307 Nov 1994 EP
0658453 Jun 1995 EP
1030790 Aug 2000 EP
1142779 Oct 2001 EP
1153773 Nov 2001 EP
1155950 Nov 2001 EP
1180476 Feb 2002 EP
1228905 Aug 2002 EP
1346907 Sep 2003 EP
1348617 Oct 2003 EP
1419909 May 2004 EP
1539563 Jun 2005 EP
1600313 Nov 2005 EP
1630081 Mar 2006 EP
1702773 Sep 2006 EP
1798081 Jun 2007 EP
1872981 Jan 2008 EP
1773609 Mar 2008 EP
1944228 Jul 2008 EP
2030814 Mar 2009 EP
2077223 Jul 2009 EP
2199122 Jun 2010 EP
2213561 Aug 2010 EP
2475570 Jul 2012 EP
2712796 Apr 2014 EP
2284383 Jan 2007 ES
2663283 Dec 1991 FR
2768203 Mar 1999 FR
2858963 Feb 2005 FR
2872699 Jan 2006 FR
2927026 Aug 2009 FR
2937000 Apr 2010 FR
2946944 Dec 2010 FR
2961746 Dec 2011 FR
480191 Feb 1938 GB
1157016 Jul 1969 GB
2322837 Sep 1998 GB
2382334 Nov 2001 GB
2374327 Oct 2002 GB
2390065 Dec 2003 GB
2394701 May 2004 GB
2444250 Jun 2008 GB
2450740 Jan 2009 GB
2472180 Feb 2011 GB
2476877 Jul 2011 GB
2492757 Jan 2013 GB
4-69710 Mar 1992 JP
4-71918 Mar 1992 JP
4-108018 Apr 1992 JP
2001-206036 Jul 2001 JP
2003-81165 Mar 2003 JP
2004-306850 Nov 2004 JP
2005-193890 Jul 2005 JP
2006-7865 Jan 2006 JP
2006-44467 Feb 2006 JP
2006-168503 Jun 2006 JP
2006-232197 Sep 2006 JP
2006248489 Sep 2006 JP
2006-281918 Oct 2006 JP
2006-341718 Dec 2006 JP
2007-10511 Jan 2007 JP
2007-69688 Mar 2007 JP
2007-106332 Apr 2007 JP
2007-161013 Jun 2007 JP
2007-186179 Jul 2007 JP
2007-210456 Aug 2007 JP
2007-238056 Sep 2007 JP
2008-1236 Jan 2008 JP
2008-62854 Mar 2008 JP
2008-120360 May 2008 JP
2008-132933 Jun 2008 JP
2009-270918 Nov 2009 JP
2010-155486 Jul 2010 JP
2010-168000 Aug 2010 JP
2011230727 Nov 2011 JP
2012153349 Aug 2012 JP
9406642 Mar 1994 WO
9627508 Sep 1996 WO
9709223 Mar 1997 WO
9727071 Jul 1997 WO
9941136 Aug 1999 WO
9947372 Sep 1999 WO
9954186 Oct 1999 WO
0224477 Mar 2002 WO
02068228 Sep 2002 WO
03021190 Mar 2003 WO
03057549 Jul 2003 WO
2004011319 Feb 2004 WO
2004041621 May 2004 WO
2005039955 May 2005 WO
2005058620 Jun 2005 WO
2006006859 Jan 2006 WO
2006129020 Dec 2006 WO
2008043870 Apr 2008 WO
2008044838 Apr 2008 WO
2008053827 May 2008 WO
2008065436 Jun 2008 WO
2009059099 May 2009 WO
2009074752 Jun 2009 WO
2009087595 Jul 2009 WO
2009106978 Sep 2009 WO
2010009928 Jan 2010 WO
2010015986 Feb 2010 WO
2010015987 Feb 2010 WO
2010035877 Apr 2010 WO
2010106385 Sep 2010 WO
2010116641 Oct 2010 WO
2011005945 Jan 2011 WO
2011023862 Mar 2011 WO
2011029795 Mar 2011 WO
2011053228 May 2011 WO
2011059456 May 2011 WO
2011074204 Jun 2011 WO
2011083335 Jul 2011 WO
2011102108 Aug 2011 WO
2011107674 Sep 2011 WO
2012031150 Mar 2012 WO
2014009637 Jan 2014 WO
Non-Patent Literature Citations (43)
Entry
Office Action dated Nov. 28, 2014 for patented U.S. Appl. No. 14/201,550.
Office Action dated Oct. 10, 2014 for co-pending U.S. Appl. No. 14/201,602.
Office Action dated Sep. 4, 2014 for co-pending U.S. Appl. No. 14/201,628.
Office Action dated Dec. 26, 2014 for co-pending U.S. Appl. No. 14/201,628.
Office Action dated Mar. 11, 2015 for co-pending U.S. Appl. No. 14/201,628.
Office Action dated Jan. 29, 2015 for patented U.S. Appl. No. 14/201,616.
Office Action dated Dec. 19, 2014 for co-pending U.S. Appl. No. 14/201,586.
Office Action dated Jun. 1, 2015 for co-pending U.S. Appl. No. 14/201,586.
Office Action dated Jul. 28, 2015 for co-pending U.S. Appl. No. 14/201,628.
German Search Report for Application No. 10 2013 203 923.9 dated Oct. 8, 2013.
German Search Report for Application No. 10 2013 203 922.0 dated Oct. 14, 2013.
German Search Report for Application No. 10 2013 203 927.1 dated Nov. 5, 2013.
German Search Report for Application No. 10 2013 203 926.3 dated Oct. 31, 2013.
German Search Report for Application No. 10 2013 203 924.7 dated Oct. 24, 2013.
Notice of Allowance dated Mar. 19, 2015 for patented U.S. Appl. No. 14/201,550.
Notice of Allowance dated Sep. 28, 2015 for patented U.S. Appl. No. 14/201,586.
Notice of Allowance dated Feb. 3, 2015 for patented U.S. Appl. No. 14/201,602.
Notice of Allowance dated May 20, 2015 for patented U.S. Appl. No. 14/201,616.
Advisory Action dated Oct. 7, 2015 for co-pending U.S. Appl. No. 14/201,628.
Notice of Allowance dated Nov. 3, 2015 for co-pending U.S. Appl. No. 14/201,628.
Office Action dated Nov. 6, 2015 for co-pending U.S. Appl. No. 14/554,410.
Machine translation of German Examination Report dated May 28, 2015 for German Application No. 102014217386.8.
Machine translation of German Examination Report dated Apr. 30, 2015 for German Application No. 102014217246.2.
United Kingdom Search Report for related Application No. GB1520837.4, dated Apr. 13, 2016.
Office Action from co-pending U.S. Appl. No. 14/554,410.
Further United Kingdom Search Report for related Application No. GB1520837.4, dated May 4, 2016.
Non-Final Office Action dated Jun. 27, 2016 from co-pending U.S. Appl. No. 14/630,106.
Non-Final Office Action dated Aug. 3, 2016 from co-pending U.S. Appl. No. 14/554,410.
Non-Final Office Action dated Dec. 19, 2016 from co-pending U.S. Appl. No. 14/839,137.
Final Office Action dated Dec. 30, 2016 from co-pending U.S. Appl. No. 14/630,106.
Non-Final Office Action dated Jan. 5, 2017 from co-pending U.S. Appl. No. 14/842,099.
Notice of Allowance dated Jan. 27, 2017 from co-pending U.S. Appl. No. 14/554,410.
Chinese Notification of First Office Action for related Application No. CN201410083843.2, dated Mar. 24, 2017.
Chinese Notification of First Office Action for related Application No. CN201410083467.7, dated Mar. 24, 2017.
Advisory Action dated Mar. 27, 2017 from co-pending U.S. Appl. No. 14/630,106.
Chinese Notification of First Office Action for related Application No. CN201410083008.9, dated Apr. 6, 2017.
Non-Final Office Action dated May 5, 2017 from co-pending U.S. Appl. No. 14/630,106.
Chinese Notification of First Office Action for related Application No. CN201410082053.2, dated Apr. 27, 2017.
Chinese Notification of First Office Action for related Application No. CN201410081761.4, dated Mar. 29, 2017.
Final Office Action dated Jun. 6, 2017 from co-pending U.S. Appl. No. 14/839,137.
Notice of Allowance dated Jul. 3, 2017 from co-pending U.S. Appl. No. 14/842,099.
Notice of Allowance dated Aug. 21, 2017 from co-pending U.S. Appl. No. 14/839,137.
Notice of Allowance dated May 11, 2017 from co-pending U.S. Appl. No. 14/554,410.
Related Publications (1)
Number Date Country
20160243918 A1 Aug 2016 US