This invention relates in general to land vehicles and more particularly, to personal mobility vehicles. Most particularly, the invention relates to wheel mounts for wheelchairs.
This invention relates in general to improvements in wheel mount assemblies of the type used with wheelchairs and other devices. More particularly, this invention relates to an improved wheel mount assembly that provides wheel height adjustability, center-of-gravity adjustability, and camber toe-in/toe-out adjustability.
Wheel mount assemblies in general are well known in the art for use with many different types of wheeled devices. Such wheel mount assemblies are commonly employed for mounting the rear wheels on a typical wheelchair. Each wheel mount assembly typically incorporates a number of adjustments that allow the wheelchair occupant to customize the wheelchair to his or her anthropometry and driving conditions. Typically manual wheelchairs provide a height adjustment in the rear wheels and/or the front casters. Frequently, the rear wheels of the wheelchair are cambered, or angled with respect to a vertical plane. A wheelchair with a large camber angle has more responsive turning, which is typically beneficial in sports applications. A wheelchair with a little to no camber angle has a smaller overall width and thus greater maneuverability in tight confines.
When an adjustment is made to the rear wheel height or front caster height on a wheelchair with cambered wheels, the rear wheels will toe in or toe out. That is to say, the rear wheels become misaligned with respect to the ground plane. This misalignment is undesirable because it increases rolling friction. If the rear wheels are raised or the front casters are lowered, the rear wheels will toe out. Conversely, if the rear wheels are lowered or the front casters are raised, the rear wheels will toe in. This occurs because the axis of the camber is no longer aligned horizontally. To correct this, the mounting hardware that attaches the rear wheels to the wheelchair frame must allow the axles of the rear wheels to rotate in order to re-align the camber angle with respect to horizontal.
Some wheelchairs, typically high-performance wheelchairs, provide the ability to adjust the fore/aft position of the rear wheels with respect to the wheelchair frame. Such adjustment is known as a center-of-gravity adjustment. Moving the rear wheels rearward produces a more stable chair that is less likely to tip backwards. Moving the rear wheels forward makes the chair easier to balance on the rear wheels. This helps with maneuverability over obstacles, such as curbs, where the wheelchair occupant must lift the front casters off the ground in order to traverse the obstacle.
While many wheelchairs provide wheel height, camber toe-in/toe-out and center-of-gravity adjustability, there is strong demand for a design that offers user-friendly adjustment and is lightweight.
Rear wheel suspension assemblies in general are well known in the art for use with many different types of wheeled devices, including wheelchairs. Rear wheel suspension is employed in wheelchairs to absorb shock when traversing rough terrain or going off curbs, thereby producing a less fatiguing, lower impact ride for the user. Rear suspension provides therapeutic benefits by reducing lower back stress, rider fatigue, and the likelihood of seating pressure sores. High-end wheelchair suspension systems in the industry include the use of fluid damping, spring or air shock components that were developed for the bicycle industry. These components typically are heavy and expensive. Less expensive designs include the use of elastomers that are compressed during wheel impact loading. Elastomer suspension systems often do not incorporate rebound elastomers. These systems have hard stops that create an abrupt feel when energy is returned to the system following impact. Most elastomer type suspension systems offer little adjustability where the user can alter the characteristics of the suspension system for their body weight and ride preference. What is needed is a suspension system that is lightweight, low cost, low maintenance, is user adjustable, and provides rebound shock absorption. What is also needed is a wheelchair suspension system that can be optionally added to a wheelchair that uses many parts common with the non-suspension system and requires few additional suspension specific parts.
The use of anti-tip devices and travel wheels is well known in the industry. These devices are typically offered as optional accessories. Anti-tip devices are designed to prevent a wheelchair from tipping over backwards. They typically consist of extension tubes that extend rearward and downward in order to position small wheels behind the standard rear wheels, just above the ground. The anti-tip wheels contact the ground in the event that the wheelchair tips rearward, preventing the chair from tipping over. Travel wheels are devices used for entering tight confines. Often narrow doorways and airplane aisles prevent wheelchair access because the wheelchair with rear wheels is too wide. Travel wheels are small rear wheels situated inboard of the seat frame, and just above the ground contact point of the standard rear wheels. To create a narrower wheelchair width the standard rear wheels are removed and the wheelchair rolls on the travel wheels. What is needed is a wheelchair with center-of-gravity, toe-in/toe-out and rear wheel height adjustability that includes the ability to mount optional accessories such as travel wheels and anti-tip devices. Such devices should be compatible with a large range of adjustment while using few accessory sizes to cover this range. Such devices should also be compatible with a wheelchair suspension option.
The present invention is directed towards a rear wheel mount and suspension that meets the foregoing needs. The wheel mount generally may be comprised of an axle plate and a camber tube clamp that may be height adjustable with respect to the axle plate. According to another embodiment of the invention, the camber tube clamp may be selectively mountable upright or inverted so as to increase an overall range of height adjustability. According to yet another embodiment of the invention, the camber tube clamp can be selectively mountable in front of or behind the axle plate so as to increase an overall range of center-of-gravity adjustability. According to still another embodiment of the invention, the camber tube clamp and the axle plate may have an interlocking feature that allows the camber tube clamp to slide vertically along the axle plate to facilitate height adjustment. A seat collar can be positioned at various locations along a wheelchair frame for center-of-gravity adjustment. The axle plate can be detached from and attached to the seat tube collar to allow the axle plate and camber tube clamp to be reverse mounted in order to increase the range of center of gravity adjustment.
A wheelchair suspension system according to the invention comprises a swing arm and one or more elastomers. The swing arm is adapted to support a rear wheel of a wheelchair and adapted to pivot about an axis substantially fixed to a wheelchair frame. The swing arm may be suspended between two elastomers.
According to another embodiment of the invention, the wheelchair suspension system may be comprised of a swing arm for supporting a rear wheel of a wheelchair. The swing arm may be adapted to pivot about an axis that is adapted to be substantially fixed relative to a wheelchair frame. An elastomer may be operatively connected to the swing arm so that displacement of the swing arm in either direction about the pivot causes the elastomer to compress.
Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Referring now to the drawings, there is illustrated in
As shown in
The camber tube 18 may have axle plugs 28 situated at opposing ends thereof. A central bore 28a in these axle plugs 28 may support a rear wheel axle (not shown) and may be tilted with respect to the axis A1 of the camber tube 18. This tilt angle could provide the rear wheels with camber. Toe-in/toe-out may be eliminated by rotating the camber tube 18 within the camber tube clamps 16 until the camber axis is substantially horizontal. The camber tube 18 may have a collar 30 situated inboard of the camber tube clamp 16. This collar 30 may permit the camber tube 18 to be kept substantially centered side-to-side or laterally on the wheelchair. The collar 30 may have a flat surface 30a that could be used for toe-in/toe-out adjustment. To make toe-in/toe-out adjustment, the user could simply loosen the fasteners 24 on the left and right camber tube clamps 16, rotate the camber tube 18 until the collar flat surface 12a is oriented vertically, and then retighten the fasteners 24.
The camber tube clamp 16 may be a convenient location for mounting optional accessories, such as anti-tip receivers 32 and travel wheel receivers 34. The camber tube clamp 16 may have two tapped cross-holes 16b that are used for mounting an anti-tip receiver 32 and/or a travel wheel receiver 34. The location of the anti-tip wheels and travel wheels (not shown) with respect to the standard rear wheels may be important to maintain rearward stability and prevent rearward tip over. Mounting these accessories to the camber tube clamp 16 may ensure that the accessory wheels will be correctly located with minimal adjustment, regardless of the rear seat height and center-of-gravity adjustment in the wheelchair. This mounting may have the advantage of requiring fewer sizes of anti-tip and travel wheel extension tubes (not shown) because tube receivers 32, 34 may be able to remain stationary with respect to the rear wheel as adjustment to the center-of-gravity or rear wheel height is made. This could reduce inventory of parts, and reduce the risk that a user will need to order a different length extension tube when adjusting the rear wheel location.
In the preferred embodiment, the ears 16a of the camber tube clamp 16 may slide along mating grooves 14b in the axle plate 14. This interlocking feature may facilitate rear seat height adjustment by allowing the camber tube clamp 16 to remain attached to the axle plate 14 when the height adjustment screws 24, 26 are removed. It is noted that other means of attaching the camber tube clamp 16 to the axle plate 14 are possible, including, for example, a T-slot or tongue in groove slot, or any interlocking feature that may allow the axle plate 14 and camber tube clamp 16 to maintain an interface that may provide height adjustment of the camber tube clamp 16. Such other means of attachment are within the scope of this patent.
The axle plate 14 may be designed to accept both rigidly mounted rear wheels, as described above with respect to
Another embodiment of the wheelchair axle plate 60 is shown in
A suspension system 70 can be mounted on this axle plate 60, as shown in
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims the benefit of U.S. Provisional Patent Application No. 60/608,604, filed on Sep. 10, 2004.
Number | Date | Country | |
---|---|---|---|
60608604 | Sep 2004 | US |