(1) Field of the Invention
One aspect of the invention relates to an impact-absorbing helmet with a compliant liner system that absorbs energy generated by an impacting force exerted on the outside of the helmet and reverts toward an un-deflected, non-destroyed configuration after impact.
(2) Description of Related Art
Helmets and hard hats have been used for centuries in all types of activity where there is a risk of blunt force trauma to the head. These helmets will typically consist of three layers. The outer shell layer functions to protect the head from lacerations and abrasions from the incident object impacting the helmet. A comfort layer, which contacts the skull of the wearer, typically provides some level of padding to improve comfort and fit of the assembly to the skull. Interposed between the shell and the comfort layer, an energy absorbing system is often utilized to mitigate some of the impacting forces from the blunt force trauma. Often, for example in professional cycling, the helmet will need to be replaced after a blow is sustained
In recent years, Mild Traumatic Brain Injury (MTBI) and concussions have gained more attention since the occurrence of these events do not seem to be decreasing markedly as the helmet technology has improved. Athletes, soldiers, and workers involved in one or more impact events often have short term or permanent loss of brain function as a result of these impact events. NOCSAE, FMVSS, and other helmet system performance standards have sought to improve the performance of helmet systems to reduce the severity of an impact event. However, consumers desire a helmet that not only protects them from the adverse effects of repeated hits, but one that is also aesthetically pleasing, non-restrictive, light weight, comfortable, breathable, safe, durable, and affordable. A helmet may provide exceptional impact protection but if it looks, smells, or feels uncomfortable then no one will wear it.
Helmet manufacturers such as Riddell, Schutt, CCM, Brine, Skydex, Gentex and the like provide helmet systems for various occupations and recreational sports. The outer shell of the helmet is designed in such a way that it protects the wearer from cuts and abrasions from the incident object. These shells are typically thermoplastic or thermoset composites that are extremely tough and rigid. During an impact event, the shell itself does absorb some of the impact energy by flexing in response to the impacting object. However, the majority of the impacting force is transferred from the shell into the shell cavity where the energy absorbing and comfort layers reside and ultimately are transferred to the wearer. This force transfer without significant absorption often presents a risk of injury.
Traditionally, the energy absorbing layer in the shell has been some type of foam assembly. The assembly may be comprised of one or more layers or grades of foam to provide both comfort and impact protection. The inner layer is typically lower in density and provides less energy absorbing contribution than the more rigid outer layer. Furthermore, some systems, such as Riddell's Revolution football helmet, also employ a bladder system that allows the wearer to customize the fit of the helmet to the skull based on the level of liner inflation. While these systems may be comfortable to wear, foam lacks energy absorbing efficiency. Furthermore, foam does not breathe well and its solid construction allows minimal room for airflow to cool the head.
More recently, helmet manufactures have been developing helmet liner systems constructed with a tougher energy absorbing layer made from thermoplastic resins. These materials are typically injection molded or twin sheet thermoformed as an energy absorbing layer. A separate system is utilized to provide comfort to the wearer. The energy absorbing structures, by design, are rigid and uncomfortable. One or more layers of comfort foam or padding is typically added to the assembly. This increases the cost of these systems. Furthermore, the manufacturing methods employed to produce the energy absorbing layer do not allow for a high degree of design flexibility to optimize performance.
Among the prior art considered in preparing this patent application is:
Additionally, several of Applicant's patents (see, e.g., U.S. Pat. Nos. 6,199,942; 6,247,745; 6,679,967; 6,682,128; 6,752,450; 7,360,822; 7,377,577; 7,404,593; 7,625,023 which are incorporated herein by reference) describe an efficient modular tunable energy absorbing assembly for reducing the severity of an impact event.
In one embodiment of the invention, there is a helmet with an outer shell and an energy absorbing layer positioned inside the shell. The layer has a cluster of thermoformed interconnected energy absorbing modules. At least some of the modules in the layer have a basal portion with upper and lower sections when viewed in relation to the wearer's head. Thus, the upper section is closest to an inner surface of the outer shell of the helmet. The lower section is closest to the wearer's head.
Preferably the upper section has one or more energy absorbing units. At least some of the units are provided with a substantially frustoconical wall with a domed cap. In some embodiments the wall, the domed cap or both cooperate to recoil non-destructively towards an un-deflected state after impact. The units at least partially cushion the blow by absorbing energy imparted by an object that impacts the outer shell before reversion. If desired, one or more ribs interconnect at least some of the energy absorbing units in one or more modules.
In some embodiments, the lower section has a tiered arrangement of layers. An outermost layer cooperates with and lies inside a periphery of a module in the upper section. One or more intermediate layers extend from and within the outermost layer. An innermost layer extends from and within an intermediate layer. The layers are relatively compliant and thus provide a comfortable yet firm fit of the helmet upon the wearer. In some embodiments the tiered arrangement of layers cooperates with the upper section by contributing to rebounding of the energy absorbing layer after impact.
At least some of the innermost layers are provided with an aperture that reduces weight and allows air within the clusters to bleed therefrom.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
In one embodiment of the invention (
At least some of the modules 16 in the layer 14 have upper and lower basal portions 18, 19 with upper 20 and lower 22 sections when viewed in relation to the wearer's head 24. Thus, the upper section 20 is closest to the outer shell 12 of the helmet 10 while the lower section 22 is closest to the wearer's head 24. Thus, the upper section 20 is positioned toward the inner surface 26 of the outer shell 12 and the lower section 22 lies closer to the head 24 of a wearer.
Preferably the upper section 20 has one or more energy absorbing units 28 (
The units 28 at least partially cushion the blow and revert to or toward an un-deflected configuration by absorbing energy imparted by an object 35 that impacts the outer shell 12. Reversion occurs without substantial loss of structural integrity so that bounce back is essentially non-destructive. If desired, one or more ribs 34 interconnect at least some of the energy absorbing units 28 in one or more modules 16.
In some embodiments, the lower section 22 (the comfort or conforming section) has a tiered arrangement of layers 36 (
The innermost layers 38, 42, 44 may be provided with an aperture 46 (
One aspect of the invention thus includes a helmet 10 and a helmet liner system 12 that, when engineered for a given set of impact conditions, will provide a mass optimized helmet liner 12 with rebound characteristics, superior impact protection, fit, comfort, breathability, and durability at a reasonable cost.
By modifying the shape and orientation of energy absorbing (EA) modules, the resistance of the energy absorber 14 can be tuned to optimize performance around the entire helmet shell 12. The global stiffness of the absorber 14 can also be tuned by running thinner or thicker sheet off a thermoforming tool to soften or stiffen the absorber respectively. Additionally, unlike foam, the EA layer is not solid and has superior cooling characteristics.
In one embodiment (
In a preferred embodiment, the comfort layer 22 is manufactured from the same material as the EA (upper) layer 20. While several resin candidates have been identified, thermoplastic urethanes (TPU's) have proven to be the most resilient and chemically resistant. There are various grades and manufacturers of TPU. Lubrizol's Estane ETE55DT3 is a desirable material based on resiliency and energy absorbed per unit mass based on performance testing conducted to date. The thickness of the comfort layer 22 is preferably less than or equal to the thickness of the EA layer 20. In one embodiment, as mentioned earlier, the comfort layer 22 has bellowed or tiered structures 36 (like an inverted wedding cake) facing in one or more directions. These structures 36 act like an accordion with bellows (but preferably non-pneumatically) or flex in response to an applied load. If desired, the liner system 10 could be manufactured by twin sheet thermoforming.
Anticipated uses for the disclosed this technology include but are not limited to helmets for soldiers, athletes, workers and the like, plus automotive applications for protecting a vehicle occupant or a pedestrian from injury involving a collision. It is also anticipated that this technology could be applied anywhere that some level of comfort is required in an energy absorbing environment including all types of padding, flooring, cushions, walls, and protective equipment in general. Optionally, the comfort layer 22 could be at least partially inflated primarily for fit.
In most embodiments, the liner system 14 includes a plurality of interconnected modules 16.
Continuing with the primary reference to
Traditionally, hook and loop materials of adhesive have been utilized to attach the helmet liner 14 to the helmet shell 12. Also anticipated is the use of other means for attaching such as rivets, coined snaps, add-on fasteners, tape, Velcro® and glue to affix the liner to the shell.
Shown as an example in
Helmet systems are designed to absorb and mitigate some of the blunt forces or blast energy from an event. Initial testing of one embodiment indicates that superior impact performance can be obtained when compared to the prior art. This enables a helmet system to be realized that is safer than those which preceded it.
The impact performance of the disclosed system may be tuned or optimized according to the intended use—for example to the skill level of the athlete for recreational sporting helmets. Youth sporting equipment may be less stiff (e.g., formed from a thinner gage of material) and tuned to the speed and mass of the athlete. Professional athletes may require a stiffer absorber due to their increased mass, speed, and aptitude.
Furthermore, the preferred embodiment of the liner system is a one piece construction. This design requires fewer components to assemble. This attribute reduces the assembly labor, cost, complexity, and number of purchased components.
Additionally, the assembly is often lighter in weight and more comfortable than those found in the prior art. The materials of construction are also more resilient to repeat impacts when compared to the prior art.
In another aspect of the invention, the energy absorbing layer 14 includes an upper section 20 with an upper basal portion 18 and a plurality of energy absorbing units 16, many of which are frustoconical extending from the upper basal portion 18. Each energy absorbing unit 16 has a side wall 30 that is oriented so that upon receiving the forces of impact (“incident forces”), the side wall 30 offers some resistance, deflects and reverts (springs back) to or towards a compression set point or to or towards the un-deflected pre-impact initial configuration while exerting reactionary forces to oppose the incident forces. This phenomenon effectively cushions the blow by arresting the transmission of incident forces towards the mass or object to be protected (e.g., an anatomical member, a piece of sheet metal, an engine block, or the head of a passenger or player).
The side wall(s) 30 while deflecting (e.g., by columnar buckling) absorb energy when impacted. Each energy absorbing unit has an end wall or domed cap 32—which may be a “top” or “bottom” end, depending on the orientation of the energy absorbing layer 14 when installed—and a side wall 30 that reverts at least partially towards an un-deflected configuration within a time (T) after impact, thereby absorbing energy non-destructively after the hit.
In some cases, the energy absorbing units 14 revert to or toward an un-deflected or compression-set configuration after a first impact. In other cases, they revert to the compression-set configuration after multiple impacts.
To absorb impact forces, the side wall 30 bends in response to impact and springs back to an un-deflected configuration in further response to impacting forces. In some cases opposing side walls 30 in an energy absorbing unit 28 bend at least partially convexly after impact. In other cases, opposing side walls 30 bend at least partially concavely after impact. Sometimes, opposing side walls 30 bend at least partially concavely and convexly after impact in an accordion-like fashion.
If present, the domed end wall 32 is supported by an upper periphery 33 of the side wall 30 and deflects inwardly, thereby itself absorbing a portion of the energy dissipated upon impact and at least partially springing back to an initial configuration.
Aided by these structures, the disclosed energy absorber 14 can be re-used after single or multiple impacts. For example the hockey or football player need not change his helmet after every blow. This is because the side walls revert toward an un-deflected configuration within a time (T) after the associated crush lobe is impacted. Usually 0<T< about 90 seconds. Most of the recovery occurs quite soon after impact. The remainder of the recovery occurs relatively late in the time period of recovery, by analogy to a “creep” phenomenon.
Additional air flow through orifices or channels provided in the helmet liner 14 improves head cooling and provides some level of increased protection from blast events when compared to the prior art.
Further, the liner system 14 is quite easy to clean and has improved chemical resistance compared to many products found in the prior art.
It is thought that the overall system performance (and cost) is anticipated to be near the best in the industry based on market analysis completed to date. Shown in
It is also anticipated that in some instances, it may be desirable to pressurize one or more modules 16 to customize the fit of the absorber 14 to the wearer or topography of the mass to be protected.
Comfort layers of cloth or material may also be introduced between the absorber and the head to improve comfort such as a “Doo Rag” (a piece of cloth used to cover the head).
Further, the Applicant's pending soft top technology may also be employed to minimize the potential for unwanted noise (BSR) from the assembly. See e.g., U.S. Ser. Nos. 12/729,480 and 13/155,612 which are incorporated herein by reference.
Turning now to
In some applications, it may be desirable to orient the upper section 20 so that the energy absorbing units 28 face downwardly and the upper basal layer is juxtaposed with the outer shell 12 of the helmet. In such configurations, the lower basal portion 19 of the lower section 22 is adjoined to the upper basal portion 18 of the upper section 20.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a divisional of U.S. Ser. No. 13/487,462 filed Jun. 4, 2012 (to issue as U.S. Pat. No. 9,420,843), which is a continuation-in-part of U.S. Ser. No. 13/328,489 that was filed on Dec. 16, 2011. Those patent applications are and is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1784511 | Carns | Dec 1930 | A |
2090881 | Wilson | Aug 1937 | A |
2391997 | Noble | Jan 1946 | A |
3011602 | Ensrud | Dec 1961 | A |
3018015 | Agriss et al. | Jan 1962 | A |
3071216 | Jones | Jan 1963 | A |
3196763 | Rushton | Jul 1965 | A |
3231454 | Williams | Jan 1966 | A |
3525663 | Hale | Aug 1970 | A |
3605145 | Graebe | Sep 1971 | A |
3938963 | Hale | Feb 1976 | A |
4023213 | Rovani | May 1977 | A |
4029822 | Comer | Jun 1977 | A |
5030501 | Colvin | Jul 1991 | A |
5390467 | Shuert | Feb 1995 | A |
5391251 | Shuert | Feb 1995 | A |
5401347 | Shuert | Mar 1995 | A |
5444959 | Tesch | Aug 1995 | A |
5470641 | Shuert | Nov 1995 | A |
5549327 | Rusche | Aug 1996 | A |
5572804 | Skaja et al. | Nov 1996 | A |
5635275 | Biagioli | Jun 1997 | A |
6098313 | Skaja | Aug 2000 | A |
6199942 | Carroll, III et al. | Mar 2001 | B1 |
6247745 | Carroll, III et al. | Jun 2001 | B1 |
6453476 | Moore, III | Sep 2002 | B1 |
6679967 | Carroll, III et al. | Jan 2004 | B1 |
6682128 | Carroll, III et al. | Jan 2004 | B2 |
6752450 | Carroll, III et al. | Jun 2004 | B2 |
6777062 | Skaja | Aug 2004 | B2 |
7328462 | Straus | Feb 2008 | B1 |
7360822 | Carroll, III et al. | Apr 2008 | B2 |
7377577 | Carroll, III et al. | May 2008 | B2 |
7404593 | Cormier et al. | Jul 2008 | B2 |
7625023 | Audi et al. | Dec 2009 | B2 |
7676854 | Berger | Mar 2010 | B2 |
7766386 | Spingler | Aug 2010 | B2 |
7802320 | Morgan | Sep 2010 | B2 |
7895681 | Ferrara | Mar 2011 | B2 |
7908678 | Brine, III | Mar 2011 | B2 |
7954177 | Ide | Jun 2011 | B2 |
7958573 | Lewis, Jr. et al. | Jun 2011 | B2 |
8402568 | Alstin | Mar 2013 | B2 |
8510863 | Ferguson | Aug 2013 | B2 |
8528118 | Ide et al. | Sep 2013 | B2 |
8528119 | Ferrara | Sep 2013 | B2 |
8548768 | Greenwald et al. | Oct 2013 | B2 |
8566988 | Son et al. | Oct 2013 | B2 |
20020017805 | Carroll, III et al. | Feb 2002 | A1 |
20080120764 | Sajic | May 2008 | A1 |
20100244469 | Gerwolls et al. | Sep 2010 | A1 |
20100299812 | Maddux et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0434834 | Jul 1991 | EP |
0630592 | Dec 1994 | EP |
1555109 | Jul 2005 | EP |
Entry |
---|
International Search Report and Written Opinion; International application No. PCT/US2012/070006; date of mailing Feb. 15, 2013. |
International Preliminary Report on Patentability; International application No. PCT/US2012/070006; date of issuance of report Jun. 17, 2014. |
Brachmann, Steve, “Consussion Science, Stagnant Helmet Innovation and the NFL”; IPWatchdog.com; Feb. 2, 2014. |
Number | Date | Country | |
---|---|---|---|
20160353826 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13487462 | Jun 2012 | US |
Child | 15242730 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13328489 | Dec 2011 | US |
Child | 13487462 | US |